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The attempt to simultaneously optimize stability, accuracy, and efficiency in an ocean model leads to a
wide range of methods that are potentially useful. For some models, a major issue is the efficient integra-
tion of the Coriolis term when the underlying numerical model uses a semi-implicit time integration.
Existing numerical models treat this integration with a variety of methods including explicit Adams–
Bashforth schemes and implicit schemes. The semi-implicit approach is useful in that it provides a
method to remove restrictive stability constraints and mode splitting errors. Published literature would
suggest that many if not most standard explicit methods for the Coriolis term are unstable. On the other
hand, implicit integration of the Coriolis term is very inefficient for staggered grid models with normal
velocity degrees of freedom as it leads to inversion of a large, sparse velocity matrix. Our purpose is to
explore and compare a variety of explicit or essentially explicit treatments of the Coriolis term. An anal-
ysis of the discretized shallow water equations indicates that some of the explicit methods are stable
under somewhat relaxed conditions. Of these, the third-order Adams–Bashforth and the FBT scheme
show good behavior. Numerical examples of coastal and deep ocean simulations illustrate the findings.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

One goal in the development of an ocean model is to optimize
stability, accuracy, and efficiency simultaneously. Many choices in
spatial and temporal discretization, solvers, and other technical de-
tails are available. However, in practical terms only a subjective bal-
ance between these goals is readily attainable and this balance in
many cases depends on the specific problem under consideration.

Nonetheless, some of these choices such as removing stability
constraints (Dukowicz and Smith, 1994; Casulli and Cattani,
1994; Kwok, 1996) are advantageous for a wide range of problems.
Other choices such as forming a discrete wave equation from a
combination of the free surface equation and momentum equa-
tions enhances efficiency by reducing matrix size (Walters and
Casulli, 1998; Casulli and Walters, 2000). On the other hand, using
higher-order methods tends to impact efficiency while improving
accuracy (Barragy and Walters, 1998) and may or may not be use-
ful. Here, the focus is on an attempt to optimize the balance be-
tween stability, accuracy, and efficiency in the numerical
treatment of the Coriolis term in a shallow water model.

Implicit methods can remove restrictive stability constraints
and have the added advantage of removing mode splitting errors
when a different time step is used for the barotropic and baroclinic
ll rights reserved.
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modes (Dukowicz and Smith, 1994). Many of the older global
ocean models and derivatives of them that originally used a rigid
lid approximation now have a free surface option. For the most
part, the free surface approximation follows the methods described
in Dukowicz and Smith (1994) where the free surface equation is
advanced in time with a backward Euler scheme and the momen-
tum equations are approximated with a Leap Frog (LF) scheme.
This approach is appropriate for problems where the fast gravity
waves are not of interest and must be damped.

The particular class of models of interest here are regional scale
models where tides, atmospheric exchanges, and coastal runoff are
major forcings, and coastal geometry and topography are impor-
tant. The features of interest include tsunami, infragravity waves,
tides, and longer period transient effects. For this class of problems,
a backward Euler scheme leads to excessive damping and a cen-
tered scheme is more accurate. Here, we consider semi-implicit
methods where some terms are integrated implicitly using the
h-method and other terms are integrated explicitly.

The semi-implicit approach was chosen because it removes the
major stability constraints on gravity waves and the vertical compo-
nent of viscous stresses. In addition, this approximation eliminates
the computational modes present with the LF treatment of the
momentum equations and removes mode splitting errors by using
the same time step for the barotropic and baroclinic modes. How-
ever, the spatial discretization of the Coriolis term results in a large,
sparse, skew-symmetric matrix. Hence, a semi-implicit treatment of
the Coriolis term usually requires the solution of a large matrix for
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the three-dimensional velocity (Danilov et al., 2004). This approach
is not practical for our approach as it leads to a very inefficient mod-
el. Ideally, the Coriolis term can be integrated by stable explicit
methods or essentially explicit methods which would be more effi-
cient in this case. Essentially explicit defines those methods such as
split step that can be reduced to an explicit scheme.

Unfortunately, many explicit methods are unconditionally
unstable. A simple forward Euler (fE) integration of the equation
for inertial oscillations is unconditionally unstable. Durran (1991)
shows that the third-order Adams–Bashforth method (AB3) is sta-
ble for the same equations, but is unconditionally unstable for a
two-frequency system where the fast oscillation (gravity waves)
is treated semi-implicitly. An important point here is that the sim-
plified oscillation equations do not give a complete picture of sta-
bility and the complete shallow water equations must be analyzed.
Hence we have examined the semi-implicit treatment of the shal-
low water equations in this study.

Of course, choices for the discretization of the Coriolis term
have been considered in all existing ocean models. For example,
a generalized Forward–Backward scheme is described for ROMS
(Shchepetkin and McWilliams, 2005; Kanarska et al., 2007) where
the Coriolis term may be approximated with AB3. In addition, MIT-
gcm is an ocean model that follows the approach of Marshall et al.
(1997) with a backward Euler time integration and uses a modified
second-order Adams–Bashforth method (AB2) for the Coriolis
term. AB2 is unstable for the inviscid case. However, modifying
the coefficients provides a stable method although formal accuracy
deteriorates (Marshall et al., 1997).

The two models that bear the closest resemblance to the model
we are considering, RiCOM (Walters and Casulli, 1998), are UN-
TRIM (Casulli and Zanolli, 2002) and SUNTANS (Fringer et al.,
2006). UNTRIM is an unstructured grid model with semi-implicit
time integration that uses a split step integration of the Coriolis
term (Casulli and Walters, 2000). SUNTANS has a similar discreti-
zation but uses the second-order Adams–Bashforth method (AB2)
(Fringer et al., 2006).

Thus, a number of methods for treating the Coriolis term have
been utilized in various ocean models. However, there appears to
be a lack of analysis that compares these methods for stability,
accuracy, and efficiency. This is particularly true for the case of
semi-implicit time integration, except for work by Kwok (1996)
who examines a forward Euler treatment. Hence, we have analyzed
the amplification (stability) characteristics of the shallow water
equations (SWE) for a number of treatments of the Coriolis term.
We consider a semi-implicit approximation of the linearized SWE
rather than the simplified equations for inertial oscillations such
as Durran (1991) considered. A more complete treatment of the
problem is expected to lead to better perspective of useful and effi-
cient methods.

In the next section, the governing equations (shallow water
equations) are defined along with the analysis methods. We con-
sider the equations to be continuous in space for generality. Hence,
the discrete spatial operators must be added to describe a particu-
lar scheme (see for instance, LeRoux et al. (2007) for an analysis of
a variety of discretization schemes). Although the explicit methods
are applicable to a wide range of discretizations, some are more
useful with staggered grids with normal velocity degrees of free-
dom and others can only be applied to grids that use full vectors.
This point is discussed along with the particular methods.

In the following section, several explicit time integration
schemes are examined including forward Euler (fE) which is gener-
ally known to be unstable, second-order Adams–Bashforth (AB2)
which Marshall indicates is unstable for the inviscid equations,
and third-order Adams–Bashforth (AB3). In addition, we consider
the Forward–Backward in Time (FBT) scheme. Finally, we give
some numerical examples and conclusions.
2. Formulation

2.1. Shallow water equations

The basic equations considered here are the two-dimensional
shallow water equations. These equations are derived by vertically
integrating the Reynolds-averaged Navier–Stokes equations and
using the hydrostatic assumption and the Boussinesq approxima-
tion (Pinder and Gray, 1977). The continuity equation (free surface
equation) is

og
ot
þ $ � ðHuÞ ¼ 0 ð1Þ

and the momentum equation expressed in nonconservative form is

du
dt
þ f ẑ� uþ g$gþ sb

qH
¼ 0 ð2Þ

where the coordinate directions (x,y,z) are aligned in the east, north,
and vertical directions; u(x,y,t) is the depth-averaged horizontal
velocity with components (u,v); f is the Coriolis parameter; ẑ is
the upward unit vector; h(x,y) is the water depth measured from
a reference elevation; g(x,y,t) is the distance from the reference ele-
vation to the free surface; H(x,y,t) is the total water depth, H = g � h;
g is the gravitational acceleration; q is a reference density; andr is
the horizontal gradient operator (o/ox, o/oy). The bottom stress sb is
given by

sb

q
¼ CD j u j u ¼ cHu ðz ¼ hÞ; ð3Þ

where CD is a bottom drag coefficient, and c is defined by this equa-
tion. For the test problems, essential boundary conditions on g are
set at open boundaries, and ðu � bnÞ ¼ 0 (no normal flow, where bn is
the unit normal) is set on land boundaries.

2.2. Time discretization

The central issue is how to integrate the Coriolis term with ex-
plicit methods and the gravity wave terms with semi-implicit
methods in such a way as to ensure a stable, accurate, and efficient
solution. For the semi-implicit time integration, we use the h-
scheme where a variable / is approximated as /n+h = h
/n+1 + (1 � h)/n.

For this analysis, we use the linearized shallow water equa-
tions; i.e., depth is taken to be constant in the continuity equation,
advection is neglected, and c is a constant in the momentum equa-
tion. The resulting semi-implicit time discretization of the continu-
ity (free surface) and momentum equations is

gnþ1 � gn

Dt
¼ �r � ½hHunþ1 þ ð1� hÞHun� ð4Þ

unþ1 � un

Dt
þ cunþ1 ¼ �gr½hgnþ1 þ ð1� hÞgn� þ FðuÞ ð5Þ

where F(u) represents the treatment of the Coriolis term which is
defined in the next sections.

Linearized equations are necessary in order to find analytical
expressions for the complex amplification factors in the next sec-
tion. However, in the results section we use the full nonlinear mod-
el to evaluate efficiency, accuracy, and stability.

3. Stability and accuracy

An analysis of the discretized equations can proceed in several
ways. One approach is to use amplification factors which give
the complex admittance per time step (Mesinger and Arakawa,
1976). Another is to use propagation factors which give the ampli-
tude and phase errors per wavelength (Leendertse, 1967). Yet
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Fig. 1. Contour plot of the magnitude of the amplification factor jAj for gravity
waves as a function of h and ckD t for Dt = 360 s.
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another is to use a classical Fourier analysis which gives the disper-
sion relation as well as damping factors and phase speed (Duko-
wicz and Smith, 1994). Since we are concerned with stability
issues, the former provides a more convenient analysis method.

The complex amplification factors are calculated using standard
methods (Mesinger and Arakawa, 1976; Durran, 1991). First the
amplification factor is defined as /n+1 = A/n where A is the complex
amplification factor, / is one of the dependent variables, and n de-
notes the time level. This relation is applied to the governing equa-
tions (sometimes repeatedly) in order to reduce the dependent
variables to the same time level. Then, the determinant of the coef-
ficient matrix is solved for A. As may be seen, the real difficulty is
solving an Nth order polynomial for A.

3.1. Semi-implicit gravity wave terms

As a baseline, first consider the gravity wave problem without
Coriolis. Using a semi-implicit approach, the gravity wave terms
are evaluated in the time interval [tn+1,tn] at the time tn + hDt.
The linear shallow water equations can be written

gnþ1 � gn ¼ �Dtr � ½hHunþ1 þ ð1� hÞHun� ð6Þ
unþ1 � un þ cDtunþ1 ¼ �gDtr½hgnþ1 þ ð1� hÞgn�: ð7Þ

We consider the case where g and u are continuous in space
and expand them according to / = /keik� x where the wave-number
k = (kx,ky) and k = jkj. Dropping the subscript k because the equa-
tions are linear, the equations then become

ðA� 1Þg ¼ �iDtHðhAþ ð1� hÞÞk � u; ð8Þ

ðAð1þ cDtÞ � 1Þu ¼ �igDtðhAþ ð1� hÞÞkg: ð9Þ

By substituting (9) into (8) we get for c = 0

ðð1þ Eh2ÞA2 � 2Að1� Ehð1� hÞÞ þ 1þ Eð1� hÞ2Þg ¼ 0; ð10Þ

where E = gHDt2k2 = (ckDt)2, c ¼
ffiffiffiffiffiffi
gH

p
being the phase speed. Thus

the roots of A are

A ¼ 1� Ehð1� hÞ � i
ffiffiffi
E
p

1þ Eh2 : ð11Þ

The amplitude of A is

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Eð1� 2hð1� hÞÞ þ E2h2ð1� hÞ2

q
1þ Eh2 ð12Þ

which is equal to one for h = 0.5 and less than one for h > 0.5; i.e., the
equations are unconditionally stable for h P 0.5. For h < 0.5, the CFL
stability limit applies.

The amplification factor of the exact solution is Ae = eick Dt. The
relative phase error is thus

R ¼ arg A
arg Ae

¼ 1
ckDt

arctan
I½A�
R½A�

� �
: ð13Þ

In this case R becomes

R ¼ 1
ckDt

arctan
ckDt

1� ðckDtÞ2ð1� 2hð1� hÞÞ

 !
: ð14Þ

The term ckDt can be written as Cw(kDe) where Cw is the wave
Courant number (CFL parameter) defined by Cw = cDt/De and De is
a length scale that is related to an element edge length. Hence the
horizontal axis of Fig. 1 can be written in terms of (kDe) (with Cw as
a scaling parameter) and thus directly compared to a variety of re-
sults from dispersion analysis; e.g., LeRoux et al. (2007). For a spa-
tially discretized treatment, the grid cutoff is (kDe) = p. Then for
large Cw the damping extends to lower wavenumber as is well
known. From this, we may observe that the damping in the figure
is dominated by the semi-implicit treatment in time and the value
of h. However, these effects are primarily felt at large wavenumber
(toward the grid cutoff) and diminish toward low wavenumber
(well resolved motions). As a result, the solution at low wavenum-
ber is more accurate and the effects of damping also diminish.
While the value for h determines the damping, the next subsec-
tions show that the explicit method used for the Coriolis term con-
trols the stability limit at the bottom of the figure where A = 1.

3.2. Semi-implicit gravity wave terms with explicit (fE) Coriolis

The forward Euler (fE) treatment of the Coriolis term is unsta-
ble. However, this approximation is still used in some coastal
ocean models where friction is used to stabilize the solution
(Zhang and Baptista, 2008). This scheme is analyzed here for two
reasons: it provides a simple case for understanding the methodol-
ogy we use, and it provides a basis to assess the limits on the use of
this scheme.

The semi-implicit form of the shallow water equations with ex-
plicit i.e., forward Euler, treatment of the Coriolis term is

gnþ1 � gn ¼ �Dtr � ½hHunþ1 þ ð1� hÞHun� ð15Þ

unþ1 � un ¼ �gDtr½hgnþ1 þ ð1� hÞgn� � f ẑ� un: ð16Þ

Again, we may expand this in terms of wave-number k, and we
will also express the Coriolis term in matrix form. The continuity
equation is unchanged from (8), however the momentum equation
becomes

ðA� 1Þu ¼ �igDtðhAþ ð1� hÞÞkg� Dtf
0 �1
1 0

� �
u: ð17Þ

Rearranging for u gives

A� 1 �Dtf

Dtf A� 1

� �
u ¼ �igDtðhAþ ð1� hÞÞkg; ð18Þ

i.e.,

u ¼ 1

ðA� 1Þ2 þ Dt2f 2

A� 1 Dtf
�Dtf A� 1

� �
�igDtðhAþ ð1� hÞÞkg½ �:

ð19Þ

As in the case of the semi-implicit gravity wave we may substi-
tute this into (8). Noting that
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k �
A� 1 Dtf

�Dtf A� 1

� �
k ¼ ðA� 1Þk2

we get the following expression for A,

ðA�1Þðð1þ Eh2ÞA2 �2Að1� Ehð1� hÞÞ þ1þ Eð1� hÞ2 þDt2f 2Þ ¼ 0:

ð20Þ

There are three roots to this equation. The real root A = 1 is the
geostrophic mode and it would correspond to the slow Rossby
mode on a b-plane approximation (LeRoux et al., 2007). The other
two roots are complex conjugates and correspond to the Poincaré
wave solution. They are

A ¼
1� Ehð1� hÞ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ ð1þ Eh2ÞDt2f 2

q
ð1þ Eh2Þ

: ð21Þ

Note that for f = 0 this collapses down to (11), the expression for
gravity waves. For h = 0.5, jAj2 = 1 + Dt2 f2 regardless of the value of
E and thus the equation is unstable. For larger values of h this sit-
uation changes and for

j f j6 ck
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h� 1
p

; ð22Þ

jAj 6 1 and thus the equations are stable. Note that the spatially
invariant mode corresponding to k = 0 will always be unstable as
(22) will not hold for non-zero f.

Fig. 2 shows a contour plot of the magnitude of A as a function
of h and ckDt for f = 1 � 10�4 s�1 and Dt = 360 s. For h > 0.5 and
ckDt large enough the amplification factor is less than one. Fig. 3
shows the contour jAj = 1 for different values of f. As f increases,
the area where the scheme is unstable increases. The scheme is al-
ways unstable for h = 0.5 and for ckDt = 0.

We may observe again that the damping in the figure is domi-
nated by the semi-implicit treatment in time and the value of h.
However, these effects are primarily felt at large wavenumber (to-
ward the grid cutoff) and diminish toward low wavenumber (well
resolved motions). While the value for h determines the damping,
the explicit method used for the Coriolis term controls the stability
limit at the bottom of the figure. For this case, the method is unsta-
ble for any value of h with an arbitrary value of k.

The equations can be stabilized by sufficient friction as can be
seen by deriving (20) using a positive finite value for c. Nonethe-
less, this presents a serious problem in places where the velocity
is zero and in the deep ocean where friction is small.
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Fig. 2. Contour plot of the magnitude of the amplification factor jAj for forward
Euler as a function of h and ckD t for f = 1 � 10�4 s�1 and Dt = 360 s.
3.3. Semi-implicit gravity wave terms with explicit (AB2) Coriolis

The semi-implicit form of the shallow water equations with
second-order Adams–Bashforth treatment of the Coriolis term is

gnþ1 � gn ¼ �Dtr � ½hHunþ1 þ ð1� hÞHun�; ð23Þ

unþ1 � un ¼ �gDtr½hgnþ1 þ ð1� hÞgn� � f ẑ� c1 þ
c2

A

� �
un; ð24Þ

where for second-order Adams–Bashforth, c1 = 3/2 and c2 = �1/2.
Again, the continuity equation is unchanged from (8). Note that
(24) is the same as (17) with f replaced by f(c1 + c2/A). Thus we
may use the same method to find the equation for A,

A4ð1þ Eh2Þ � 2A3ð1� Ehð1� hÞÞ þ A2ð1þ Eð1� hÞ2 þ Dt2f 2c2
1Þ

þ 2Ac1c2Dt2f 2 þ c2
2Dt2f 2 ¼ 0: ð25Þ

In general, there are two complex values and their complex con-
jugates as roots of this equation. One of these roots is the physical
mode shown here and the other root is a computational mode
which has small amplitude.
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Fig. 4. Contour plot of the magnitude of the amplification factor jAj for second-
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Although the stability limit is greatly reduced from the fE
scheme, Figs. 4 and 5 show that AB2 is still unstable for h = 0.5
and for k = 0. Like the fE scheme, AB2 is slightly unstable for small
values of k. Introducing damping by increasing h is ineffective at
small wavenumber. Like the fE scheme, AB2 can be stabilized by
introducing friction. However, this option is not recommended
for the same reasons as stated earlier.

Another option is to modify the weights such as suggested by
Marshall et al. (1997). The weights are adjusted as c1 = 3/2 + �
and c2 = �1/2 � � which effectively approximates the Coriolis term
at time n + 1/2 + �. Marshall et al. (1997) suggests a value � = 0.1
The stability limit for this modified form is shown in Fig. 6. As
may be seen, the scheme is now stable at k = 0 and the remaining
stability constraint is rather weak, h P 0.501 approximately.

3.4. Semi-implicit gravity wave terms with explicit (AB3) Coriolis

The semi-implicit form of the shallow water equations with
third-order Adams–Bashforth treatment of the Coriolis term is
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gnþ1 � gn ¼ �Dtr � ½hHunþ1 þ ð1� hÞHun�; ð26Þ

unþ1 � un ¼ �gDtr½hgnþ1 þ ð1� hÞgn� � f ẑ� c1 þ
c2

A
þ c3

A2

� �
un;

ð27Þ

where for third-order Adams–Bashforth, c1 = 23/12, c2 = �16/12 and
c3 = 5/12. Again, the continuity equation is unchanged from (8). Eq.
(27) is the same as (17) with f replaced by f(c1 + c2/A + c3/A2). Using
the same method to find the equation for A,

A6ð1þ Eh2Þ � 2A5ð1� Ehð1� hÞÞ þ A4ð1þ Eð1� hÞ2 þ Dt2f 2c2
1Þ

þ 2A3c1c2Dt2f 2 þ A2ð2c1c3 þ c2
2ÞDt2f 2 þ 2Ac2c3Dt2f 2

þ c2
3Dt2f 2 ¼ 0: ð28Þ

Note that although this is a real polynomial, generally it has 3
complex values and their complex conjugates as roots. One of
these roots is the physical mode shown here and the other two
roots are computational modes which have small amplitude.

Fig. 7 shows a contour plot of the magnitude of A as a function
of h and ckDt for f = 1 � 10�4 s�1 and Dt = 360 s for the third-order
Adams–Bashforth. Although the scheme is unstable for h = 0.5 for
ckDt greater than 2, the area where A is greater than one is strongly
confined to the axis. For h > 0.501 A is less than one for the range of
f values considered here. Note that, like the forward Euler, the solu-
tion is damped quite strongly for larger values of h. Fig. 8 shows the
contour jAj = 1 for different values of f. As f increases, the area
where the scheme is unstable increases but it is still a small area
being confined to h < 0.501. The scheme is always unstable for
h = 0.5 and ckDt > �1.8.

In general, AB3 represents a workable choice for an explicit
approximation. The scheme has a rather minor stability constraint
while it retains third-order accuracy. Moreover, it is an explicit
scheme which allows the full efficiency of a particular numerical
model to be realized.

3.5. Semi-implicit gravity wave terms with explicit (FBT) Coriolis

The Forward–Backward in Time (FBT) scheme tries to mimic a
semi-implicit scheme by alternatively changing the order in which
the two momentum equations are solved. The Coriolis term is al-
ways discretized by using the most recently computed velocity
component. The FBT scheme was first mentioned by Sielecki
(1968) and latter analyzed and improved by Beckers and Dele-
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Fig. 7. Contour plot of the magnitude of the amplification factor jAj for third-order
Adams–Bashforth as a function of h and ckDt for f = 1 � 10�4 s�1 and D t = 360 s.
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ersnijder (1993). Here, a semi-implicit time integration scheme is
used for the gravity wave terms and the Coriolis term is discretized
with a FBT scheme. The time discretization is:

gnþ1 ¼ gn � HDt$ � ½hunþ1 þ ð1� hÞun� ð29Þ

unþ1 ¼ un þ fDtvn � gDt
o

ox
½hgnþ1 þ ð1� hÞgn� ð30Þ

vnþ1 ¼ vn � fDtunþ1 � gDt
o

oy
½hgnþ1 þ ð1� hÞgn� ð31Þ

and

gnþ2 ¼ gnþ1 � HDt$ � ½hunþ2 þ ð1� hÞunþ1� ð32Þ

vnþ2 ¼ vnþ1 � fDtunþ1 � gDt
o

oy
½hgnþ2 þ ð1� hÞgnþ1� ð33Þ

unþ2 ¼ unþ1 þ fDtvnþ2 � gDt
o

ox
½hgnþ2 þ ð1� hÞgnþ1� ð34Þ

It can be seen that for each set of equations, the Coriolis term is
first discretized explicitly and then implicitly. The order of the two
momentum equations is switched in the second set of equations.
As a result, the time discretization of the Coriolis term appears to
be semi-implicit ‘‘on average”. It has been shown that such a dis-
cretization prevents the Coriolis force from creating energy (Sie-
lecki, 1968; Beckers and Deleersnijder, 1993).

To analyse the stability of this scheme, we compute the ampli-
fication factor for both sets of equations separately and then derive
the amplification factor A defined over two time steps: A2 = A1A2,
where A1 and A2 are the propagation factors associated with Eqs.
(29)–(34), respectively. Expanding gn and un as before, Eqs. (29)–
(31) then reduce to:

ðA1 � 1Þgn ¼ �iHDtðhA1 þ ð1� hÞÞk � un; ð35Þ

ðA1 � 1Þun ¼ fDtvn � igDtðhA1 þ ð1� hÞÞkxgn; ð36Þ

ðA1 � 1Þvn ¼ �fDtA1un � igDtðhA1 þ ð1� hÞÞkygn; ð37Þ

and Eqs. (32)–(34) can be recast as:

ðA2 � 1Þgnþ1 ¼ �iHDtðhA2 þ ð1� hÞÞk � unþ1; ð38Þ

ðA2 � 1Þunþ1 ¼ fDtA2vnþ1 � igDtðhA2 þ ð1� hÞÞkxgnþ1; ð39Þ

ðA2 � 1Þvnþ1 ¼ �fDtunþ1 � igDtðhA2 þ ð1� hÞÞkygnþ1: ð40Þ

By using Eqs. (36,37), we can express un in terms of gn in Eq.
(35) and obtain the following equation for A1:
ðA1 � 1Þ ¼ � gHDt2ðhA1 þ ð1� hÞÞ2

ðA1 � 1Þ2 þ f 2Dt2A1

ðk2
x þ k2

y � kxkyfDtÞðA1 � 1Þ:

ð41Þ

By doing the same for A2, we obtain:

ðA2 � 1Þ ¼ � gHDt2ðhA2 þ ð1� hÞÞ2

ðA2 � 1Þ2 þ f 2Dt2A2

ðk2
x þ k2

y þ kxkyfDtÞðA2 � 1Þ:

ð42Þ

Eqs. (41) and (42) are quadratic equations that can be solved for
A1 and A2. Fig. 9 shows the absolute value of A ¼

ffiffiffiffiffiffiffiffiffiffiffi
A1A2
p

in terms of
ckDt and h. In that example, f = 1 � 10�4 s�1 and Dt = 360 s. The
amplification factor is less or equal to one for all values of ckDt
as long as h P 0.5.

The advantage of FBT over the AB3 is that it introduces no sta-
bility constraints while maintaining approximately the same accu-
racy for the amplification factor. However, FBT cannot be used with
all types of discretization schemes. For approximations with 2 de-
grees of freedom (u,v) at each velocity node, FBT can be imple-
mented in the same manner as shown here. Examples are the
linear (P1 � P1) finite element and the linear non-conforming finite
element ðPNC

1 � P1Þ (see LeRoux et al., 2007). On the other hand, FBT
cannot be applied when there is only one degree of freedom at
velocity nodes. An example is the Raviart–Thomas finite element
of lowest-order (RT0) which has the normal component of velocity
defined on each edge and uses vector bases (see Hanert et al., 2003,
2009).

4. Numerical examples

Initially, the model was applied to a test case for a freely prop-
agating Kelvin wave in a circular basin (Ham et al., 2007). The basin
is 250 km in radius, is 5 m in depth, has a constant latitude of 45�
for the Coriolis term, and has an initial velocity and sea level spec-
ified. The linear shallow water equations are used where depth is
constant in the continuity equation, and there are no friction or
advection terms. The same grid as described in Ham et al. (2007)
was used in this test with a time step of 20 min. The results are
for the FE model using RT0 elements unless stated otherwise.

For a semi-implicit treatment of the gravity wave terms and a
forward Euler and AB2 treatment of the Coriolis terms, the solution
is unstable. The addition of bottom friction leads to a stable solu-
tion where the wave decays over several rotations.
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Using the modified form for AB2, the stability of the solution de-
pends on the time weight h. For h = 0.5, the solution becomes
unstable. For h P 0.505, the solution remains stable.

Again using a semi-implicit treatment for the gravity wave
terms but a AB3 treatment for the Coriolis term, the stability of
the solution depends on the time weight h. For h = 0.5, the solution
becomes unstable after about 4 rotations of the wave. For h = 0.502,
the solution slowly becomes unstable over approximately 5200
rotations. For h P 0.503, the solution remains stable over the entire
simulation of 1200 days.

The finite element model used in all the tests except FBT utilizes
an unstructured, staggered grid with the RT0 element (Walters and
Casulli, 1998; Walters, 2005). Since there is only one velocity de-
gree of freedom on each edge, the FBT scheme cannot be applied.
Hence a different finite element model which uses the PNC

1 � P1 ele-
ment was utilized (Hanert et al., 2005, 2009). This discretization
has two velocity degrees of freedom (u,v) on each edge. Using this
model, a stable solution was also obtained for the FBT scheme.

These results are in agreement with the analysis presented
above. The forward Euler and AB2 approximations for the Coriolis
term are unconditionally unstable in the absence of friction. A tra-
ditional formulation for bottom friction (3) stabilizes the solution,
particularly for the shallow depth in this test case. The modified
AB2 approximation is unstable for h = 0.5 but stable for a small in-
crease (h � .505) For the AB3 approximation, the solution is unsta-
ble for h = 0.5 as indicated by Durran (1991) and shown in our
analysis. For h = 0.503 the solution is stable. This is a slightly higher
value than derived in the analysis and is probably due to the irreg-
ular grid used for this test case. The FBT scheme is stable for h = 0.5.

Next, we present numerical examples ranging from coastal cir-
culation with considerable frictional effects to regional circulation
where the outer boundaries are in deep water beyond the conti-
nental shelf. These examples are intended as a test of the results
derived in the analysis when extended to the full nonlinear 2D
and 3D SWE. We have chosen fE and AB3 to examine as these char-
acterize the general response of the schemes we have examined. In
Fig. 10. Spatial domain and bathym
particular, both these explicit methods should give reasonable re-
sults in a high-friction environment, but the forward Euler should
be unstable in the larger domain. All these results were derived
using the FE model with RT0 elements.

4.1. Cook Strait model

Cook Strait lies between the North Island and the South Island
of New Zealand. The semi-diurnal tides have a large phase differ-
ence across this area resulting in strong tidal currents (Walters
et al., 2001). The computational domain and bathymetry used here
are shown in Fig. 10. Note the relatively shallow shelf environment
in the west, and the steep continental slope and deep ocean trench
in the east.

The model is set up for three-dimensional circulation with ti-
dal forcing at the open boundaries and wind stress at the surface.
The tidal forcing was derived from a regional model (Walters
et al., 2001), the Z0 component was derived from regional clima-
tology (Rickard, personal communication), and the winds were
taken from a site on Cape Farewell at the western end of the
strait.

Initial calculations with only tides for forcing (no Z0) were sta-
ble for both explicit methods (fE and AB3). However using fE, the
model became unstable near the northeast part of the open bound-
ary when the Z0 component was added. The Z0 boundary data con-
tains a loop of the East Auckland current which is essentially
geostrophic and this is where the instability arises. On the other
hand, the AB3 approach was stable.

These results can be interpreted in terms of the stability analy-
sis. Both explicit methods are stable with sufficient frictional
damping such as typically occurs in a coastal environment. The
instability with fE occurs in deep water where frictional damping
is small and for the zero frequency component of the tide. This fol-
lows from an examination of Fig. 3 (for fE) and 8 (for AB3).

For an accuracy assessment, the model was run for 30 days of
simulated time followed by a harmonic analysis of the results. A
etry for the Cook Strait grid.



Fig. 11. Spatial domain and bathymetry for the NZLAM grid.

R.A. Walters et al. / Ocean Modelling 28 (2009) 66–74 73
comparison with observations shows that the amplitude and phase
errors in the tidal harmonics are typically a few cm. and a few de-
grees for the largest constituents.

4.2. New Zealand forecast model

A two-dimensional version of the model that calculates sea sur-
face height (SSH) is part of a larger forecasting system for New Zea-
land collectively known as EcoConnect. The larger system is
comprised of a local area weather model (New Zealand Local Area
Model – NZLAM), a wave model (WaveWatch III), the SSH model
described here (RiCOM), and a runoff model (Topnet). The SSH
model is forced by surface pressure and winds from the weather
model, and tides derived from a global tide model (Matsumoto
et al., 1995). The spatial domain and bathymetry of the SSH model
are shown in Fig. 11.

As opposed to the Cook Strait model, most of the spatial domain
is in deep water seaward of the continental shelves. Maximum
depth reaches 9000 m in the Tonga–Kermadec trench northeast
of New Zealand. In the deep ocean, frictional dissipation is low
which favors the AB3 explicit approach to discretizing the Coriolis
term.

Initial calculations with fE approximation gave reasonable re-
sults for the initial period (a few days) but strong and unrealistic
gyres eventually developed in deep water in the southeast part
of the grid. These could be controlled but not eliminated with
excessive damping (low-order interpolation with the semi-La-
grange advection scheme, large values for time weighting) but
these results were not satisfactory.

On the other hand, calculations with AB3 approximation do not
require additional damping and do not lead to instabilities or unre-
alistic gyres. Following this approach, we have run the model for
30 days of simulated time followed by a harmonic analysis of the
results. An initial comparison with observations (Walters et al.,
2001) shows typical amplitude errors of 3–5 cm for the M2 and
phase errors of 5–8� also for the M2 which is the largest constitu-
ent. Amplitude and phase maps of the largest constituents are sim-
ilar to those shown in (Walters et al., 2001).

5. Conclusions

Development of a coastal and ocean model has led to a semi-
implicit time-integration scheme that removes restrictive stability
constraints on gravity waves and vertical friction terms. However,
the efficient integration of the Coriolis term requires special atten-
tion. When the numerical model uses a staggered grid with normal
velocity degrees of freedom, implicit integration of this term is
very inefficient as it leads to inversion of a large, sparse velocity
matrix. For models that use full velocity vectors, efficiency may
also be reduced because the matrix is no longer symmetric. On
the other hand, published methods suggest that many if not most
explicit methods to integrate the Coriolis term are unstable in this
situation.

Here, an analysis of the discretized shallow water equations
indicates that some of the explicit methods are stable or stable un-
der somewhat relaxed conditions. The forward Euler and AB2
scheme are always unstable, but can be stabilized in shallow water
environments (but not deep water) by bottom friction. However,
(Marshall et al., 1997) indicate how the weights for AB2 can be
modified in order to achieve stability but at lower-order accuracy.
Our results indicate that a weak stability constraint is still present.

Of the schemes we examined, the third-order Adams–Bashforth
and FBT schemes showed good behavior. AB3 has a minor stability
constraint on h, the time weight. This technique is particularly use-
ful for staggered grid models such as ones with the RT0 element
which have one velocity degree of freedom (normal velocity) on
each edge. Some existing models already use this technique
(Shchepetkin and McWilliams, 2005). The AB3 has better accuracy
than the other schemes. The FBT scheme introduces no additional
stability constraints, but can only be used with models that use full
velocity vectors (at least in the unstructured grid case) and hence is
ideally suited to the PNC

1 � P1 element.
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Test simulations with a Kelvin wave in a circular basin verify
these findings. Additional examples of coastal and deep ocean sim-
ulations are also in agreement with this analysis. These examples
use the full non-linear SWE with measured bathymetry for coastal
and regional scale simulations.
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