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Abstract Tracer transport in complex systems like turbulent flows or heterogeneous porous
media is now more and more regarded as a non-local process that can hardly be represented
by second-order diffusion models. In this work, we consider diffusion models that assume
that tracer particles follow a heavy-tail Lévy distribution, which allows for large displace-
ments. We show that such an assumption leads to a fractional-order diffusion operator in
the governing equation for tracer concentration. A comparison of three Eulerian numerical
methods to discretize that equation is then performed. These consist of the finite difference,
finite element and spectral element methods. We suggest that non-local methods, like the
spectral element method, are better suited to transport models with fractional-order diffusion
operators.

Keywords Tracer transport · Fractional calculus · Lévy distributions · Spectral element
method

1 Introduction

For many environmental problems, it is important to be able to describe the transport dynam-
ics without having recourse to a direct numerical simulation of all the processes taking place
in the system, which often requires excessive computational resources. For efficient and
practical predictions, simpler and more manageable models should be sought in order to
capture the phenomena of interest without having to calculate all the details of the complex
system. Examples include moisture, pollutants and chemical components in the atmosphere;
salinity and temperature in the ocean; sediments in rivers and lakes, contaminants and nutri-
ments in heterogeneous porous media, etc.
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Dispersion processes in complex systems are generally described by a second-order advec-
tion–diffusion equation (ADE). The assumption underlying this model is that turbulent dis-
persion, like molecular diffusion, can be described by Fick’s law, which states that particle
flux is directly proportional to the spatial concentration gradient. Fick’s law therefore assumes
that the spatial concentration gradient is causing particles movement in a turbulent flow. This
assumption is contradicted by observations that suggest that particles in a turbulent flow do
not “push” each other as it is the case for Brownian motion but are rather dispersed by the
velocity fluctuations. A number of studies have shown that Fickian diffusion was unsatisfac-
tory to simulate tracer transport in environmental flows (see for instance [1,24,27,28,31]).
All these studies have highlighted the dependence of the eddy viscosity on the size of the dis-
persion cloud. Different Lagrangian [10,12,19] and Eulerian [4] modelling approaches have
been proposed to account for the observed non-Fickian dispersion patterns. The limitations
of eddy diffusivity models are further discussed in a recent paper by Cushman-Roisin [8].

Despite the apparent shortcomings of the second-order diffusion operator to represent dis-
persion in complex systems, it is still used in the majority of today’s models of environmental
flows. However, a number of recent studies advocate the use of non-local and scale-dependent
dispersion models to simulate the transport of tracers in complex systems. Such models are
usually based on fractional-order diffusion operators (see for instance [2,7,22,30]). They
have been used to model tracer transport in systems such as saturated and unsaturated soil
layers [5,16,18,25], river flows [11,20] or the atmospheric boundary layer [9]. For these
applications, the use of fractional temporal models is sometimes required as well [33].

Although non-local tracer transport models are now an active field of research, they are
still in their infancy and many questions remain. One of them concerns the numerical methods
that should be used to efficiently discretize the fractional-order diffusion operator. If such
models are to be used operationally to simulate complex environmental systems, they have
to achieve good accuracy at the same computational cost as traditional models. In this work,
we compare three different Eulerian numerical methods: the finite difference, finite element
and spectral element methods.

2 Theory

In laminar homogeneous flows, the dispersion of tracer particles is mainly driven by the mean
flow velocity and by local interactions between particles that result in regular and isotropic
random displacements. These random displacements constitute a Brownian motion. Since
all these random fluctuations can be assumed to be independent and identically distributed,
and the variance of their sum can be assumed to be finite, then de Moivre’s Central Limit
Theorem (CLT) indicates that the sum of all the random displacements will follow a Gauss-
ian probability distribution function whose center moves with the fluid mean velocity. In one
dimension, this probability distribution function is a solution of the following second-order
ADE:

∂c

∂t
+ v

∂c

∂x
= K

∂2c

∂x2 . (1)

The concentration c can be seen as the probability distribution function of a large number
of tracer particles that experience a deterministic drift of velocity v and a normal random
fluctuation with standard deviation equal to

√
2K t , where K is a macroscopic diffusion

coefficient. Einstein [13] first made the link between the second-order ADE and Brownian
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motion. It should be noted that Eq. 1 can also be obtained by using Fick’s parameterization
of the concentration flux.

In turbulent heterogeneous flows, particles can be transported over large distances by the
fluctuations of the flow velocity. In that case, although local interactions are still possible,
longer and non-local interactions should also be taken into account. In addition to that one
should also allow for non-isotropic random displacements than can arise from the heteroge-
neous nature of the system. The resulting ensemble of random displacements, in the limit
where the ensemble size tends to infinity, does not necessarily have a finite variance. The
standard version of the CLT can therefore not be applied. Instead, the generalization due
to Lévy–Gnedenko [17,21] can be used. That version of the theorem does not rely on the
assumption that the sum of all the fluctuations has a finite variance but instead assumes that it
has a power-law tail distribution decreasing as |x |−α−1 with 0 < α ≤ 2. If we further assume
that the probability of particle jumps to the right is 1−β

2 and jumps to the left is 1+β
2 with

−1 ≤ β ≤ 1, then the sum of all these fluctuations will tend to a stable Lévy distribution
with exponent α and skewness parameter β [14]. Such a distribution does not usually have
an explicit expression but can be expressed in terms of its Fourier transform. If we define the
Fourier and inverse Fourier transforms as:

F(ω) = F( f ) =
∞∫

−∞
f (x)e−iωx dx,

f (x) = F−1(F) = 1

2π

∞∫

−∞
F(ω)eiωx dω,

we can then define the Lévy distribution as follows:

Sα(β, γ, δ; x) ≡

⎧⎪⎨
⎪⎩

F−1
{

exp
(

iδω − γ α|ω|α(1 − iβsgn(ω) tan
απ

2

)}
α �= 1,

F−1
{

exp

(
iδω − γ α|ω|α(1 + iβsgn(ω)

2

π
log |ω|

)}
α = 1,

(2)

where the real parameters γ ∈ [0,∞) and δ ∈ (−∞,∞) are called the scale and the location
of the distribution. The former is a measure of the width of the distribution while the latter
indicates the position of the center of the distribution. These parameters are similar to the
mean (µ) and variance (σ 2) but the latter cannot be defined when α < 2. Indeed, the heavy-
tail behavior of stable distributions leads to an infinite variance and undefined mean for all
α < 2. Although Lévy distributions do not generally have an analytical expression, there
are two noteworthy exceptions: (i) The Gaussian/normal distribution which corresponds to a
Lévy stable distribution with exponent α = 2 and variance σ 2 = 2γ and (ii) the Cauchy dis-
tribution which is a Lévy distribution with exponent α = 1. In these two cases, the skewness
parameter β is irrelevant.

In Fig. 1, we show two Lévy distributions with exponents α = 2 and α = 1.75. For both
cases, the other parameters have the following values: β = 0, γ = 1 and δ = 0. We also
show the dispersion pattern obtained when one particle is randomly displaced by fluctua-
tions following these distributions without any deterministic drift. In both cases, the particle
random displacement consists in 104 steps. When α = 2, the particle motion is Brownian
and is characterized by a succession of disordered displacements of similar length. When
α = 1.75, the motion is still mostly Brownian but the particle now has a non-negligible
probability to jump over larger distances. As the value of α decreases, the thickness of the
distribution’s tails increases and hence the probability of large jumps increases as well.
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Fig. 1 Top row: Lévy distributions with parameters α = 2 (left) and α = 1.75 (right), β = 0, γ = 1 and
δ = 0. Bottom row: Illustration of the displacement of single particle that is randomly moved by fluctuations
following these distributions. The total number of steps made by the particle is equal to 104. Note that the
distribution’s tails are thicker when α = 1.75

Following the same approach as Benson et al. [3], we can show that the Lévy distribution
is the solution of an ADE of fractional order α. Since the Fourier transform of the usual
mth (m ∈ N) order derivative is F{ f (m)} = (iω)mF{ f }, we can define the left and right
fractional-order derivatives as

∂α

∂xα
f (x, t) = F−1 {(iω)αF{ f }},

∂α

∂(−x)α
f (x, t) = F−1 {(−iω)αF{ f }}.

It can be shown (see for instance Podlubny [26] for details) that these expressions are equiv-
alent to the Riemann–Liouville fractional derivatives defined as:

∂α

∂xα
f (x, t) = 1

	(n − α)

∂n

∂xn

x∫

−∞

f (y, t)

(x − y)α−n+1 dy,

∂α

∂(−x)α
f (x, t) = (−1)n

	(n − α)

∂n

∂xn

+∞∫

x

f (y, t)

(y − x)α−n+1 dy,

where n = 1+[α] and [α] is the largest integer not greater than α, i.e., n = 2 for 1 < α ≤ 2,
and 	(.) is Euler’s gamma function.

By using these differential operators and assuming α �= 1, we can define the following
fractional-order ADE:

∂c

∂t
+ v

∂c

∂x
= Kα

1 − β

2

∂αc

∂xα
+ Kα

1 + β

2

∂αc

∂(−x)α
. (3)
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The analytical solution of Eq. 3 can be found by taking its Fourier transform:

∂C

∂t
+ (ivω)C = Kα

1 − β

2
(iω)αC + Kα

1 + β

2
(−iω)αC, (4)

where C(ω, t) = F{c(x, t)}. The solution of (4) then reads:

C(ω, t) = exp

[
−(ivω)t + Kα

1 − β

2
(iω)αt + Kα

1 + β

2
(−iω)αt

]
. (5)

Using the following relations:

(iω)α = |ω|α
(

cos
πα

2
+ isgn(ω) sin

πα

2

)
,

(−iω)α = |ω|α
(

cos
πα

2
− isgn(ω) sin

πα

2

)
,

we can express (5) as

C(ω, t) = exp
[
−(ivω)t + Kαt cos

πα

2
|ω|α

(
1 − iβsgn(ω) tan

πα

2

)]
,

and the solution of Eq. 3 thus reads

c(x, t) = Sα

(
β,

(
−Kαt cos

πα

2

)1/α

,−vt; x

)
.

It is interesting to note that the width of the distribution grows like t1/α , which clearly illus-
trates that fractional-order diffusion is “faster” than the usual second-order diffusion as soon
as α < 2.

3 Three Eulerian numerical methods for the fractional-order ADE

In this section, we present different numerical techniques to solve the fractional-order ADE
on a finite computational domain [0, L]. In that case, we have to redefine the right and left
fractional derivatives as follows:

∂α

∂xα
f (x, t) = 1

	(n − α)

∂n

∂xn

x∫

0

f (y, t)

(x − y)α−n+1 dy, (6)

∂α

∂(−x)α
f (x, t) = (−1)n

	(n − α)

∂n

∂xn

L∫

x

f (y, t)

(y − x)α−n+1 dy, (7)

to account for the restricted domain of definition of f . We consider three different Eulerian
numerical methods to solve Eq. 3: the finite difference (FD), finite element (FE) and spectral
element (SE) methods.

3.1 Finite difference method

A FD discretization of the fractional-order ADE can be obtained by using the so-called
Grunwald fractional derivative [26] instead of the Riemann–Liouville derivatives (6) and
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Fig. 2 First Grunwald weights wk for different values of the exponent coefficient α and k = 0, 1, . . . , 10.
When α = 2, only weights corresponding to k = 0, 1 and 2 are non-zero. As soon as α < 2, all the other
weights become positive and see their value increase as α decreases. Note that the y-axis is logarithmic and
discontinuous between positive and negative values

(7). In that case, the left and right fractional derivatives are expressed as:

∂α f

∂xα
= lim

M→∞

∑M
k=0 wk f (x − (k − 1)
x)


xα
, (8)

∂α f

∂(−x)α
= lim

M→∞

∑M
k=0 wk f (x + (k − 1)
x)


xα
, (9)

where

wk = 	(k − α)

	(k + 1)	(−α)
k = 0, 1, 2, . . . .

and M is a positive integer, and 
x = L/M . The Grunwald derivative can be interpreted
as a generalization to non-integer orders of the fundamental definition of derivatives in
terms of quotient of differences. It can be shown that the Grunwald and Riemann-Liouville
fractional-order derivatives are equivalent [26]. Note that in (8)–(9), a shifted Grunwald
formula has been used for stability reasons [23].

The coefficients wk , also called Grunwald weights, illustrate the non-locality of the
fractional-order derivatives as soon as α < 2. As shown in Fig. 2, the importance of
points faraway from the point under consideration increases as α decreases. Unlike integer-
order derivatives, the fractional-order differential operator is a global operator that takes into
account the global behavior of the function and not just the local slope.

The expression of the Grunwald formula suggests a simple way of discretizing the
fractional-order ADE in space by means of the FD method. A discrete approximation of
(3) can be obtained by truncating (8)–(9) and using a finite space increment 
x . Such a FD
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scheme can easily be implemented and generalized to higher dimensions. It is only first-order
accurate in space but Tadjeran et al. [32] have proposed a method to improve the accuracy
to second order. For instance, to solve Eq. 3 over the one-dimensional domain [0, L], the
following FD scheme could be used:

dci

dt
+ vi

ci+1 − ci−1

2
x
= Kα

1 − β

2

∑i
j=0 w j ci− j


xα
+ Kα

1 + β

2

∑N−i
j=0 w j ci+ j


xα
, (10)

where the domain has been divided in N segments of finite size 
x = L
N . Equation 10 has

to be combined with suitable boundary conditions and discretized in time as well.
As can be seen from (10), the FD stencil used to discretize the fractional-order derivative

covers the whole domain as soon as α < 2. This could obviously be expected as fractional-
order derivatives are global operators that have more similarities with integrals than with
traditional derivatives. However, since the FD method usually requires a large number of
nodes to obtain a precise result, the resulting increase in the computational cost can be
important. In 1D, the number of operations required to compute the fractional-order deriva-
tive at a given node will be about N/3 times larger than the number of operations required to
compute a second-order derivative. Moreover, the use of an implicit time integration scheme
seems totally prohibitive as it would require to solve a full-matrix system of equations.

3.2 Finite element method

The FE method has first been applied by Fix and Roop [15] and Roop [29] to the
fractional-order ADE. Unlike the FD method, the FE method does not discretize the dif-
ferential operators but rather approximates the exact solution by a linear combination of
basis functions φi , which are usually piecewise polynomials defined on a partition of the
computational domain. The solution of (3) is thus expressed as:

c(x, t) ≈ ch(x, t) =
N∑

j=1

c j (t)φ j (x), (11)

where the superscript h denotes the discrete solution and the c j ’s are unknown coefficients.
Before deriving the discrete equations that will allow us to compute the expansion coef-

ficients, we shall first rewrite the fractional derivative as follows:

1 − β

2

∂αc

∂xα
+ 1 + β

2

∂αc

∂(−x)α

= ∂n

∂xn

⎡
⎣ 1 − β

2	(n − α)

x∫

0

c(y, t)

(x − y)α−n+1 dy + 1 + β

2	(n − α)

L∫

x

c(y, t)

(y − x)α−n+1 dy

⎤
⎦

≡ ∂n

∂xn
Gαβ(x, c).

That allows us to express the fractional derivative of c as the integer-order derivative of a
space-averaging function Gαβ , which could also be expressed in terms of the convolution of
c(x, t) with xn−α−1. For most environmental systems, 1 < α ≤ 2 and n is thus equal to 2. In
that case and provided that we are able to compute Gαβ , the discrete equations can be derived
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by using exactly the same standard Galerkin formulation as for the second-order ADE:

L∫

0

∂ch

∂t
φi dx +

L∫

0

v
∂ch

∂x
φi dx = Kα

L∫

0

∂2Gαβ(x, ch)

∂x2 φi dx,

= −Kα

L∫

0

∂Gαβ(x, ch)

∂x

∂φi

∂x
dx +

[
Kα

∂Gαβ(x, ch)

∂x
φi

]L

0

,

for i = 1, . . . , N . By replacing ch by the expansion in (11), we obtain the following set of
N discrete equations:

N∑
j=1

⎛
⎝

L∫

0

φiφ j dx

⎞
⎠ dc j

dt
+

N∑
j=1

⎛
⎝

L∫

0

vφi
∂φ j

∂x
dx

⎞
⎠ c j

=
N∑

j=1

⎛
⎝−Kα

L∫

0

∂φi

∂x

∂Gαβ(x, φ j )

∂x
dx

⎞
⎠

︸ ︷︷ ︸
≡Di j

c j , (12)

where we have assumed, for simplicity, that the non-local diffusive flux Kα
∂
∂x Gαβ(x, ch) is

vanishing on the boundaries.
Since φ j is usually a low-order polynomial, its fractional derivative can be computed ana-

lytically (see Appendix for more details). Numerical calculations are also possible provided
that the singularity at x is handled carefully. In Fig. 3, we show a piecewise linear basis func-
tion, the corresponding space-averaging function Gαβ and the fractional derivative of order

α −1, i.e.,
∂Gαβ (x,φ j )

∂x , for different values of α. It can be seen that the global space-averaging
effect increases as α decreases. The decentering effect of the skewness parameter β is also
illustrated. In this case, Gαβ would have been symmetric for β = 0.

Like the FD method, the FE method results in a full diffusion matrix as the fractional-order
derivative of a basis function is no more a local-support function. As a result, the compu-
tational cost of the numerical model is expected to substantially increase when going from
second-order to fractional-order diffusion. Moreover, the calculation of the integrals involv-
ing the fractional-order derivative of a basis function might be costly. In that respect, linear
basis functions are particularly interesting as their first derivative is constant. The diffusion
term can thus be expressed as follows:

Di j = −Kα

∂φi

∂x

∣∣∣[xi−1,xi ]

xi∫

xi−1

∂Gαβ(x, φ j )

∂x
dx − Kα

∂φi

∂x

∣∣∣[xi ,xi+1]

xi+1∫

xi

∂Gαβ(x, φ j )

∂x
dx

= − Kα

xi − xi−1

[
Gαβ(x, φ j )

]xi
xi−1

+ Kα

xi+1 − xi

[
Gαβ(x, φ j )

]xi+1
xi

,

where we have used the fact that φi is linear and only defined on [xi−1, xi ] and [xi , xi+1]
(See Fig. 3a). Regarding conservation, the use of a Galerkin formulation and the integration
by parts of the diffusion term guarantees that mass is going to be conserved globally.
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Fig. 3 Example of (a) a linear FE basis function φ j , (b) the corresponding space-averaging function
Gαβ(x, φ j ), and (c) the fractional derivative of φ j for α = 1.2 (.-), 1.4 (--), 1.6 (..), 1.8 (−) and β = 0.5.
Note that although φ j is a local-support function, its fractional derivative is not

3.3 Spectral element method

The main disadvantage of the FD and FE methods is that they both result in full diffusion
matrices that could render the computational code inefficient. These methods thus require
quite more operations to solve the fractional-order ADE than to solve the second-order ADE.
This issue is related to the fact the both the FD and (standard low-order) FE methods are
local methods that usually update one degree of freedom (dof) by using only a small number
of neighboring dof’s. As a result, the FD and FE methods require a large number of dof’s to
provide an accurate solution but are well-suited to local (i.e., integer-order) differential oper-
ators as they result in sparse system matrices. However, when applied to non-local differential
operators, such numerical methods could become inefficient.

Therefore a non-local numerical method, like the SE method, might be better suited to
solve Eq. 3. That method is quite similar to the FE method and also approximates the exact
solution c with a discrete solution ch defined by Eq. 4. The main difference is that the basis
functions φ j are now high order functions defined over the whole computational domain.
Sines and cosines are typically used for periodic problems while Chebyshev or Legendre
functions are used for non-periodic ones (see for instance Boyd [6] for more details). With
the SE method, each dof directly depends on all the dof’s defining the solution. Such methods
are thus of order N , where N is the number of dof’s, and the convergence rate is exponen-
tial. As a result, to obtain a given level of accuracy, the SE method requires a much smaller
number of dof’s than the FD and FE methods. Moreover, as the SE method always requires
the calculation of integrals of complex functions over the entire computational domain, the
solution of a fractional-order ADE is not expected to be substantially more expensive. To our
knowledge, the SE method has never been used to solve the fractional-order ADE.
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If Chebyshev basis functions and a Galerkin formulation are used, the resulting set of
discrete equations is similar to (12) with the exception that (i) φi is a Chebyshev polynomial
of degree i and (ii) dx should be multiplied by the weight w(x) = (1 − (2x/L − 1)2)−1/2 in
all the integrals in order to make use of the orthogonality property of Chebyshev polynomials.
In that case, the discrete equations read:

N∑
j=1

⎛
⎝

L∫

0

φiφ jw(x) dx

⎞
⎠ dc j

dt
+

N∑
j=1

⎛
⎝

L∫

0

vφi
∂φ j

∂x
w(x) dx

⎞
⎠ c j

=
N∑

j=1

⎛
⎝Kα

L∫

0

φi
∂2Gαβ(x, φ j )

∂x2 w(x) dx

⎞
⎠

︸ ︷︷ ︸
≡Di j

c j ,

for i = 1, . . . , N . It should be noted that the diffusion term has not been integrated by parts.

This is mainly because the diffusive flux φiw
∂Gαβ (x,ch)

∂x does not vanish on the boundaries of
the domain since φi is a global function that is generally not equal to zero on the boundary.
As a result (and unlike with the FE method), the flux term has to be computed even when
Dirichlet boundary conditions are imposed, which makes it rather cumbersome.

As the SE methods requires less dof’s to obtain an accurate solution, there will be less
evaluations of Gαβ(x, φ j ) and less integrals to compute. Moreover, since Chebyshev func-
tions are polynomials of increasing order, their fractional-order derivative can be computed
analytically. Figure 4 shows a fourth order Chebyshev basis function, the corresponding
space-averaged function Gαβ and the fractional derivative for different values of α.
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Fig. 4 Same as Fig. 3 but for a fourth-order Chebyshev polynomial. In this case, both the basis function φ4
and its fractional derivative are global functions
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4 Numerical example

In this section, we compare the three numerical discretizations of the fractional-order ADE
introduced in the previous section. In order to assess the efficiency and accuracy of the three
methods, we consider a one-dimensional benchmark problem introduced by Tadjeran et al.
[32]. The problem consists in finding c(x, t) such that

∂c(x, t)

∂t
= d(x)

∂1.8c(x, t)

∂x1.8 + q(x, t) for x ∈ [0, 1] and t > 0, (13)

with d(x) = 	(2.2)x2.8/6, q(x, t) = −(1 + x)e−t x3, c(x, 0) = x3, c(0, t) = 0 and
c(1, t) = e−t . In that case, the exact solution of (13) reads:

c(x, t) = e−t x3.

Equation 13 has been discretized with FD, FE and SE schemes and solved until t = 1. At the
end of the simulation, the numerical solutions have been compared with the exact solution.

Figure 5 shows the rate of convergence of the three methods. For the FE and SE schemes,
the relative error has been computed in the L2 norm. For the FD scheme, a root mean square
error has been computed. The integrals defining the FE and SE diffusion matrices have been
computed numerically by means of Gauss and Gauss–Laguerre quadrature rules, respec-
tively. As expected, the convergence rates for FD, FE and SE schemes are linear, quadratic
and exponential, respectively. As mentioned previously, the linear convergence rate of the
FD scheme can be increased to quadratic by using the approach proposed by Tadjeran et al.
[32]. Since all the schemes result in a full diffusion matrix, the computational cost per dof
is similar for the three schemes. It therefore appears that the SE scheme is the most efficient
since it requires much less dof’s to achieve the same accuracy. For instance, to achieve a 0.1%
relative error, the FD, FE and SE schemes require about 80, 30 and 5 dof’s, respectively.
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Fig. 5 Convergence analysis of the FD, FE and SE methods for Tadjeran et al.’s [32] test case. Note that
approximatively 80, 30 and 5 dof’s are needed for the FD, FE and SE schemes, respectively, to achieve an
error level of 10−3
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5 Conclusion

Just as the Gaussian distribution is a special case of a Lévy distribution, second-order trans-
port models are just a special case of fractional-order transport models. Such models allow
the representation of a much larger array of processes, ranging from local molecular diffusion
to non-local diffusion in complex heterogeneous systems. The non-local nature of fractional-
order transport models requires a specific numerical treatment as traditional methods like the
FD and FE methods are not designed to efficiently discretize non-local spatial differential
operators.

Such operators are non-local in the sense that they can be expressed in terms of the inte-
gral of the solution over the entire computational domain. They are therefore better suited to
non-local numerical methods, like the SE method, which naturally take the global behavior
of the solution into account. The computational cost of the method does not significantly
increase when moving from an integer-order to a fractional-order transport model. In addition
to being more efficient than the FD and FE methods, the SE method also achieves a higher
rate of convergence.

Further work will be required to design an optimal SE scheme for fractional-order trans-
port models. For instance, the efficiency of the SE method could be further improved by
deriving basis functions that would diagonalize the diffusion matrix, i.e., basis functions
that are eigenfunctions of the fractional-order diffusion operator. In addition to that model
parameters estimation and mathematical properties like stability, positivity, and uniqueness
of the solution will have to be rigorously assessed before using such a numerical scheme for
realistic environmental problems.

Appendix: analytical results

In this section, we present some analytical results useful for calculating the fractional deriv-
atives of FE and SE basis functions. Since both sets of basis functions are polynomials, we
can assume that φ j has the following expression:

φ j (x) =
m∑

k=0

ck xk .

The left Riemann–Liouville derivative of φ j then reads:

dαφ j

dxα
=

m∑
k=0

ck
dαxk

dxα
= 1

	(n − α)

m∑
k=0

ck
dn

dxn

x∫

0

yk

(x − y)α−n+1 dy, (14)

where n is such that n−1 < α ≤ n. The expression of the right Riemann–Liouville derivative
is similar to (14). The integrals of the powers in (14) can be computed analytically by using
the following primitives:

∫
y0

(x − y)α−n+1 dy = − (x − y)n−α

n − α∫
y1

(x − y)α−n+1 dy = (x − y)n+1−α

n + 1 − α
− x(x − y)n−α

n − α∫
y2

(x − y)α−n+1 dy = − (x − y)n+2−α

n + 2 − α
+ 2x(x − y)n+1−α

n + 1 − α
− x2(x − y)n−α

n − α
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... = ...∫
yk

(x − y)α−n+1 dy =
k∑

i=0

(−1)i+1
(

k
i

)
xk−i (x − y)n+i−α

n + i − α
.

As an example, let us consider the FE basis function represented in Fig. 3. It can be expressed
as:

φ j (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < x j or x ≥ x j+1,

x−x j−1
x j −x j−1

x j−1 ≤ x < x j ,

x j+1−x
x j+1−x j

x j ≤ x < x j+1.

For that basis function, the left Riemann–Liouville derivative reads:

dαφ j (x)

dxα
= 1

	(n − α)

× dn

dxn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < x j−1,

1
x j −x j−1

(x−x j−1)n−α+1

(n−α)(n−α+1)
x j−1 ≤ x < x j ,

1
x j −x j−1

[
(x − x j )

n−α
( x−x j

n+1−α
− x−x j−1

n−α

)
+ (x−x j−1)n−α+1

(n−α)(n−α+1)

]

+ 1
x j+1−x j

[
(x − x j )

n−α
( x−x j

n+1−α
− x−x j+1

n−α

)]
x j ≤ x < x j+1,

1
x j −x j−1

[
(x − x j )

n−α
( x−x j

n+1−α
− x−x j−1

n−α

)
+ (x−x j−1)n−α+1

(n−α)(n−α+1)

]

+ 1
x j+1−x j

[
(x − x j )

n−α
( x−x j

n+1−α
− x−x j+1

n−α

)
+ (x−x j+1)n−α+1

(n−α)(n−α+1)

]
x ≥ x j+1.

It can be seen that for 1 < α ≤ 2, n = 2 and the expression above diverges at the mesh
nodes. However, in the FE formulation (12), only derivatives of order α − 1 are considered.
In that case, n = 1 and the fractional derivative of a basis function remains bounded.
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