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Abstract Occasionally, numerical simulations using lo-
cal turbulence closure schemes to estimate vertical tur-
bulent fluxes exhibit small-scale oscillations in space,
causing the eddy coefficients to vary over several orders
of magnitude on short distances. Theoretical develop-
ments suggest that these spurious oscillations are essen-
tially due to the way the eddy coefficients depend on the
vertical gradient of the model’s variables. An instability
criterion is derived based on the assumptions that the
artefacts under study are due to the development of
small-amplitude, small time- and space-scale pertur-
bations of a smooth solution. The relevance of this
criterion is demonstrated by applying it to a series a clo-
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sure schemes, ranging from the Pacanowski–Philander
formulas to the Mellor–Yamada level 2.5 model.
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1 Introduction

A number of present-day models of geophysical and en-
vironmental fluid flow have recourse to a Fourier–Fick
parameterisation of the vertical fluxes of momentum,
heat, and dissolved constituents: the flux of the relevant
quantity is expressed as the product of its vertical gradi-
ent and a suitably defined eddy coefficient. The simplest
closure assumption consists in assuming that the eddy
coefficients are constant, an approach which was shown
to be inappropriate for studying stratified marine and
oceanic flows (e.g. Ruddick et al. 1995; Goosse et al.
1999). To consider flows with vertical density contrasts,
parameterisations were suggested in which the eddy
coefficients are functions of the Richardson number
(Munk and Anderson 1948; Pacanowski and Philander
1981). Clearly, this option is better, but is not always
able to properly capture the main processes governing
the evolution of turbulent motions. This is why more
complex models are often preferred, such as the k, k − ε

or Mellor–Yamada models (Mellor and Yamada 1982;
Rodi 1987; Burchard 2002a).

The original Mellor–Yamada level 2.5 closure
scheme (Yamada 1977) is known to be prone to in-
stability. As mentioned by Mellor and Yamada (1982),
“for some model simulations, a discontinuity in velocity
could develop and persist” causing large-amplitude,
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quasi-steady, spatial oscillations in the eddy coeffi-
cients. Several remedies were suggested for addressing
that problem: (1) applying a numerical filter (Mellor
2003), (2) modifying the turbulence model equations
(Hassid and Galperin 1983; Galperin et al. 1988)
and (3) modifying the numerical scheme (Girard and
Delage 1990; Davies and Jones 1991; Burchard 2002b).
The most popular of these remedies consists of using
the quasi-equilibrium version of the stability functions
(Galperin et al. 1988). So, although the possible oc-
currence of spurious oscillations and a series of reme-
dies have been known for almost two decades, the
cause of this problem has remained somewhat elu-
sive (Deleersnijder and Luyten 1994; Burchard and
Deleersnijder 2001; Deleersnijder and Burchard 2003).
For instance, the related stability – or instability –
criterion is yet to be established. It is even unclear
whether the instability causing the spurious oscillations
is of a mathematical or a numerical nature.

To our knowledge, the first investigation of the sta-
bility of turbulence closure schemes depending on the
Richardson number was by Phillips (1972). He found
that under some conditions such schemes could al-
low initially small disturbances in the density gradient
to amplify. Kranenburg (1980, 1982) studied similar
problems and performed a linear stability analysis of
one- and two-dimensional disturbances in turbulent
density-stratified shear flow. A stability criterion de-
pending on the turbulent Prandtl number was derived
by expanding the model variables about a reference
state. Similar studies were performed by Brown and
Pandolfo (1982), Davies (1983) and Girard and Delage
(1990). They noticed that eddy parameterisations de-
pending on the gradient of the model solution could
allow instabilities due to the mathematical formula-
tion of the model rather than on the details of its
numerical discretisation. Common to all these studies
is the use of rather complex mathematical develop-
ments to study the stability of rather simple turbulence
models. The mathematical complexity of such methods
probably prevented their application to more elabo-
rate turbulence closures, like the Mellor–Yamada level
2.5 closure.

In this work, we present a general theoretical de-
velopment suggesting that the spurious oscillations are
due to the way the eddy coefficients depend on the
gradient of the dependent variables. This leads to an
instability criterion that is believed to be relevant for a
large family of turbulence closures (Section 2). Then, in
Section 3, this theory is applied in a cursory way to nu-
merical simulations of the Kato and Phillips experiment
(Kato and Phillips 1969) in which the eddy coefficients
are successively obtained from a Richardson number-

dependent expression and two versions of the Mellor–
Yamada level 2.5 closure scheme.

2 Theory

As in many previous studies, it is assumed that a water
column model is sufficient. Closure techniques com-
monly used in geophysical fluid flow studies are such
that the eddy coefficients depend on the vertical gradi-
ent of the velocity and the buoyancy and, in some cases,
on auxiliary variables, which satisfy partial differential
equations. Therefore, the complete set of equations to
be solved may be cast into the following generic form:

∂ψm

∂t
= sm + ∂

∂z

(
λm

∂ψm

∂z

)
, m = 1, 2, . . . , M, (1)

where ψm(t, z) is the m-th model variable and sm and
λm > 0 are the corresponding source/sink terms and
eddy coefficient, respectively.

2.1 A simple example

As all eddy coefficients λm are strictly positive, it may
be believed that Eq. 1 exhibits well-behaved solutions.
This would most probably be true if the eddy coefficient
were independent of the gradient of the solutions. To
understand why this may cause problems when λ is
dependent on the gradient of the solution, consider the
simple “heat” equation

∂ψ

∂t
= ∂

∂z

(
λ

∂ψ

∂z

)
, (2)

where the diffusivity λ > 0 is a function of ψz = ∂ψ

∂z
only, i.e. λ = λ(ψz). As the diffusivity is strictly positive,
the solution ψ tends to remain bounded – for well-
behaved boundary conditions – in the domain z1 ≤ z ≤
z2 as:

d
dt

∫ z2

z1

ψ2 dz = [
2λψψz

]z2

z1
−

∫ z2

z1

2λ(ψz)
2 dz, (3)

which is readily obtained from Eq. 2 by multiplication
by 2ψ and subsequent integration. On the other hand,
the gradient ψz is governed by the equation

∂ψz

∂t
= ∂

∂z

(
λ̃

∂ψz

∂z

)
,

where the “effective diffusivity” is

λ̃ = ∂λ

∂ψz
ψz + λ. (4)

As a result, the square of ψz also satisfies a relation
similar to Eq. 3. However, since the effective diffusivity
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can now be negative, there is the potential for ψz to
grow unbounded while ψ would remain bounded. If
this were to occur, it is conceivable that the solution
would exhibit finite-amplitude oscillations at arbitrarily
small space scales. During the first stage of the de-
velopment of the oscillations, it is possible that small-
amplitude, small-scale spatial oscillations coexist with a
finite-amplitude, large-scale solution. The appearance
of these large wavenumber oscillations can be con-
sidered as an instability of the background large-scale
state.

Such oscillations can easily be observed by numer-
ically solving Eq. 2 with a diffusivity λ that depends
on the gradient of the solution. As an example, the
solution of Eq. 2 is computed in the domain [−1, 1] for
the following initial and boundary conditions:

ψ(t=0, z)=z, ψ(t, z=−1)=−1, ψ(t, z=1)=1.

In order to trigger instabilities, we assume that the
diffusivity has the following unusual expression:

λ = 1(
∂ψ

∂z

)2 ,

which is always larger than zero. The corresponding
effective diffusivity is thus

λ̃ = −1(
∂ψ

∂z

)2 ,

which is always smaller than zero. Therefore, when
numerically computing the evolution of the solution,
we can expect round-off errors in the initial condition
to trigger instabilities. These instabilities will result
in the gradient of the solution to grow unbounded.
Figure 1 shows the unstable solution after 0.5 and 5

time units, as well as the initial condition ψ = z, which
would have prevailed if the effective diffusivity λ̃ had
not been negative. The grid resolution is equal to 0.01
length units. It is noteworthy that, while the gradient
of the solution grows unbounded, the solution remains
bounded. The numerical solution suggests that the grid-
scale perturbations have the largest growth rate; this
hypothesis is supported by the theoretical develop-
ments performed below.

2.2 General case

As long as the perturbation is small, linearisation of
the equation is presumably legitimate. This suggests a
method to investigate the stability of the solution of the
system of Eq. 1 on which the present study is focused.

Let ψ̂m(t, z) be a small-amplitude perturbation to the
solution ψm(t, z) of Eq. 1. By inserting ψm + ψ̂m into
Eq. 1 and subsequent linearisation, the perturbation
vector may be seen to obey linear equations

ψ̂m,t =
M∑

n=1

[
Amnψ̂n + (Bmn + Cmn,z)ψ̂n,z + Cmnψ̂n,zz

]

(5)

where matrices A, B and C are based on the unper-
turbed solution:

Amn = ∂sm

∂ψn
+

(
∂λm

∂ψn
ψm,z

)
z
,

Bmn = ∂sm

∂ψn,z
+ ∂λm

∂ψn
ψm,z,

Cmn = ∂λm

∂ψn,z
ψm,z + λmδmn,

Fig. 1 Example of solution of
the heat equation (Eq. 2) that
exhibits instabilities when the
diffusivity λ = (∂ψ/∂z)−2

(solid line). In that case, the
effective diffusivity is
negative. The stable solution
that would prevail for a
well-behaved diffusivity
depending only on the
gradient of the solution is
represented by a dotted line.
Both solutions are shown
after 0.5 and 5 time units

(a) t = 0.5 (b) t = 5
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where ψm,z and ψm,zz denote the first- and the second-
order derivatives with respect to the vertical coordinate
z of ψm; δm,n is the Kronecker delta, which is equal to
unity if m = n, and is zero otherwise.

The system of partial differential equations (Eq. 5) is
linear, but it is difficult to solve analytically as the coeffi-
cients Am,n, Bm,n and Cm,n depend on the reference so-
lution ψm(t, z). However, previous studies suggest that
growing perturbations tend to take the form of small-
scale oscillations in space that can quickly develop in
time (Deleersnijder and Luyten 1994; Burchard and
Deleersnijder 2001). Hence, if we assume that the
time and space scales of the perturbation ψ̂m(t, z) are
much smaller than those of the unperturbed solution
ψm(t, z), we can do a scale analysis and show that
Eq. 5 is dominated by the terms exhibiting the highest-
order derivatives in time and space. It may thus be
simplified to

ψ̂m,t =
M∑

n=1

Cmnψ̂n,zz, (6)

where the matrix C may be regarded as locally constant.
Therefore, it is legitimate to consider locally – in space
and time – a solution of the form

ψ̂m(t, z) = �[�me−σ t+ikz] (7)

where �m and σ are complex constants, while k is a real
wavenumber. Then, substituting Eq. 7 into Eq. 6 yields
the system of algebraic equations

M∑
n=1

(Cmn − μδmn) �n = 0, m = 1, 2, . . . , M,

where μ = σ/k2. As this system is homogeneous, for a
non-trivial solution to exist, it is necessary that the de-
terminant of the matrix C − μI be zero, where I is the
identity matrix. Obviously, the roots μ of this algebraic
equation are the eigenvalues of the matrix C. If the real
part of at least one eigenvalue is negative, then small-
amplitude, small-scale perturbations will grow. So, to
avoid this kind of instability, it is desirable that the real
part of every eigenvalue of the matrix C be positive for
any value of its components.

The previous analysis allows us to derive an insta-
bility criterion, which simply indicates that small-scale
perturbations are locally unstable if there exists at least
one eigenvalue of the stability matrix C whose real part
is negative. It should be noted that this criterion is just
a sufficient condition for instability but not a necessary
one, as it only considers small-scale oscillations. Hence,

it is not general enough to allow us to derive a sufficient
stability condition. Nonetheless, since instabilities usu-
ally take the form of small-scale oscillations in space,
the instability criterion derived here should have some
utility, although it lacks generality.

As σ−1 = μ−1k−2, the smaller the space scale, i.e. the
larger the wavenumber k, the smaller the timescale of
the associated perturbation. In other words, the shorter
the space scale of a perturbation, the faster it is likely
to increase or decrease. Thus, the fastest-growing per-
turbations that a given numerical model can represent
are likely to be characterised by length scales compa-
rable to the grid size. As the grid size is reduced, we
should expect these instabilities to grow. This implies
that, although instabilities are due to the mathematical
formulation of the closure, their development, if any,
depends crucially on the details of the numerical imple-
mentation. Any numerical study should thus investigate
the sensitivity of the solution to the grid size.

3 Application to Kato–Phillips flows

The stress-driven penetration of a horizontally homo-
geneous, turbulent layer into a stratified fluid which is
initially at rest is a common benchmark for turbulence
closures of marine models (Burchard 2002a). This test
case, based on the Kato and Phillips (1969) experiment,
is used to help investigate the stability of various tur-
bulence closure schemes. Let u and b = −g(ρ − ρ0)/ρ0

represent the mean horizontal velocity and the buoy-
ancy, where g, ρ and ρ0 are the gravitational accel-
eration, the water density and a reference value of
the latter, respectively. If t and z denote time and the
vertical coordinate, which is increasing upwards, the
equations governing the evolution of the velocity and
the buoyancy read

∂u
∂z

= ∂

∂z

(
KM

∂u
∂z

)
, (8)

∂b
∂z

= ∂

∂z

(
KH

∂b
∂z

)
, (9)

where KM is the eddy viscosity while KH is the eddy
diffusivity. The domain of interest is defined by t ≥ 0
and −∞ < z ≤ 0, where z = 0 is the sea surface. At the
initial instant, the velocity is zero, i.e. u(t = 0, z) = 0,
while the buoyancy is a linear function of the vertical
coordinate, i.e. b(t = 0, z) = N2z, where N denotes the
initial Brunt–Vaisala frequency. There is no buoyancy
flux across the ocean surface, i.e. no heat and mass
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flux, which implies that
[
KH

∂b
∂z

]
z=0

= 0. A constant
wind stress of amplitude τ is imposed by means of
the boundary condition

[
KM

∂u
∂z

]
z=0

= u2∗, where u∗ is
the friction velocity, u∗ = (τ/ρ0)

1/2. As in Deleersnijder
and Luyten (1994), the following forcing parameters
are selected: u∗ = 10−2 m s−1 and N = 10−2 s−1.

Equations 8 and 9 can be included in the system Eq. 1
by setting ψ1 = u and ψ2 = b so that the auxiliary vari-
ables, if any, correspond to m > 2. For all the closure
models considered below, we will take s1 = s2 = 0, λ1 =
KM and λ2 = KH . To close the equations introduced
above, it is still necessary to parameterise the eddy
coefficients KM and KH .

3.1 Eddy coefficients depending only on Ri

To illustrate the theoretical developments above, a
class of simple closure models is first considered, in
which the eddy viscosity and eddy diffusivity depend
only on the Richardson number, Ri = b z/(uz)

2. In this
case, there is no auxiliary variable: only Eqs. 8 and 9 are
to be dealt with, so that M = 2. Then, matrix C is

C =
(

KM − 2RiK′
M K′

M/uz

−2uz Ri2 K′
H KH + RiK′

H

)

with K′
M = dKM/ dRi and K′

H = dKH/ dRi. It should
be noted that the eigenvalues of C depend only on the
Richardson number and not on uz. As a result, the
instability criterion can be formulated in terms of Ri
only.

For the standard versions of the Munk and
Anderson (1948) and Pacanowski and Philander (1981)
parameterisations, the eigenvalues of C are positive
for any values of Ri. Let us for instance consider the
Pacanowski–Philander closure:

KM = K0
M

(1 + βM Ri)αM
+ K∗

M,

KH = KM

(1 + βM Ri)αH
+ K∗

H,

where the constant K0
M � K∗

M can be interpreted as
the neutral value of the eddy viscosity, i.e. the value
prevailing when there is no stratification. The constants
K∗

M and K∗
H are the values of the viscosity and diffu-

sivity that are prevailing for strong stratifications and
are about one order of magnitude larger than molecular
values. Finally, the coefficients αM, αH and βM are
usually taken to be equal to 2, 1 and 5, respectively. The

corresponding eigenvalues of C are real and positive,
so that no spurious eigenvalues should arise. This is
in agreement with the marine science literature, in
which no such problem with the Pacanowski–Philander
closure model has ever been reported. This is also
confirmed by the numerical results displayed in Fig. 2.

However, by slightly modifying these parameterisa-
tions, one of the eigenvalues of C can be made negative.
We could for instance modify the parameter αH of the
Pacanowski–Philander closure by setting it equal to 5,
instead of 1. In that case, for a range of values of the
Richardson number, one eigenvalue of the matrix C
is real and negative. Thus, it is not surprising that the
eddy coefficients are somewhat jittery and that they are
more so if the grid size is reduced (Fig. 2). It should
be noted that the same behaviour is observed for the
Munk and Anderson (1948) and Blanke and Delecluse
(1993) closure schemes. These schemes are stable in
their original formulation but can be rendered unstable
by changing the value of some coefficients.

3.2 Mellor–Yamada level 2.5 model

In the Mellor and Yamada level 2.5 closure scheme
(Yamada 1977; Mellor and Yamada 1982), the eddy vis-
cosity and eddy diffusivity are parameterised as follows:

KM = lqSM,

KH = lqSH,

where l and q are, respectively, an appropriate length
scale, called “turbulence macroscale”, and a veloc-
ity scale, derived from the turbulence kinetic energy
(TKE) q2/2. These additional variables are found by
solving the following closure equations:

∂q2

∂t
= 2(Ps + Pb − ε) + ∂

∂z

(
Kq

∂q2

∂z

)
, (10)

∂q2l
∂t

= E1lPs + E1lPb − lεW + ∂

∂z

(
Kq

∂q2l
∂z

)
, (11)

where Ps = KM M2 is the shear production of TKE,
Pb = KH N2 is the rate of conversion of TKE into
potential energy, ε = q3

B1l represents the viscous dissi-

pation of TKE and W = 1 + E2

(
l

κ|z|
)2

is the so-called
wall-proximity function. The eddy diffusivity of the tur-
bulence model equations is Kq = 0.2lq. The remaining
constants take the following values: E1 = 1.8, E2 =
1.33 and B1 = 16.6. Finally, the stability functions SM
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Fig. 2 Eddy viscosity (dashed
lines) and eddy diffusivity
(dashed-dot lines) as
simulated after 30 h for a
Kato–Phillips flow using the
Pacanowski and Philander
(1981) closure scheme. Grid
sizes of 1 m (top) and 0.1 m
(bottom) have been selected.
Left panels depict results
obtained with the standard
values of the coefficient αH ,
while the right panels
correspond to αH = 5, in lieu
of 1. The instabilities of the
modified equations are
clearly sensitive to the
grid size

Original closure Modified closure

0 2 4

x 10
–3

–40

–30

–20

–10

0

 K
M

 and K
H
 [m2s–1]

x 10
–3 K

M
 and K

H
 [m2s–1]

x 10
–3 K

M
 and K

H
 [m2s–1]

x 10
–3 K

M
 and K

H
 [m2s–1]

D
ep

th
 [m

]
0 2 4

–40

–30

–20

–10

0

D
ep

th
 [m

]
0 2 4

–40

–30

–20

–10

0

 D
ep

th
 [m

]

0 2 4
–40

–30

–20

–10

0

 D
ep

th
 [m

]

and SH depend on the following dimensionless mea-
sures of the current shear and stratification:

GM = l2u2
z

q2
,

GH = − l2b z

q2
.

The two additional partial differential Eqs. 10 and
11 can be included in the system Eq. 1 by setting ψ3 =
q2 and ψ4 = q2l. The eddy diffusivities related to the
auxiliary variables are λ3 = λ4 = Kq = 0.2lq. Then, it is
readily seen that matrix C may be expressed as

C = lq

⎛
⎜⎜⎜⎜⎜⎜⎝

2
∂SM

∂GM
GM + SM

∂SM

∂GH

GMuz

b z
0 0

2
∂SH

∂GM

GMb z

uz

∂SH

∂GH
GH + SH 0 0

0 0 0.2 0
0 0 0 0.2

⎞
⎟⎟⎟⎟⎟⎟⎠

There are two identical eigenvalues that are equal to
0.2lq. The latter are obviously real and positive and can

therefore be disregarded. The other two eigenvalues
are the eigenvalues of the 2 × 2 matrix Cr:

Cr = lq

⎛
⎜⎝

2
∂SM

∂GM
GM + SM

∂SM

∂GH

GMuz

b z

2
∂SH

∂GM

GMb z

uz

∂SH

∂GH
GH + SH

⎞
⎟⎠ .

Luckily, the eigenvalues of Cr depend on GM and GH

only and not on uz and b z, so that we can evaluate
a instability condition in a two-dimensional parameter
space.

The expression of the stability functions SM and
SH plays a crucial role on the stability of the whole
turbulence closure. In the original expression of the
Mellor–Yamada closure scheme, the stability functions
were found to lead to oscillations in the eddy co-
efficients profiles. This problem led to the introduc-
tion of an alternative set of stability functions, namely
the quasi-equilibrium stability functions of Galperin
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Table 1 Coefficients of the
stability functions for the
original and quasi-
equilibrium versions of the
Mellor–Yamada (M-Y) level
2.5 turbulence closures

Original M-Y closure Quasi-equilibrium

X = M X = H M-Y closure

X = M X = H

n00
X 0.6992 0.7400 0.3933 0.4939

n10
X −9.3395 −4.5341 −3.0858 0.0

n01
X 0.0 0.9019 0.0 0.0

d10
X −36.7188 −36.7188 −40.8036 −34.6764

d01
X 5.0784 5.0784 0.0 0.0

d20
X 187.4409 187.4409 212.4693 0.0

d11
X −88.8395 −88.8395 0.0 0.0

et al. (1988). Both sets of stability functions can be
expressed as:

SX = n00
X + n10

X GH + n01
X GM

1 + d10
X GH + d01

X GM + d20
X G2

H + d11
X GHGM

,

where X = H or M. The values of these coefficients
for the original Mellor–Yamada level 2.5 closure and
for the quasi-equilibrium version of Galperin et al.
(1988) are given in Table 1. For the original Mellor–
Yamada level 2.5 closure, it was found that regions
of exceedingly high shear could develop (Mellor and
Yamada 1982; Hassid and Galperin 1983). The fol-
lowing redefinition of GM was therefore introduced
(Mellor and Yamada 1982):

GM = min

(
l2 M2

q2
, 0.825 − 25.0GH

)
, (12)

which amounts to constraining the growth of GM

and, hence, the subsequent reduction of SM and KM.

When using the quasi-equilibrium model, the stabil-
ity functions do not depend on M2. It is, however,
necessary to impose the following minor constraining
conditions:

l2 ≤ 0.28q2

max(0, N2)
, (13)

− 0.28 ≤ GH ≤ 0.0233. (14)

Constraint Eq. 13 has been used by several authors
to take into account the fact that stable stratification
strongly limits the size of the turbulent eddies and,
thus, the magnitude of l. This implies that GH must
satisfy the first part of condition Eq. 14. The second
part of that condition expresses the need for GM to
be positive when the phenomena producing turbulent
kinetic energy balance the dissipative effects (Galperin
et al. 1988).

(a) Original MY level 2.5
(b)MY level 2.5 with Hassid and Galperin

(1983)’s constraint

(c) MY level 2.5 with quasi-equilibrium 
stability functions
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Fig. 3 Stability regions of the original Mellor–Yamada level 2.5
closure scheme (a), Hassid and Galperin (1983) version (b) and
Galperin et al. (1988) quasi-equilibrium version (c). The area
in light grey is where at least one of the eigenvalues of the
matrix C has a negative real part. The stable and forbidden

regions are represented in white and dark grey, respectively. The
solid black curve shows the local equilibrium state (production =
dissipation). For the original Mellor–Yamada level 2.5 closure,
that curve lies almost entirely in the unstable region
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The quasi-equilibrium version of the Mellor–
Yamada level 2.5 closure has been introduced primarily
to avoid the spurious oscillations observed in the eddy
coefficients profiles obtained with the original scheme.
Mellor (2003) argued that the spurious oscillations may
also be prevented by applying a low pass filter to
GM. This suggestion is of interest since the theoretical
developments above indicate that the smallest-scale
perturbations are those which are likely to be the most
unstable. However, as may be seen in Deleersnijder and
Burchard (2003), Mellor’s low-pass filter is not always
sufficient to prevent spurious oscillations from arising.
In addition, it must be kept in mind that applying
such a filter amounts to a grid-dependent, noticeable
modification of the equations to be solved.

Another remedy was suggested, apparently indepen-
dently, by Hassid and Galperin (1983), Canuto et al.
(2001) and Burchard and Deleersnijder (2001), which
consists in using the original closure with condition 12

and the addition of a limitation on GM so that an in-
crease in the shear cannot be associated with a decrease
in the momentum flux. This implies that GM should
satisfy the condition

∂

∂|uz| |KMuz| ≥ 0. (15)

The latter is equivalent to

∂(SMG1/2
M )

∂GM
≥ 0.

As

C11 = ∂KM

∂uz
uz + KM = 2qlG1/2

M
∂(SMG1/2

M )

∂GM
,

enforcing condition 15 amounts to requiring that the
element C11 of the stability matrix C must remain
positive. Unfortunately, this is not sufficient to guar-
antee that its eigenvalues are always positive, which is
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Fig. 4 Eddy viscosity (dashed lines) and eddy diffusivity (dash–
dot lines) as simulated after 30 h for a Kato–Phillips flow us-
ing the original Mellor–Yamada level 2.5 closure scheme (left),
the Mellor–Yamada level 2.5 closure with Hassid and Galperin

(1983) constraint (middle) and quasi-equilibrium version of
Galperin et al. (1988) (right). The grid size is set to 1 m (top)
and 0.1 m (bottom)
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Fig. 5 Space-time region (in
black) where at least one of
the eigenvalues of the matrix
C is negative for the
Kato–Phillips test case
simulated using the original
Mellor–Yamada level 2.5
closure scheme (left) and the
Mellor–Yamada level 2.5
closure with Hassid and
Galperin (1983) constraint
(right). In each case, the
bottom of the unstable region
corresponds to the position of
the pycnocline. Note that the
matrix C obtained with the
quasi-equilibrium closure of
Galperin et al. (1988) does
not have any negative
eigenvalues. The grid size is
set to 1 m (top) and 0.1 m
(bottom)
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why this limitation has not been found entirely satis-
factory in the numerical simulations of Burchard and
Deleersnijder (2001).

Figure 3 shows the stability region of the original
Mellor–Yamada closure and the alternative closures
suggested by Hassid and Galperin (1983) and Galperin
et al. (1988). It can be seen that the original closure is
unstable (Fig. 3a) in almost the entire region satisfying
the constraints on GM and GH . In particular, the local
equilibrium curve defined by

Ps + Pb + ε = 0 ⇔ SMGM + SHGH = 1

B1

lies almost entirely in the unstable region. The rem-
edy suggested by Hassid and Galperin (1983) mainly
amounts to increasing the size of the forbidden zone
without any significant change to the stable region
(Fig. 3b). The local equilibrium curve is still almost
entirely outside the stable region. Finally, there is no
unstable region when the quasi-equilibrium stability
functions of Galperin et al. (1988) are used (Fig. 3c). In
that case, the forbidden zone is the same as for the orig-
inal Mellor–Yamada closure and the local equilibrium
curve lies entirely in the stable region for admissible
values of GM and GH .

The eddy coefficient profiles obtained after 30 h for
a Kato–Philips flow are shown in Fig. 4 for grid sizes of
1 and 0.1 m. The model equations have been discretised

with a centered finite difference scheme similar to the
one used by Deleersnijder and Luyten (1994). Results
for the original and quasi-equilibrium versions of the
Mellor–Yamada closure are similar to those shown by
Burchard and Deleersnijder (2001) and clearly illus-
trate the problems of the original version of the clo-
sure. As expected from the eigenvalues analysis, the
remedy suggested by Hassid and Galperin (1983) does
not totally remove the instabilities, though it reduces
their extent. The unstable behaviour of the original
Mellor–Yamada level 2.5 closure and the constrained
version of Hassid and Galperin (1983) is confirmed by
Fig. 5, which shows the space-time region where at
least one eigenvalue of the matrix C is negative for the
Kato–Phillips test-case. It can be seen that, for both the
original closure and the modified version due to Hassid
and Galperin (1983), there is an unstable region whose
extent grows over time. The bottom of the unstable
region corresponds to the position of the pycnocline.

4 Conclusions

The present study does not imply criticism of either
the Mellor–Yamada hierachy of turbulence models
(Mellor and Yamada 1974, 1982) or the so-called
Mellor–Yamada level 2.5 closure scheme (Yamada
1977). The latter was used for illustration purposes
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only. We are convinced that the physical underpinning
of the original level 2.5 model was perfectly tenable.
Nonetheless, a mathematical model, however elabo-
rate it may be, is no substitute to reality. Therefore,
physical considerations cannot be sufficient to establish
it; mathematical aspects, especially the stability of the
solutions, must also be taken into account. Of course,
this philosophy is far from novel, and the present article
is just another illustration thereof.

Though strong simplifications are needed to derive
the instability criterion based on the eigenvalues of
the stability matrix C defined in Section 2.2, numerical
experiments point to its relevance. It is believed that the
present theory may be applied to all local turbulence
closure schemes used in atmospheric and oceanic mod-
elling. Whether or not it could be of use for studying
the stability of non-local approaches is still an open
question.

The lower bound of the space scale of the perturba-
tions that can be represented in a model is set by the
grid size. Therefore, the occurrence of spurious oscilla-
tions is strongly influenced by the details of the discreti-
sations. The larger the grid size, the lesser the validity of
the scale separation hypothesis that is the key assump-
tion to our approach and the smaller the growth rate of
the fastest-growing perturbations. Therefore, numeri-
cal details do matter and a numerical stability theory is
needed, but it is unlikely to be easy to establish.
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