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a b s t r a c t

A number of recent studies suggest that human and animal mobility patterns exhibit scale-free,

Lévy-flight dynamics. However, current reaction-diffusion epidemics models do not account for the

superdiffusive spread of modern epidemics due to Lévy flights. We have developed a SIR model to

simulate the spatial spread of a hypothetical epidemic driven by long-range displacements in the

infective and susceptible populations. The model has been obtained by replacing the second-order

diffusion operator by a fractional-order operator. Theoretical developments and numerical simulations

show that fractional-order diffusion leads to an exponential acceleration of the epidemic’s front and a

power-law decay of the front’s leading tail. Our results indicate the potential of fractional-order

reaction-diffusion models to represent modern epidemics.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The spread of epidemics caused by directly transmitted patho-
gens is related to the interactions between susceptible and
infective individuals. The occurrence of such interactions is a
direct consequence of the mobility patterns of individuals in their
home range. Recent studies have shown that mobility patterns for
both humans and animals can be quite complex and exhibit a
scale-free dynamics, characteristic of Lévy flights (see Buchanan,
2008 for a review). Unlike ordinary Gaussian dispersion
processes, Lévy flights are drawn from a probability distribution
function with heavier tails than a Normal distribution. Such an
asymptotic behaviour means that large displacements are more
likely. Lévy flights are, therefore, superdiffusive as they disperse
particles faster than a Gaussian random-walk. Lévy-flight patterns
have been observed in the dispersion of bank notes (Brockmann
et al., 2006), human mobility patterns derived from mobile phone
data (González et al., 2008) as well as in the foraging patterns of a
numbers of animal species (Viswanathan et al., 1996, 1999; Sims
et al., 2008; Humphries et al., 2010) although questions remain
about the empirical evidence of some biological Lévy flights
(Edwards et al., 2007).

The existence of Lévy-flight mobility patterns suggests that
modern epidemics cannot be represented by second-order
reaction-diffusion models that implicitly assume a Gaussian

dispersion process. Such models are only applicable when the
infective and susceptible individuals travel short distances as
compared to geographical distances. They lead to epidemic fronts
that travel at a constant velocity and have been used, for instance,
to model the spread of the Black Death in Europe in the 14th
century (Noble, 1974). Modern epidemics such as SARS or avian
influenza can spread around the world in a few weeks and seem
to follow a non-Gaussian, scale-free dynamics (Hufnagel et al.,
2004; Small et al., 2007).

It has been shown that for Lévy-flight dispersion, the density
function representing the population is the solution of a frac-
tional-order diffusion equation (Chaves, 1998; Metzler and
Klafter, 2000). Unlike integer-order derivatives that are local
operators, fractional-order derivatives are non-local, integro-dif-
ferential operators (Oldham and Spagnier, 1974; Podlubny, 1999).
As such, they can be used to represent memory effects and long-
range dispersion processes. In the last decade, fractional-order
diffusion models have been an active field of research both from a
theoretical and applied perspective. They have been proposed to
model a wide range of problems in surface and subsurface
hydrology (Pachepsky et al., 2003; Deng et al., 2006; Kim and
Kavvas, 2006), plasma turbulence (del Castillo Negrete et al.,
2004, 2005), finance (Scalas et al., 2000; Mainardi et al., 2000;
Gorenflo et al., 2010; Cartea and del Castillo Negrete, 2007) and
biology (Djordjević et al., 2003; Ding and Ye, 2009).

In epidemiology, fractional-order models have just been men-
tioned in a couple of studies. Brockmann et al. (2006) have shown
that the density of bank notes originating from a given city is
solution of a space-time fractional diffusion equation and have
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suggested that an epidemic spread could be modelled by a similar
equation. In a subsequent study Brockmann (2009) has proposed
a SIR model that includes fractional-order diffusion. Some pre-
liminary results are presented in that study but the properties of
the model solutions are not discussed in detail. The goal of the
present study is, therefore, to discuss in greater detail the proper-
ties of fractional-order epidemics model solutions. In particular,
we consider the propagation of epidemic fronts and show that the
use of a fractional-order diffusion term can lead to an acceleration
of the front and thus a rapid spread of epidemics.

2. Model description

We shall consider a SIR model representing the spatial spread
of an epidemic with non-local diffusion. The model takes into
account three population densities, the susceptibles Sðx,tÞ,
the infectives Iðx,tÞ and a removed class Rðx,tÞ. The spatial
dynamics is assumed to be one-dimensional and is represented
by a Riesz/Weyl, fractional-order differential operator denoted

�1Da
x , where 1oar2 is the order of the spatial derivative. The

fractional-order diffusivity is denoted Ka and has units of mas�1.
The susceptible and infective populations are assumed to exhibit
the same spatial dispersion patterns and are thus characterised by
the same values of a and Ka. The transmission from susceptibles
to infectives and the disease-induced mortality are represented
by a transmission-efficiency parameter r and a mortality-rate
parameter a, respectively. With these assumptions, the model
equations read:

@S

@t
¼�rISþKað�1Da

x SÞ, ð1Þ

@I

@t
¼ rIS�aIþKað�1Da

x IÞ, ð2Þ

@R

@t
¼ aI, ð3Þ

where r, Ka and a are positive constants. The dynamics of the
removed class being entirely driven by the infectives and having
no influence on the other two classes, it will not be further
considered in the remainder of this study. The model equations
have to be supplemented by a set of initial and boundary
conditions to obtain a unique solution. The precise expression of
the initial and boundary conditions is not required at this stage.
We will just assume that the epidemic wave is advancing into a
uniform population with an initially homogeneous susceptibles
density S.

The Riesz/Weyl fractional-order operator �1Da
x is an integro-

differential operator defined as follows:

�1Da
x f ðxÞ ¼F�1

k ½ðikÞ
a f̂ ðkÞ� ¼

1

Gð2�aÞ
@2

@x2

Z x

�1

f ðyÞ

ðx�yÞa�1
dy, ð4Þ

where Gð:Þ is Euler’s gamma function and F denotes the Fourier
transform. When a¼ 2, the fractional-order derivative (4) reduces
to a standard second-order derivative. Eq. (4) defines a ‘‘left-
sided’’ operator as it only takes into account the values of the
function f at the left-hand side of x. A right-sided operator
(denoted xDa

1 ) can also be defined in a similar fashion (see for
instance Podlubny, 1999 for details). Combining left- and right-
sided operators allows the definition of fractional-order deriva-
tive with arbitrary skewness. In this work, we only consider an
asymmetric diffusion term in order to highlight the resul-
ting different dynamics for left- and right-propagating
epidemic waves.

The origin of anomalous, non-local diffusion lies in the random
displacements of the individuals constituting the population. If
one assumes that these individuals follow a Gaussian diffusive
process, i.e. the distribution of random displacements has a finite
variance, then the density of individuals is solution of a second-
order diffusion equation. That result is a direct consequence of the
central limit theorem (CLT). However, if one does not assume that
the distribution of random displacements has a finite variance,
the standard version of the CLT cannot be applied anymore.
Instead, the generalization due to Lévy-Gnedenko (Gnedenko
and Kolmogorov, 1954; Lévy, 1954) can be used. That version of
the theorem does not rely on the assumption that the sum of all
the fluctuations has a finite variance but instead assumes that it
has a power-law tail distribution decreasing as jxj�ðaþ1Þ with
0oar2. In that case, the density of individuals tends towards a
stable Lévy distribution with exponent a (Feller, 1971), which is
solution of a diffusion equation of fractional order a (see Metzler
and Klafter, 2000 for details). Here we restrict ourselves to
1oar2. It is important to note that when a¼ 2, the Lévy
distribution reduces to a Normal distribution and the correspond-
ing differential equation is the classical second-order diffusion
equation. Eqs. (1)–(3) are, therefore, a generalization of a standard
SIR model describing the spatial spread of an epidemic, as
described for instance in Murray (2002), and reduce to such a
model when a¼ 2. With power-law tail distribution decreasing as
jxj�ðaþ1Þ, one can see that the probability of large displacements
(called Lévy flights) increases as the value of a decreases. Fig. 1
illustrates the random displacements of a single individual
following a Lévy motion for different values of the exponent a.

Before moving to the analysis of the solutions of Eqs. (1) and
(2), let us first recast them in non-dimensional form. Following
Murray (2002), we introduce the following dimensionless
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Fig. 1. Trajectories of a random walker following a Lévy motion with different values of the exponent a. Brownian motion is recovered when a¼ 2. Note the changes in the

range of the vertical axis (position) while the horizontal axis (time) remains the same.

E. Hanert et al. / Journal of Theoretical Biology 279 (2011) 9–1610



Author's personal copy

variables:

I� ¼ I=S, S� ¼ S=S, x� ¼
rS
Ka

� �1=a
x, t� ¼ rSt, l¼

a

rS ,

which allow us to rewrite Eqs. (1) and (2) as follows:

@S

@t
¼�ISþ�1Da

x S, ð5Þ

@I

@t
¼ IS�lIþ�1Da

x I, ð6Þ

where we have dropped the ‘‘�’’. As mentioned by Murray (2002),
the dimensionless parameter l is the ratio between the conta-
gious time of the disease and the life expectancy. It is a key
parameter that controls the development of the epidemic wave.

3. Theoretical analysis

In this section, we investigate the spatial spread of an epi-
demic wave of infectives into a uniform population of suscepti-
bles. In order to highlight the impact of the fractional-order
diffusion operator �1Da

x on the dynamics of the epidemic wave,
we consider both left- and right-propagating fronts. The following
analysis shares similarities with the one performed by del Castillo
Negrete et al. (2003) for the fractional-order Fisher–Kolmogorov
equation. For that equation and by using the same left-sided
diffusion operator as here, they found that left-propagating fronts
have a self-similar profile and move at a constant speed, while
right-propagating fronts are accelerated and exhibit a algebraic
(power-law) decay of the tail.

3.1. Left-propagating front

For such a front, we look for a self-similar travelling-wave
solution by setting

Iðx,tÞ ¼ IðzÞ, Sðx,tÞ ¼ SðzÞ, z¼ xþct,

where c is the unknown positive wave speed. Note that the ‘‘þ ’’ in
the definition of z indicates that the wave is travelling to the left.
Furthermore, we replace S(z) by 1–s(z), where s(z) is the deviation
with respect to the initial susceptibles density. Eqs. (5) and (6)
can then be expressed as

�c
ds

dz
¼�Ið1�sÞ��1Da

z s, ð7Þ

c
dI

dz
¼ Ið1�sÞ�lIþ�1Da

z I: ð8Þ

It can easily be seen that the Jacobian of the non-linear
reaction term in Eqs. (7) and (8) only has real eigenvalues that
reach their maximum value when s¼0. The front is thus driven by
the region just ahead of it or, in other words, it is pulled by its
leading edge. Such a front is thus referred to as a pulled front and
its speed can be derived by performing a linear analysis in the
leading edge region (Cencini et al., 2003). In our case, the leading
edge is where I-0 and s-0 (see Fig. 2a for an illustration) and
linearizing the equations in that region results in the following
system:

�c
ds

dz
¼�I��1Da

z s, ð9Þ

c
dI

dz
¼ ð1�lÞIþ�1Da

z I: ð10Þ

Assuming a solution of the form ðSðzÞ,IðzÞÞ ¼ ðŜ, ÎÞekz, where k is
a parameter depending on the wave speed, and using the fact that

�1Da
z ekz ¼ kaekz, one obtains the following system:

ck�ka �1

0 ck�ka�ð1�lÞ

 !
Ŝ

Î

 !
¼

0

0

� �
:

A non-trivial solution can only be obtained if

ðck�kaÞ2�ð1�lÞðck�kaÞ ¼ 0,

which results in the following dispersion relations:

cðkÞ ¼ ka�1, ð11Þ

cðkÞ ¼ ka�1þ
1�l
k

: ð12Þ

As for the Fisher–Kolmogorov equation, we expect the front to
propagate at the minimum wave speed for a ‘‘sufficiently steep’’
initial condition. Relation (11) is thus discarded as it would result
in a non-moving front. By minimizing relation (12) with respect
to k, one finds the minimum value of the left-propagating front
speed cmin and the corresponding exponential decay rate kmin

to be

cmin ¼ a
1�l
a�1

� �ða�1Þ=a
, kmin ¼

1�l
a�1

� �1=a
: ð13Þ

The former reduces to the classical result, c¼ 2
ffiffiffiffiffiffiffiffiffiffi
1�l
p

, when a¼ 2.
Since we are assuming that 1oar2, cmin and kmin are both well
defined. The existence of a left-propagating front in the fractional
diffusion case is still conditional on lo1. Note that the more
general method proposed by Ebert and van Saarloos (2000) and
van Saarloos (2003) leads to the same results (see Appendix A for
details).

Fig. 2. (a) Left-propagating front profiles for the susceptibles and infectives

densities at different time instants obtained by solving Eqs. (19) and (20) with

a¼ 1:2. The arrow indicates the direction of propagation of the front. (b) and

(c) Close-up views of the susceptibles and infectives densities, respectively,

highlighting the same exponentially decaying tail for both fronts, i.e.1–S and

I� exp½ðð1�lÞ=ða�1ÞÞ1=ax�, and the same front speeds. The simulation duration is

set to 30 and the time interval between front profiles is set to 3.
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The value of the front speed can also be obtained by using a
more heuristic argument. Indeed, at the leading edge, the linear-
ization of Eq. (6) is similar to the linearization of the fractional-
order Fisher–Kolmogorov equation. The same approach as in del
Castillo Negrete et al. (2003) can thus be used to derive the speed
of the I front, which leads to Eq. (13). Moreover, it is easily seen
that without infectives there is no susceptibles front as the
reaction term in Eq. (5) would vanish. This means that the
susceptibles solution is driven by the infectives solution and thus
both fronts travel at the same speed.

3.2. Right-propagating front

That case is a bit more complex as the velocity of the traveling
wave is no more constant. One can thus not look for a self-similar
solution. In what follows, we pursue the same approach as the
one used by del Castillo Negrete et al. (2003) for the fractional-
order Fisher–Kolmogorov equation. Starting from Eq. (10), we can
again linearize it at the leading edge, i.e. around S¼1 (see Fig. 4a
for an illustration), and obtain:

@I

@t
¼ ð1�lÞIþ�1Da

x I: ð14Þ

Since the term ð1�lÞI is responsible for the exponential growth or
decay of the solution, one can assume a solution of the form
Iðx,tÞ ¼ eð1�lÞtcðx,tÞ. Substituting this solution into (14), one finds a
differential equation for c:

@c
@t
¼�1Da

x c, ð15Þ

with cðx,t¼ 0Þ ¼ Iðx,t¼ 0Þ ¼ I0ðxÞ, the initial condition for the
infectives population.

The general solution of Eq. (15) can be expressed as

cðx,tÞ ¼

Z 1
�1

Gðx�x0,tÞI0ðx0Þ dx0,

where Gðx,tÞ ¼ ð1=t1=aÞpaðx=t1=aÞ is the Green function of Eq. (15)
and paðZÞ ¼ ð1=2pÞ

R1
�1

eikZeðikÞ
a

dk is a skewed Lévy distribution
with exponent a (Mainardi et al., 2001; Feller, 1971). By con-
sidering a localized initial condition of the form I0ðxo�lÞ ¼ 0;
I0ð�lrxo0Þ ¼ A and I0ðxZ0Þ ¼ Ae�kx–where l and A are arbitrary
positive and non-zero constants, respectively – one finds the
relation

cðx,tÞ ¼ A

Z ðxþ lÞt�1=a

xt�1=a
paðZÞ dZþAe�kx

Z xt�1=a

�1

paðZÞekt1=aZ dZ: ð16Þ

As we look for the asymptotic behaviour, we consider solutions
for large, fixed t and x-1. In that case, we can use the
asymptotic behaviour of the Lévy distributions, i.e.

paðZÞ � Z�ðaþ1Þ as Z-1. After some algebraic manipulations
(see Appendix B for details), one finds the asymptotic behaviour
of I:

Iðx,tÞ ¼ Ateð1�lÞt lþ
1

k

� �
x�ðaþ1Þ þ

1þa
kt1þ1=a

Z xt�1=a

�1

ekðt
�1=aZ�xÞ

Zaþ2
dZþ . . .

 !
:

The right-propagating front thus asymptotically decays as

Iðx,tÞ � teð1�lÞtx�ðaþ1Þ, ð17Þ

which highlights an algebraic (power-law) decaying tail that
totally differs from the exponential decay observed for the left-
moving front and from classical results obtained with second-
order diffusion operators.

The solution for the susceptibles population is obtained by
assuming again that Sðx,tÞ ¼ 1�sðx,tÞ where sðx,tÞ51. The follow-
ing expression can then be derived: sðx,tÞ ¼ ð1=ð1�lÞÞeð1�lÞtcðx,tÞ,

which leads to the asymptotic behaviour:

1�Sðx,tÞ � teð1�lÞtx�ðaþ1Þ: ð18Þ

Just as for the left-propagating front, the susceptibles solution is
entirely driven by the infectives solution, i.e. in the absence of
infectives, there is no susceptibles front. As a result, the decay rate
of the S front is the same as for the I front whatever the initial
condition for S. In other words, even if S is initially non-zero over
the entire domain, its decay rate will be of the form x�ðaþ1Þ rather
than x�a, provided that I is initially confined. However, if I is not
initially confined but greater than zero over the entire domain,
the decay rate for both solutions will be of the form x�a (see
Appendix B).

The asymptotic front speed can be derived from either Eq. (17)
or (18) by computing the Lagrangian trajectory of a point at the
leading edge of the front. For instance, if we consider a point with
a fixed value Ŝ � 1, its position x̂ ¼ xðt,ŜÞ can be expressed as

x̂ � ð1�ŜÞ�1=ðaþ1Þt1=ðaþ1Þeðð1�lÞ=ðaþ1ÞÞt ,

and the front speed, cRðtÞ ¼ dx̂=dt, therefore, reads

cRðtÞ � ð1�ŜÞ�1=ðaþ1Þ t
1=ðaþ1Þ

aþ1
eðð1�lÞ=ðaþ1ÞÞt 1

t
þ1�l

� �
,

� ð1�lÞeðð1�lÞ=ðaþ1ÞÞt ,

for large values of t. This highlights the exponential acceleration
of right-propagating fronts.

4. Numerical examples

In this section, we present some numerical simulations that
illustrate the theoretical results derived in the previous section.
The model Eqs. (1) and (2) are solved on a finite domain [0,L],
where L40, and the fractional-order derivative is thus defined as
follows:

0Da
x f ðxÞ ¼

1

Gð2�aÞ
@2

@x2

Z x

0

f ðyÞ

ðx�yÞa�1
dy,

where 1oar2 and 0rxrL, since model variables are now only
defined on [0,L]. Solving the model equations on a finite domain
has an impact on the behaviour of the solution as fractional-order
derivatives take into account the global aspect of the solution,
which is obviously modified when truncating the domain. One
can still take into account the effect of an infinite domain by using
the following equations:

@S

@t
¼�ISþ0Da

x ðS�Sð0Þ�S0ð0ÞÞ, ð19Þ

@I

@t
¼ IS�lIþ0Da

x ðI�Ið0Þ�I0ð0ÞÞ, ð20Þ

where Sð0Þ ¼ Sðx¼ 0,tÞ and S0ð0Þ ¼ S0ðx¼ 0,tÞ, and the same for I. In
Eqs. (19) and (20), the fractional-order derivative is now a
so-called Caputo fractional derivative that can be defined as
follows:

C
0Da

x f ðxÞ ¼
1

Gð2�aÞ

Z x

0

f 00ðyÞ

ðx�yÞa�1
dy¼ 0Da

x ðf ðxÞ�f ð0Þ�f 0ð0ÞÞ:

By using some standard properties of the Caputo derivative, it can
be shown that Eqs. (19) and (20) are equivalent to Eqs. (5) and (6)
if one assumes constant density values for xr0, i.e.

Iðxo0,tÞ ¼ Ið0Þ and Sðxo0,tÞ ¼ Sð0Þ. One can then represent the
effect of an infinite reservoir of susceptibles and/or infectives at
the left-hand side of the domain by selecting an initial condition
which is such that Sð0Þ40 and/or Ið0Þ40.

Eqs. (19) and (20) are discretized with a continuous piecewise-
linear finite-element scheme on a uniform grid whose resolution

E. Hanert et al. / Journal of Theoretical Biology 279 (2011) 9–1612
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is equal to L/500. The finite-element scheme is based on a
Galerkin formulation that allows one to integrate the fractional-
order diffusion term by parts and impose a vanishing fractional-
order flux on the left boundary (see Hanert, 2010a for details).
A zero-slope boundary condition is imposed on the right bound-
ary. The diffusion term being entirely left-sided, the right bound-
ary condition only has a local impact on the solution. The use of a
zero-slope boundary condition allows the right-propagating front
to smoothly leave the domain. Time integration is computed with
a third-order Adams–Bashforth scheme.

The following initial conditions are used for both left- and
right-propagating fronts:

S0ðxÞ ¼ 1�hS 17tanh
x�x0

wSL

� �� �
, ð21Þ

I0ðxÞ ¼ hIexp �
ðx�x0Þ

2

wIL2

 !
, ð22Þ

where wS¼0.009, hS¼0.37, wI¼0.0003 and hI¼0.14. For a left-
propagating front it takes the ‘‘þ ’’ sign and x0¼9L/10, whereas for
a right-propagating front, S0(x) takes the ‘‘–’’ sign and x0¼L/10 or
0. The dimensionless domain length is set to L¼105 for a right-
propagating front and L¼60 for a left-propagating front. For all
simulations, l¼ 0:5.

The time evolution of a left-propagating front is shown in
Fig. 2. The top panel shows the evolution of both the susceptibles
and infectives densities. The middle and bottom panels show a
close-up view on the susceptibles and infectives density tail
decay. The duration of the simulation is set to 30 dimensionless
time units and a¼ 1:2. As expected, both the susceptibles and
infectives fronts propagate at the same speed and exhibit the
same exponentially decaying tail, i.e.1–S and I� exp½ðð1�lÞ=
ða�1ÞÞ1=ax�. The front speed has been numerically estimated by
computing the instantaneous speed of a point with density
S¼0.99 (Fig. 3). The resulting time series highlights the conver-
gence of the front speed towards the minimum speed cmin¼1.398,
obtained from Eq. (13).

The time evolution of a right-propagating front is shown in
Fig. 4. We first consider a localized initial condition for the
infectives by taking x0¼L/10. In that case, I(0)¼0 and there is
no reservoir of infectives at the left-had side of the computational
domain. However, Sð0Þ40 and there is thus an infinite reservoir
of susceptibles at the left-hand side. Such a situation is quite
realistic as an epidemic usually starts with a confined population
of infective individuals in contact with a broad population of
susceptible individuals. The simulation duration and the value of
a are the same as for the left-propagating front. As expected, both
the susceptibles and infectives fronts accelerate and develop the

same algebraic decaying tail, i.e.1–S and I� x�ðaþ1Þ. After an initial
adjustment, the acceleration of the front leads to a rapid spread of
the epidemic over the entire domain. It should be noted that the
length of the domain is equal to 105 as compared to 60 for the
left-propagating front simulation whereas the simulation dura-
tion remains the same. It should also be noted that infinite
reservoir of susceptibles does not influence the rate of decay.
The epidemic being driven by the infectives and not by the
susceptibles density, the front dynamics entirely depends on the
infectives density. Actually, even if there was no diffusion term in
the S equation and thus if susceptible individuals were not
moving, there would still be the same epidemic front.

The acceleration of the right-propagating front is highlighted
in the space-time diagram shown in Fig. 5. It shows the evolution
of the position of the front leading edge defined as the Lagrangian
trajectory xf ðtÞ ¼ xðt; S¼ 0:99Þ that corresponds to the position of
a point in the front with density S¼0.99. The simulation duration
is set to 60. It can be seen that the front eventually accelerates as
soon as ao2. The smaller the value of a, the sooner the
acceleration takes place. Fig. 5 also shows that the numerical
results are in good agreement with the asymptotic expansion, i.e.

1�S� x�ðaþ1Þeð1�lÞt .
Although that might not be very realistic, one can still

represent the effect of an infinite reservoir of infective individuals
located at the left-hand side of the domain by considering an
initial solution that does not vanish at x¼0. This is achieved by
taking x0¼0 in the initial conditions (21)–(22) such that Ið0Þ40
and Sð0Þ40. In that case, the front is expected to exhibit an
algebraic decay rate of order �a rather than �ðaþ1Þ (see
Appendix B). Fig. 6 shows that such an asymptotic behaviour is
indeed observed as 1–S and I� x�a. These results are similar to
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Fig. 3. Time evolution of the left-propagating front instantaneous speed, taken as

the time derivative of the Lagrangian trajectory xf ðt; S¼ 0:99Þ, for a¼ 1:2. As

expected, the front speed converges towards the minimum front speed value

cmin � 1:398.

Fig. 4. (a) Right-propagating front profiles for the susceptibles and infectives

densities at different time instants obtained by solving Eqs. (19) and (20) with

a¼ 1:2. The arrow indicates the direction of propagation of the front. (b) and

(c) Close-up views of the susceptibles and infectives densities, respectively,

highlighting the same power-law decaying tail for both fronts, i.e.1–S and

I� x�ðaþ1Þ . The simulation duration is set to 30 and the time interval between

front profiles is set to 3.
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those obtained by del Castillo Negrete et al. (2003) for the
fractional-order Fisher–Kolmogorov model for which they had
also considered an initial condition that did not vanish at x¼0.

5. Conclusions

In this paper, we have proposed a fractional-order reaction-
diffusion model to study the dynamics of epidemics in systems
characterized by asymmetric Lévy flights with an exponent
1oar2. We have considered a totally skewed, left-sided diffu-
sion operator and studied its impact on left- and right-propagat-
ing fronts. On the one hand, numerical and analytical results show
that left-propagating fronts move at a constant velocity and have
an exponentially decaying tail. The classical results for the front
velocity are recovered when a¼ 2. On the other hand, right-
propagating fronts accelerate exponentially and exhibit a power-
law decaying tail. Both the infectives and susceptibles fronts have
the same dynamics which is entirely driven by the infectives
density. For an initially localized infectives density profile, the
decay is of the form � x�ðaþ1Þ while an infinitely-wide initial
profile leads to a decay of the form � x�a for both solutions.
Obviously, for a symmetric fractional-order diffusion operator,

both the left- and right-propagating fronts accelerate and have a
power-law decaying tail.

Our results show that a fractional-order reaction-diffusion
epidemics model is able to represent the superdiffusive effect
due to Lévy-flight mobility patterns in the population. The super-
diffusion of the infective population leads to a significantly
increased overall reaction rate as both populations meet each
other more often. As a result, an epidemic spreads much faster
than predicted by classical Gaussian models. Our observations
suggest that fractional-order reaction-diffusion models are better
suited to represent modern epidemics and also highlight that
the eradication or even containment of such epidemics is a
daunting task.

The model could be further improved by taking into account
non-Markovian and truncated Lévy processes. Brockmann et al.
(2006) have shown that the dispersion of bank notes is not only
non-Gaussian but also non-Markovian. The non-Markovian effect
and the associated subdiffusion can be included in our model by
replacing the first-order time derivative with a fractional-order
time derivative of order less than 1 (see Metzler and Klafter, 2000
for details). Numerical methods have recently been proposed to
discretize the space-time fractional diffusion equation (Podlubny
et al., 2009; Hanert, in press) and could be applied in a non-
Gaussian and non-Markovian epidemics models. Furthermore, the
study by Gonzalez et al. on human mobility patterns derived from
mobile phone data suggests that these patterns follow a truncated
Lévy-flight motion (González et al., 2008). The effect of truncation
on superdiffusive fronts propagation has been studied del Castillo
Negrete (2009) for a Fisher–Kolmogorov model and should be
considered for epidemics models as well.
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Appendix A. Alternative derivation of the left-moving front
speed

In this section, we present a more general derivation of
Eqs. (13) based on the approach proposed by Ebert and van
Saarloos (2000) and van Saarloos (2003). In those studies, the
authors define an asymptotic spreading speed, that they denote
v�, towards which the front eventually converges if it evolves
from a sufficiently steep initial state. That speed is obtained by
linearizing the model equations about the unstable state (S¼1
and I¼0 in our case). More specifically, v�AR is given by the
largest ‘‘dynamically relevant’’ solution of the saddle points
equations

0 ¼ Sðk�,o�Þ,

v� ¼
doðkÞ

dk

����
k�

,

v� ¼
Im o�

Im k�
,

8>>>>><
>>>>>:
solved for ðk�,o�,v�Þ where Sðk,oÞ ¼ 0 is the characteristic equa-
tion obtained by assuming a Fourier mode solution of the form
eiðkx�otÞ (k and oAC) in the linearization about the unstable state
ahead of the front.

In our case, the characteristic equation reads

Sðk,oÞ ¼ ð�io�ðikÞaÞ2�ð1�lÞð�io�ðikÞaÞ ¼ 0

and has two solutions: o¼ iðikÞa and o¼ iðikÞaþ ið1�lÞ. The
former is rejected as it leads to v� ¼ 0. The latter corresponds
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Fig. 5. Time evolution of the epidemic front leading edge position, taken as the

Lagrangian trajectory xf ðt; S¼ 0:99Þ, for different values of a. As soon as ao2, the

front eventually accelerates leading to long-range spreading of the epidemic.

The dashed line corresponds to the analytical scaling result 1�S� x�ðaþ1Þeð1�lÞt .

Fig. 6. Right-propagating front profiles for the (a) susceptibles and (b) infectives

density at different time instants obtained by solving Eqs. (19) and (20) with

a¼ 1:2 and taking x0¼0 in the initial conditions (21)–(22). The power-law

decaying tail is the same for both fronts, i.e.1–S and I� x�a . The simulation

duration is set to 24 and the time interval between front profiles is set to 3.
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to a non-oscillating, uniformly translating front if k� and o� are
purely imaginary, which can only be achieved if k� ¼�ik�
(k�ARþ ). In that case,

v� ¼
doðkÞ

dk

����
k�
¼ �aðk�Þa�1

¼
Im o�

Im k�
¼
ðk�Þaþð1�lÞ
�k� ,

which leads to

v� ¼ �a 1�l
a�1

� �ða�1Þ=a
, k� ¼ 1�l

a�1

� �1=a
:

As expected, these correspond to Eqs. (13) and highlight that only
a left-propagating front can travel at a constant speed as
v� ¼ �cmino0. Moreover, van Saarloos et al. have shown that
the front speed algebraically relaxes towards that constant speed
if the initial state is steeper than ek

�x.

Appendix B. Asymptotic behaviour of the right-moving front

In this section, we provide more details on the derivation of
Eq. (17). Let us first consider the first integral in Eq. (16) and look
at the limit for xt�1=a-1 with a fixed t. In that case, we can use
the asymptotic behaviour of the Lévy distribution: paðZÞ � Z�ðaþ1Þ

to obtainZ ðxþ lÞt�1=a

xt�1=a
paðZÞ dZ�

Z ðxþ lÞt�1=a

xt�1=a

1

Zaþ1
dZ

¼
�1

a
1

Za

� �ðxþ lÞt�1=a

xt�1=a
,

¼
�t

a x�a 1þ
l

x

� ��a
�1

� �

� tlx�ðaþ1Þ, ðB:1Þ

where we have used a first-order binomial-series approximation.
For the second integral, one needs to set a cutoff O with

15Ooxt�1=a, so that paðZÞ ¼ Z�ðaþ1Þ holds. Integration by parts
then leads to

e�kx

Z xt�1=a

�1

paðZÞekt1=aZ dZ

� e�kx

Z xt�1=a

O

1

Zaþ1
ekt1=aZ dZ

¼ e�kx 1

Zaþ1

ekt1=aZ

kt1=a

" #Z ¼ xt�1=a

Z ¼ O

�e�kx

Z xt�1=a

O
�
aþ1

Zaþ2

ekt�1=aZ

kt1=a dZ

� e�kx 1

xaþ1t�1�1=a
ekt1=axt�1=a

kt1=a

 !
þt
ð1þaÞ
kt1þ1=a

Z xt�1=a

O

ek t�1=aZ�xð Þ

Zaþ2
dZ

¼ t
x�ðaþ1Þ

k
þ
ð1þaÞ
kt1þ1=a

Z xt�1=a

O

ek t�1=aZ�xð Þ

Zaþ2
dZ

 !
: ðB:2Þ

In fact, the integral from �1 to O contains paðZÞ that decays
exponentially at minus infinity. The exponential in the integrand
is bounded on this domain. We can thus consider that the integral
is bounded and not dependant on x. The integrand in the last
expression is bounded by 1=ðZ2þaÞwhen x-1 and thus, the third
term is at most of order x�ðaþ1Þ.

From (B.1) and (B.2), we see that the tail of the right-
propagating front behaves like c� tx�ðaþ1Þ for large values of x

and t. Note that this behaviour is preserved in the limit where
l-0. However, in the limit where l-1, the asymptotic behaviour
becomes c� tx�a. That case would represent the effect of an
infinite initial reservoir of infective individuals on the epidemic
front propagation. In the study by del Castillo Negrete et al.

(2003) for the fractional-order Fisher–Kolmogorov equation,
non-localized initial conditions are considered, i.e. l-1, and an
algebraic decay rate of order �a is observed.
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tion with Lévy flights. Physical Review E 79, 1–10.

del Castillo Negrete, D., Carreras, B.A., Lynch, V.E., 2003. Front dynamics in
reaction-diffusion systems with Lévy flights: a fractional diffusion approach.
Physical Review Letters 91.

del Castillo Negrete, D., Carreras, B.A., Lynch, V.E., 2004. Fractional diffusion in
plasma turbulence. Physics of Plasmas 11, 3854–3864.

del Castillo Negrete, D., Carreras, B.A., Lynch, V.E., 2005. Nondiffusive transport in
plasma turbulence: a fractional diffusion approach. Physical Review Letters 94.

Deng, Z.Q., de Lima, J.L.M.P., de Lima, M.I.P., Singh, V.P., 2006. A fractional
dispersion model for overland solute transport. Water Resources Research
42, W03416.

Ding, Y., Ye, H., 2009. A fractional-order differential equation model of HIV
infection of CD4þ T-cells. Mathematical and Computer Modelling 50,
386–392.
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