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Abstract

The accuracy and efficiency of an Eulerian method is assessed by solving the non-linear shallow water
equations and compared with the performances of an existing semi-Lagrangian method. Both methods

use a linear non-conforming finite element discretization for velocity and a linear conforming finite element

discretization for surface elevation. This finite element pair is known to be computationally efficient and

free of pressure modes. The model equations are carefully derived and a comparison is performed by sim-

ulating the propagation of slow Rossby waves in the Gulf of Mexico. Simulations show that the Eulerian

model performs well and gives results comparable to high order semi-Lagrangian schemes using kriging

interpolators.
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1. Introduction

The ocean circulation may be represented as the interaction of many different physical pro-
cesses in a domain of complex shape. Those interactions are often non-linear and spatially local-
ized. As a consequence, a numerical model of the world ocean should be able to deal with
non-linearities, irregular geometries and localized phenomena.

Unstructured grids permit to accurately represent complex domains. Their flexibility also al-
lows to achieve high resolution in regions of interest thanks to suitable grid refinements. In the
last years an increased interest has been paid toward ocean or coastal models using unstructured
meshes. For those models, the spatial discretization is based either on finite elements (e.g. LePro-
vost et al., 1994; Myers and Weaver, 1995; Lynch et al., 1996; LeRoux et al., 2000; Legrand et al.,
2001; Hanert et al., 2003; Nechaev et al., 2003; Danilov et al., 2004), spectral elements (e.g. Isk-
andarani et al., 1995; Iskandarani et al., 2003) or finite volumes (Casulli and Walters, 2000; Chen
et al., 2003).

The numerical treatment of non-linear advection terms in the mass and momentum equations
can be done either with an Eulerian, a Lagrangian or a semi-Lagrangian scheme. In Eulerian
schemes, the evolution of the system is monitored from fixed positions in space. As a consequence,
those methods are easy to implement as all the variables are computed at fixed grid points in the
domain. However, their accuracy is often not so high as Lagrangian methods where the informa-
tion is integrated along characteristics. Eulerian methods are used in most ocean circulation mod-
els. In Lagrangian schemes, the evolution of the system is monitored from fluid parcels that move
with the flow. Such schemes often allow much larger time steps than Eulerian schemes. Their main
disadvantage is that the distribution of fluid parcels can quickly become highly non-uniform
which can render the scheme inaccurate. Such a problem can be circumvented by using semi-
Lagrangian schemes. The idea behind those schemes is to choose a completely new set of parcels
at every time step. This set of parcels is chosen such that they arrive exactly on the nodes of a
regularly spaced mesh at the end of each time step. This method has proved to work particularly
well in atmosphere modelling, especially when combined with a semi-implicit scheme (Robert,
1981; Robert, 1982; Robert et al., 1985). An extensive review of the applications of semi-Lagrang-
ian methods to atmospheric problems is provided by Staniforth and Côté (1990). In ocean mod-
elling, Behrens (1998) and LeRoux et al. (2000) showed that the combination of semi-Lagrangian
schemes and finite elements could be an interesting approach.

In the present study, we compare an Eulerian and a semi-Lagrangian finite-element shallow
water model to assess both approaches in the context of ocean modelling. Both models use a lin-
ear non-conforming approximation for velocity and a linear conforming approximation for ele-
vation. Such a finite element pair is denoted PNC

1 � P 1. Non-conforming finite elements have
been introduced by Crouzeix and Raviart (1973) to solve Stokes equations. They have proved
to be well suited to represent transport processes thanks to an important flexibility and the ability
to allow upwind weighed formulations (Hanert et al., 2004). The combination of linear conform-
ing and non-conforming finite elements has first been studied by Hua and Thomasset (1984) to
solve the shallow water equations. They showed that this finite element pair is computationally
efficient and properly models the dispersion of the inertia-gravity waves. LeRoux (submitted
for publication) performed a dispersion analysis and showed that the discrete frequency was
monotonic for all resolutions.
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The paper is organized as follows. We first present the model equations and the finite element
discretization in Sections 2 and 3 respectively. The PNC

1 � P 1 finite element pair is described in Sec-
tion 4. The Eulerian and semi-Lagrangian schemes are derived in Sections 5 and 6 respectively.
Section 7 presents the numerical experiments and a discussion of the methods performances.
Conclusions are given in Section 8.
2. Governing equations

We consider the following formulation of the shallow water problem: Let X be the two-dimen-
sional model domain, we seek the velocity u(x, t) and the surface elevation g(x, t) which are solu-
tions of the following equations:
og
ot

þ $ � ½ðhþ gÞu� ¼ 0; ð1Þ

ou

ot
þ u � $uþ fk� u ¼ �g$g; ð2Þ
where h is the reference depth of the fluid, f is the Coriolis parameter, k is a unit vector in the
vertical direction, g is the gravitational acceleration, $ is the two-dimensional gradient operator.

Another form of Eqs. (1) and (2) can be obtained by introducing total derivatives and writing
the mass equation in terms of the logarithm of h + g:
D lnðhþ gÞ
Dt

þ $ � u ¼ 0; ð3Þ

Du

Dt
þ fk� u ¼ �g$g; ð4Þ
where D/Dt = o/ot + u Æ $ denotes the total or Lagrangian derivative. Eqs. (3) and (4) will be
used to derive the semi-Lagrangian scheme. Obviously, the two sets of equations are strictly
equivalent in the continuous limit, while in the numerical or discrete limit, they are no longer
equivalents.

The selection of the logarithmic form of the mass equation follows the approach of LeRoux
et al. (2000). Such a formulation of the continuity equation may not appear obvious. First of all,
the logarithmic term may be problematic as it cannot be computed exactly in a numerical
scheme. The resulting semi-Lagrangian scheme is then likely to be non-conservative. The same
conservation issue arises from the interpolation procedures that are also generally non-conserva-
tive. Therefore, the conservation has to be explicitly enforced at each time step by adding a con-
stant elevation correction to the computed elevation field. This is a classical way to proceed even
if other strategies exist to deliver conservative semi-Lagrangian schemes. The interest of the log-
arithmic form of the mass equation is to get a linear divergence term at the prize of a lineari-
zation of the logarithm. Other forms could also be selected (e.g. Behrens, 1998) but will not
be analyzed here.

For both sets of equations, the solution is specified by imposing no normal flow boundary
conditions (u Æ n = 0 on oX) and initial conditions.
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3. Finite element spatial discretization

Let P be a partition of the domain X into NE disjoint open elements Xe:
�X ¼
[NE

e¼1

�Xe and Xe \ Xf ¼ ; for e 6¼ f ;
where �X is the closure of X. Each element Xe has a boundary oXe and the outward unit normal to
oXe is ne. Let C be the ensemble of interelement boundaries Cl = oXe \ oXf with e > f inside the
domain, with all possible combinations:
�C ¼
[NC

l¼1

�Cl and Cl \ Cm ¼ ; for l 6¼ m;
where NC is the number of elements in C. Each Cl 2 C is associated with a unique unit normal
vector n which points from Xe to Xf. In this paper, P will be a triangulation of non-overlapping
triangles. The total number of vertices and segments in the triangulation are denoted NV and NS.

The variational or weak formulation of Eqs. (1) and (2) is built in such a way that the solution
for elevation is continous everywhere whereas the solution for velocity can be discontinuous
between the elements Xe. It requires continuity constraints on the solution values and reads:

Find gðx; tÞ 2 E and uðx; tÞ 2 U such that
XNE

e¼1

Z
Xe

og
ot

ĝ� ðhþ gÞu � $ĝ
� �

dXþ
XNE

e¼1

Z
oXe

ðhþ gÞĝu � ne dC ¼ 0 8ĝ 2 E; ð5Þ

XNE

e¼1

Z
Xe

ou

ot
� û� ð$ � ðuûÞÞ � uþ f ðk� uÞ � ûþ g$g � û

� �
dXþ

XNE

e¼1

Z
oXe

ðuu � neÞ � ûdC

þ
XNC

l¼1

Z
Cl

½u� � ½aðûÞ�dC ¼ 0 8û 2 U; ð6Þ
where ½s� ¼ sjXe � sjXf is the jump of s on an interior edge Cl; sjXe denotes the restriction of s on Xe,
and E and U are suitable functional spaces. The test functions ĝ and û belong to E and U respec-
tively. The last integral in (6) is a continuity constraint that weakly imposes the continuity of the
velocity between elements. The function a has to be selected to balance the continuity requirement
versus the fulfilment of the differential equations in the weak formulation. It reads:
aðûÞ ¼
u � nðk� 1=2Þû on Xe;

u � nðkþ 1=2Þû on Xf ;

�

where k 2 [�1/2,1/2]. Centered and upwind momentum advection schemes are obtained by choos-
ing k = 0 and k ¼ 1

2
signðuðxÞ � nðxÞÞ respectively. In the following, we will use the upwind para-

metrization that is usually selected (Houston et al., 2000; Hanert et al., 2004).
With this choice for the weight function and some standard algebra (Houston et al., 2000;

Hanert et al., 2004), the variational formulation may be rewritten as:
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Find gðx; tÞ 2 E and uðx; tÞ 2 U such that
XNE

e¼1

Z
Xe

og
ot

ĝ� ðhþ gÞu � $ĝ
� �

dXþ
XNC

l¼1

Z
Cl

hðhþ gÞu � ni½ĝ� þ ½ðhþ gÞu � n�hĝið ÞdC

¼ 0 8ĝ 2 E; ð7Þ

XNE

e¼1

Z
Xe

ou

ot
� û� ð$ � ðuûÞÞ � uþ f ðk� uÞ � ûþ g$g � û

� �
dXþ

XNC

l¼1

Z
Cl

huu � nik � ½û�dC

¼ 0 8û 2 U; ð8Þ
where hsi and hsik denote the average and weighed average of s on the segment Cl respectively,
with:
hsi ¼ 1

2
ðsjXe þ sjXf Þ;

hsik ¼ ð1=2þ kÞsjXe þ ð1=2� kÞsjXf :
A finite element approximation to the exact solution of Eqs. (1) and (2) is found by replacing g
and u with finite element approximations gh and uh in (7) and (8). Those approximations respec-
tively belong to finite dimensional spaces Eh � E and Uh � U. They read:
g � gh ¼
XNV

i¼1

gi/i;

u � uh ¼
XNS

j¼1

ujwj;
where gi and uj represent elevation and velocity nodal values, and /i and wj represent the elevation
and velocity shape functions associated with a particular node. The nodal values are then com-
puted by using the Galerkin procedure which amounts to replacing ĝ by /i and û by (wj, 0) and
(0,wj) in Eqs. (7) and (8) respectively, for 1 6 i 6 NV and 1 6 j 6 NS.
4. The non-conforming mixed PNC
1 � P1 discretization

In this study, the elevation and velocity variables are approximated by linear conforming (P1)
and linear non-conforming (PNC

1 ) shape functions respectively (Fig. 1). Elevation nodes are thus
lying on the vertices of the triangulation and velocity nodes are located at mid-segments. With this
choice of shape functions, the discrete elevation field is continuous everywhere whereas the dis-
crete velocity field is only continuous across triangle boundaries at mid-side nodes and discontin-
uous everywhere else around a triangle boundary. A major advantage of non-conforming shape
functions is their orthogonality property:
Z

X
wpwqdX ¼ Aq

3
dpq;



Fig. 1. Linear conforming (left) and non-conforming (right) shape functions.
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where Aq is the area of the support of wq, and dpq is the Kronecker delta. Such an unusual prop-
erty increases the computational efficiency of the numerical model. Like the elevation, the depth h

is discretized with linear conforming shape functions.
To improve the efficiency of the scheme, it may appear natural to perform the following

approximation in the variational formulation (7) and (8):
Z
Cl

hðhþ gÞu � ni½/i�dC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ
Z
Cl

½ðhþ ghÞuh � n�h/iidC ’ 0: ð9Þ
As P1 shape functions are continuous, the jump of the elevation shape function vanishes and
the first term in (9) is exactly equal to zero. The second term is neglected in order to enforce mass
conservation. Indeed, the thickness flux is discontinuous between triangles and neglecting the sec-
ond integral amounts to weakly impose its continuity. As a result, mass conservation is guaran-
teed at the cost of a small loss of accuracy.

A second approximation in the formulation (7) and (8) amounts to use a global linear approx-
imation for the product of uh with f:
Z

Xe

f ðk� uhÞwjdX ¼
Z
Xe

f
XNS

i¼1

ðk� uiÞwiwjdX ’
Z
Xe

XNS

i¼1
fiðk� uiÞwi|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðfk�uÞh

wjdX; ð10Þ
where fj represent the value of the Coriolis parameter at a velocity node. Eq. (10) greatly simpli-
fies the algebra and has a small impact on the accuracy of the solution since f varies very
smoothly.

To summarize, the space discretized equations for the Eulerian formulation simply read:
XNE

e¼1

Z
Xe

ogh

ot
/i � ðhþ ghÞuh � $/i

� �
dX ¼ 0 for 1 6 i 6 NV ; ð11Þ

XNE

e¼1

Z
Xe

ouh

ot
wj � uh$ � ðuhwjÞ þ ðfk� uÞhwj þ g$ghwj

� �
dX

þ
XNC

l¼1

Z
Cl

huhuh � nik½wj�dC ¼ 0 for 1 6 j 6 NS: ð12Þ
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The last boundary term can be interpreted as follows. Weak continuity of the normal flow
through the segment Cl between adjacent elements Xe and Xf is imposed in the usual way of
the Discontinuous Galerkin formulation. For a so-called fully upwind scheme (k ¼ 1

2
signðu � n)),

the continuity is enforced as a weak inlet boundary condition for Xe if the characteristics that
go through Cl are going in Xe. This is fully in line with the mathematical theory of hyperbolic par-
tial differential equations and the presentation of the Discontinuous Galerkin formulation in the
pioneering paper of LeSaint and Raviart (1974).

The proposed Eulerian formulation strictly conserves mass but does not exactly conserve the
total energy of the flow. The formulation appropriate for semi-Lagrangian time stepping can
be obtained by applying the same spatial discretization procedure to Eqs. (3) and (4).
5. Eulerian scheme

To obtain an Eulerian discretization of the nonlinear shallow water equations, (11) and (12) still
need to be discretized in time. In order to simplify the notations, we present the temporal discret-
ization of (1) and (2). So, for a given time step Dt = tn+1 � tn, we obtain:
unþ1 � un

Dt
þ un � $un þ fk� bunþ1 þ ð1� bÞun

� �
þ g a$gnþ1 þ ð1� aÞ$gn
� �

¼ 0; ð13Þ

gnþ1 � gn�1

2Dt
þ $ � chunþ1 þ ð1� cÞhun�1

� �
þ $ � ðgnunÞ ¼ 0; ð14Þ
where a, b and c are implicity coefficients in [0,1] used to vary the time centering of the gradient,
Coriolis and divergence terms respectively.

In Eqs. (13) and (14), all linear terms are discretized with a so-called h-scheme and the non-lin-
ear terms are treated explicitly. In such an approach, the most constraining terms (i.e. those
responsible for the propagation of inertia-gravity waves) can be treated implicitly. In particular,
the Coriolis term is always discretized semi-implicitly. The value of the other parameters is prob-
lem dependent and is given below where numerical experiments are described. A leap frog time
scheme is used in Eq. (14) to discretize the term $ Æ (gnun). Indeed, the scheme would be uncondi-
tionally unstable if an Euler scheme was used instead. However, when the surface-elevation is
small compared to the depth of the fluid, i.e. g � h, the term $ Æ (gnun) may be neglected in
(14) and an Euler scheme can then be used in the mass equation. The divergence term $ Æ (hu)
is then discretized at time steps n + 1 and n instead of n + 1 and n � 1. It should be noted that
treating the non-linear terms explicitly, does not lead to very constraining stability conditions
for large scale applications. However, for applications that require high resolution, it may be
penalizing.

After replacing gh and uh by their expression in terms of the nodal values in Eqs. (11) and (12)
and applying the temporal discretization described above, the following set of linear equations is
obtained:
BUU GUH

�DHU MHH

� �
Unþ1

Hnþ1

 !
¼

RU

RH

� �
; ð15Þ
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where Un+1 and Hn+1 are the nodal values vectors, defined as:
Fig. 2

are re
Unþ1 ¼
ui
vi

� �
and Hnþ1 ¼ ðgjÞ;
with 1 6 i 6 NS and 1 6 j 6 NV. The matrix in the left hand side (lhs) of (15) and the vector in the
right hand side (rhs) of (15) are explicitly written in Appendix A.

Thanks to the orthogonality of linear non-conforming shape functions, the matrix BUU is com-
posed of four diagonal sub-matrices. Its inverse can thus be easily computed. The solution vector
for the velocity is expressed from (15) as:
Unþ1 ¼ �B�1
UUGUHH

nþ1 þ B�1
UURU; ð16Þ
and then substituted in the mass balance equation, to give:
ðMHH þ DHUB
�1
UUGUHÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�AHH

Hnþ1 ¼ RH þ DHUB
�1
UURU; ð17Þ
where the matrix AHH is a sparse matrix (as shown in Fig. 2) having an average of 13 non-zero
entries per line.

A linear solver is only required to solve Eq. (17). Once the elevation nodal values are obtained,
the velocity nodal values are computed explicitly from (16). The substitution greatly reduces the
computational cost as we solve a system of only NV equations instead of 2NS + NV, i.e. approx-
imately 7NV equations. Fig. 2 shows the sparcity patterns of the initial and final system of equa-
tions. Both matrices are represented on the same scale. A generalized minimal residual iterative
solver (Saad and Schultz, 1986) has been selected as AHH is a nonsymmetric matrix in view of
the Coriolis term.
. Sparcity patterns of the system matrix before (left) and after (right) the substitution procedure. Both matrices

presented on the same scale.
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6. Semi-Lagrangian scheme

In the semi-Lagrangian method, total derivatives are treated as time differences along particles
trajectories while preserving the gridpoint nature of Eulerian schemes. This is achieved by select-
ing a specific set of fluid parcels at each time step and requiring that they arrive at mesh nodes at
the end of the time step. Therefore, the total derivative of a function f is simply the value of f at the
arrival point (a mesh node) minus the value of f at the departure point (usually not a mesh node),
divided by Dt. By tracking back fluid parcels in time, it is possible to locate their upstream posi-
tions at previous time steps. An interpolation formula is then needed to determine the upstream
value of the advected quantity at the departure points.

The temporal discretization used for the semi-Lagrangian scheme reads:
unþ1 � und
Dt

þ fk� ðbunþ1 þ ð1� bÞundÞ þ gða$gnþ1 þ ð1� aÞ$gndÞ ¼ 0; ð18Þ

ðlnðhþ gÞÞnþ1 � ðlnðhþ gÞÞnd
Dt

þ $ � ðcunþ1 þ ð1� cÞundÞ ¼ 0; ð19Þ
where the subscript d denotes the evaluation at the departure point and the absence of subscript
denotes evaluation at the arrival point. The coefficients a, b and c are defined as in the Eulerian
case. It should be noted that semi-Lagrangian discretizations generally allow the use of larger time
steps than Eulerian discretizations.

As for the Eulerian scheme, we substitute u in terms of g in the continuity equation at the dis-
crete level. Since Eq. (19) is weakly nonlinear due to the logarithm, a Newton�s procedure has to
be used to linearized it. An Helmholtz equation for the elevation is then produced.
6.1. Calculation of total derivatives

The semi-Lagrangian procedure requires to evaluate the departure points of the fluid parcels. If
(xm, t + Dt) denotes the arrival point of a fluid parcel, its departure point is then (xm � dm, t). The
displacement of the parcel, dm, is obtained from a number of iterations (usually two) of a second-
order mid-point Runge–Kutta corrector:
dðkþ1Þ
m ¼ Dt uðx� dðkÞm =2; t þ Dt=2Þ; ð20Þ
with a first order estimate dð0Þm ¼ Dtuðx; tÞ. This amounts to approximate the exact trajectory of the
fluid parcel by a straight line (Fig. 3). The velocity at time t þ Dt

2
in (20) is found by extrapolating

the velocity field at time t and t � Dt, using a two time level scheme (Temperton and Staniforth,
1987; McDonald and Bates, 1987) and yielding an O(Dt2)-accurate estimate. When iteratively
solving (20), interpolation is required to compute the velocity between mesh points. As observed
by Staniforth and Côté (1990), negligibly small differences in the solution result from using linear
rather than cubic interpolation while solving equation (20). Hence linear interpolation is adopted
here.

Once the departure points are computed, the advected variables have to be evaluated at those
points. As they usually do not lie on mesh nodes, some form of interpolation is needed. The choice



Fig. 3. A two-time-level semi-Lagrangian advection scheme. Approximate and exact trajectories arrive at node xm
at time tn + Dt. Here, dm is the displacement of the particle in the x-direction in time Dt.
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of the interpolator has a crucial impact on the accuracy of the method. In regular domains with
structured meshes, various polynomial interpolation schemes have been tried, including linear,
quadratic, cubic and quintic Lagrange polynomials, and bicubic splines. McCalpin (1988) showed
that low order interpolations can have a very diffusive effect. As a result, semi-Lagrangian models
of the atmosphere are usually build with high order interpolations. Among those, bicubic spline
interpolations are found to be a good compromise between accuracy and computational cost
(Purnell, 1976; Pudykiewicz and Staniforth, 1984).

However, most of atmospheric models are based on orthogonal grids, made up of quadrilater-
als. It is found that when the mesh loses its orthogonality, the bicubic spline interpolation is much
less accurate. Since we intend to interpolate on an unstructured ocean mesh, another method
is needed and interpolation schemes that do not depend on the geometry should be prefered.
LeRoux et al. (1997) suggested to use a kriging scheme.

6.2. Kriging interpolation

The term ‘‘kriging’’ has been introduced by Matheron (1973) to honor the pioneering work of
Krige (1951). A kriging interpolator can be defined as the best linear unbiased estimator of a
random function. It yields equally favourable results for structured and unstructured meshes.
Given a serie of N measurements fi of a function f at different locations xi (1 6 i 6 N), kriging
constructs an approximate function fh expressed as the sum of a drift a(x) and a fluctuation
b(x):
f ðxÞ � f hðxÞ ¼ aðxÞ þ bðxÞ:

The drift is generally a polynomial which follows the physical phenomenon and the fluctuation

is adjusted so that the interpolation fits the data points exactly.
For the sake of simplicity, we illustrate kriging by constructing the approximate function in the

one dimensional case, using a linear drift:
f hðxÞ ¼ aðxÞ þ bðxÞ ¼ a1 þ a2xþ
XN
j¼1

bjKðjx� xjjÞ;
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where the function K, known as the generalized covariance, fixes the degree of the fluctuation. The
coefficients a1,a2,b1, . . .,bN are calculated by requiring that: (1) the interpolation has no bias, (2)
the squared variance of the fluctuation is minimal and (3) the interpolation fits the data points
exactly (Trochu, 1993). Those constraints read:
XN

j¼1

bj ¼ 0;
XN
j¼1

bjxj ¼ 0 and f hðxiÞ ¼ f ðxiÞ for 1 6 i 6 N :
Hence, the following linear system, known as the dual linear kriging system, is obtained:
ð21Þ
where Kij = K(jxi � xjj). The matrix of the linear system is a full matrix with zeros on the diagonal.
As it only depends on mesh node positions, a LU decomposition needs only to be performed once.
Nevertheless, each interpolation requires the resolution of a linear system. The computational cost
can thus be significant, especially for problems with large data sets. The final system of discrete
shallow water equations is still solved with a GMRES iterative solver.

The accuracy of the kriging interpolation method is determined by a suitable choice of the
drift and the fluctuation. The drift is usually a low order polynomial. The choice of an
admissible generalized covariance has been discussed by Matheron (1980) and Christakos
(1984) and the most employed are K(h) = �h, K(h) = h2 lnh and K(h) = h3, with h = jxi � xjj,
for 1 6 i, j 6 N.
7. Numerical simulations and discussions

In this section, we perform some experiments to assess the different numerical models intro-
duced previously. As a test problem, we consider the propagation of slow Rossby waves. Despite
the fact that they are very slow, Rossby waves have a major effect on the large scale circulation,
and thus on weather and climate. For instance, Rossby waves can intensify western boundary cur-
rents, as well as push them off their usual course. As those currents transport huge quantities of
heat, it is readily understood that even a minor shift in the position of the current can dramatically
affect weather over large areas of the globe. Those waves can be represented with the shallow
water equations.

The two numerical tests used in LeRoux et al. (2000) are reproduced here with the PNC
1 � P 1

pair in the Eulerian and semi-Lagrangian approaches. For both tests, the model is run as a re-
duced gravity model with parameters set to correspond to the first internal vertical mode of
a baroclinic model. A second passive layer is implicitly assumed infinitely deep and at rest.
The depth of the fluid h is set constant.
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7.1. Equatorial Rossby soliton

We first reproduce the propagation of the equatorial Rossby soliton of Boyd (1980). This exper-
iment has also been performed by Iskandarani et al. (1995) with their spectral element shallow
water model. The model equations are rewritten in their dimensionless form on an equatorial b
plane. Dimensionless variables read: x 0 = x/L, t 0 = t/T, u 0 = u/U and g 0 = g/h. The characteristic
length (L), time (T) and velocity (U) scales are expressed in terms of the Lamb parameter E:
Fig. 4

non-d

rangin
L ¼ a

E1=4
; T ¼ E1=4

2X
; U ¼

ffiffiffiffiffiffi
g0h

p
; E ¼ 4X2a2

g0h
;

where a is the radius of the Earth and X denotes here the angular frequency of the Earth rotation.
The reduced gravity and mean depth are taken as g 0 = 4 · 10�2ms�2 and h = 100m respectively.
The mean gravity wave speed is then U = 2ms�1 and it corresponds to the wave speed of the first
baroclinic mode. Those values yield a time scale of 41h and a length scale of 296km.

The rectangular domain non-dimensional extent is 32 · 8. The mesh is unstructured and its res-
olution goes from 0.5 to 1 non-dimensional unit (Fig. 4a). There are 1768 elements and 946 nodes.
The temporal discretization is semi-implicit (a = b = c = 1/2) and the non-dimensional time step is
set to 0.25. As initial conditions, we use the zeroth-order solution introduced by Boyd (1980) at
time t 0 = 0. This solution reads:
u0ðx0; y 0; t0Þ ¼ AB2 ð6y 02 � 9Þ
4

sech2ðBðx0 � ct0ÞÞ expð�y 02=2Þ;

v0ðx0; y 0; t0Þ ¼ �4AB3y0 tanhðBðx0 � ct0ÞÞ sech2ðBðx0 � ct0ÞÞ expð�y 02=2Þ;

g0ðx0; y 0; t0Þ ¼ AB2 ð6y 02 þ 3Þ
4

sech2ðBðx0 � ct0ÞÞ expð�y02=2Þ;
where A = 0.771 and B = 0.395. The non-dimensional, linear, non-dispersive velocity phase speed
is c ¼ � 1

3
� 0:395B2. The initial elevation field is shown in Fig. 4b. It should be noted that
0.16727

(a)

(b)

. (a) Mesh used in the equatorial Rossby soliton experiment. (b) Isolines of the elevation field at initial time, the

imensional maximum value is specified in the bottom-right corner. There are 10 isolines at equidistributed values

g from zero to the maximum value specified.
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Boyd (1985) gives a first order solution to the Rossby soliton problem. This solution is however
not considered in this work.

At the beginning of the integration, the soliton loses approximately 5% of its amplitude which
propagates eastward as equatorial Kelvin waves. This is due to the initial condition that is not
exactly a solitary wave. Meanwhile, the soliton propagates westward with little change in shape
and amplitude, in agreement with the theory. The elevation field after 32 non-dimensional time
units is shown in Fig. 5 for the Eulerian scheme and the semi-Lagrangian method. The asymptotic
solution of Boyd (1980) is also given. The semi-Lagrangian approach is based on linear and kri-
ging interpolation schemes. The latter use the following generalized covariance functions: �h,
Asymptotic solution of Boyd (1980)

0.16953

Eulerian

0.15358

SL linear

0.13947

SL kriging, K(h)=-h

0.14759

SL kriging, K(h)=h^2 ln(h)

0.15813

SL kriging, K(h)=h^3

0.16283

SL kriging, K(h)=-h^5

0.16787

Fig. 5. Elevation fields after 55 days (t = 32T) obtained from the asymptotic relation, the Eulerian scheme and various

the semi-Lagrangian schemes. The non-dimensional maximum value is specified at the bottom-right corner of each

panel. The number of isolines is the same as in Fig. 4.
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h2 ln(h), h3 and �h5. The Eulerian scheme preserves the shape of the soliton quite well with mod-
erate damping. It gives a phase speed of 0.783ms�1 which is in good agreement with the asymp-
totic solution of Boyd (1980) that predicts a value of 0.79ms�1. The semi-Lagrangian models
provide a phase speed ranging from 0.78 to 0.83ms�1 for Lagrangian linear and the various kri-
ging interpolations. It is observed that the phase speed increases with the order of the interpola-
tion used. As expected, the semi-Lagrangian method using low order interpolating schemes shows
more damping. As the order of the interpolation increases, the solution gets better. However, for
high order interpolations, there is very little numerical diffusion and instabilities may arise. This is
observable in Fig. 5 for the kriging scheme with K(h) = �h5.

7.2. Eddy propagation in the Gulf of Mexico

In the second experiment, the slowly propagating Rossby modes are simulated in the case of the
evolution of a typical anticyclonic eddy at midlatitudes. The Gulf of Mexico is chosen as the do-
main to test the model in a realistic geometry. In the present simulation, we ignore the inflow and
outflow through the Yucatan Channel and Florida Straits and the basin is assumed closed.
Although this experiment is highly idealized, it is expected to represent some of the features of
the life cycle of anticyclonic eddies in the Western part of the Gulf. The experiment focuses mainly
on the westward propagation of the eddies and their interaction with the boundary. This is why
the unstructured mesh, shown in Fig. 6, has a higher resolution in the western part of the domain.
There are 8001 elements and 4092 nodes. The domain extent is approximately 1800km · 1350km
and the resolution of the mesh goes from 20 to 60km.

A Gaussian distribution of g, centered at the origin of the domain, is prescribed at initial time:
Fig. 6

60km
gðx; y; 0Þ ¼ C exp½�Dðx2 þ y2Þ�;
. A triangular unstructured mesh of the Gulf of Mexico. The resolution goes from 20km in the western part to

in the eastern part.
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where C = 68.2m and D = 5.92 · 10�11m�2. The b-plane assumption is made (i.e. f = f0 + by) and
f0 and b are evaluated at 25� N. The reduced gravity and mean depth are taken as g 0 = 1.37 ·
10�1ms�2 and h = 100m, respectively, so that the mean gravity wave speed is c �

ffiffiffiffiffiffi
g0h

p
�

3:7ms�1. The radius of deformation at midbasin is thus Rd � c/f0 � 6 · 104m. The initial velocity
field is taken to be in geostrophic balance and so
Fig. 7

maxim

rangin
uðx; y; 0Þ ¼ 2
g0

f
CDy exp½�Dðx2 þ y2Þ�;

vðx; y; 0Þ ¼ �2
g0

f
CDx exp½�Dðx2 þ y2Þ�:
By setting C = 68.2m, the maximum flow speed is 1ms�1. The parameters values are chosen to
match the observations of the eddies made by Lewis and Kirwan (1987). In (13) and (14), the tem-
poral discretization is now explicit for the divergence term, and semi-implicit for Coriolis and the
gradient terms (a = b = 1/2, c = 0). The time step is set to 300s, hence the gravitational Courant
number is close to 0.1.

In this experiment, we consider the Eulerian scheme and the semi-Lagrangian method using
Lagrangian linear and kriging (with K(h) = h3) interpolation schemes. The Lagrangian linear
interpolation is chosen to illustrate the poor results obtained with low order interpolations.
The kriging scheme with K(h) = h3 is selected as it appeared to give good results for the soliton
experiment, with very small damping. This interpolation scheme is equivalent to cubic spline inter-
polation (LeRoux et al., 1997).

The semi-Lagrangian method using the kriging scheme develop some small-amplitude noise in
the velocity field, which progressively amplified as the integration progressed and ultimately led to
unacceptable results. As most high order schemes, such an approach exhibiting better accuracy is
more sensitive to errors accumulation. Some harmonic diffusion was therefore introduced for
velocity. At the end of each time step, a diffusive correction is applied to the provisional velocity
field computed from the semi-Lagrangian scheme, denoted u*. The corrected velocity field, u, is
then obtained by solving:
0,68.2 0,1.0

. Isolines of the elevation field (bottom-left) and flow-speed field (bottom-right) at initial time. The minimum and

um values are specified under each figure. For both variables, there are 15 isolines at equidistributed values

g from the minimum to the maximum values specified (in m and ms�1 respectively).
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interp
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u� u	

Dt
¼ m$2u	;
subject to zero-flux boundary conditions, where m is the diffusion coefficient. A value of
m = 175m2s�1 was found sufficient to suppress the noise in the velocity field.
. Isolines of the elevation field at different times of the propagation for the Eulerian, semi-Lagrangian with linear

olator and semi-Lagrangian with kriging interpolator (K(h) = h3) schemes. The minimum and maximum values

) are specified at the bottom right corner of each panel. The number of isolines is the same as in Fig. 7.
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At initial time, the eddy is located in the middle of the Gulf of Mexico (Fig. 7) and different
stages of its propagation are shown in Figs. 8 and 9 for the Eulerian and the semi-Lagrangian
models. Shortly after initialization, there is a readjustment of the flow and g loses approximately
10% of its amplitude. Afterward, the Rossby wave propagates westward with a slight southwest-
erly drift that is due to non-linear effects. The reduction in amplitude that follows the readjust-
ment is due to the explicit and/or implicit diffusion in the numerical schemes. The implicit
Fig. 9. Isolines of the flow-speed field at different times of the propagation for the Eulerian, semi-Lagrangian with

linear interpolator and semi-Lagrangian with kriging interpolator (K(h) = h3) schemes. The minimum and maximum

values (in ms�1) are specified at the bottom right corner of each panel. The number of isolines is the same as in Fig. 7.



Fig. 10. Isolines of the elevation field after 11 weeks for the inviscid Eulerian scheme, and for the Eulerian and kriging

semi-Lagrangian schemes with an explicit diffusion m = 175m2s�1. The minimum and maximum values are specified at

the bottom right corner of each panel. The number of isolines is the same as in Fig. 7.
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diffusion is due to the upwind treatment of momentum advection for the Eulerian scheme, and to
the interpolation procedure for the semi-Lagrangian schemes. The Eulerian and the high order
semi-Lagrangian schemes qualitatively give comparable results. For both schemes, the translation
speed is approximately 6.8kmday�1 which is in good agreement with that predicted by the theory
(bR2

d ¼ 6:5kmday�1). The linear semi-Lagrangian schemes shows more dispersion and gives a
slower propagation speed. The maximum values of the elevation and flow-speed fields show that
the semi-Lagrangian scheme using a linear interpolation is very diffusive as the eddy loses approx-
imately 70% of its amplitude compared to the Eulerian scheme during the simulation. This is due
to the low order interpolation procedure. The high order semi-Lagrangian scheme performs better
but the viscosity required to avoid instabilities leads to a 8% reduction in g compared to the Eule-
rian scheme, after 11 weeks of simulation.

The Eulerian scheme is stable enough to run without explicit diffusion whereas the high order
semi-Lagrangian scheme requires some explicit diffusion to run properly. The stability of the Eule-
rian scheme is partly due to the upwind treatment of momentum advection which has a diffusive
effect. We estimate the amount of artificial diffusion in the Eulerian scheme by running that model
with an explicit diffusion m = 175ms�2. By comparing the results of the Eulerian and high order
semi-Lagrangian model when both use the same explicit diffusion, it is possible to estimate the
effect of the artificial diffusion ‘‘hidden’’ in the Eulerian model. The high order semi-Lagrangian
model is assumed to have a very small implicit diffusion. The final elevation fields obtained with
the inviscid Eulerian, the viscous Eulerian and the viscous kriging semi-Lagrangian schemes are
shown in Fig. 10. It can be seen that the results obtained with the viscous Eulerian scheme are very
close to those obtained with the viscous kriging semi-Lagrangian scheme. This suggests that the
amount a artificial diffusion introduced in the Eulerian scheme by the upwind treatment of
momentum advection is very small and has less impact than the explicit diffusion needed to
run the high-order semi-Lagrangian scheme.
8. Conclusions

The non-linear shallow water equations have been discretized on an unstructured triangular
grid by using the PNC

1 � P 1 finite element pair. Eulerian and semi-Lagrangian advection schemes



E. Hanert et al. / Ocean Modelling 10 (2005) 115–136 133
have been compared and assessed in the context of ocean modelling. It has been shown that the
Eulerian method gives an accurate representation of the Rossby waves as the amplitude
and phase speed of those modes are well preserved during propagation. The method works
well without explicit diffusion and the implicit numerical diffusion, mainly due to an upwind
momentum advection discretization, seems to have a small impact on the accuracy of the
results.

Semi-Lagrangian schemes well reproduce Rossby waves when a high order kriging interpola-
tion is used. Indeed, a high order accuracy is then reached even on unstructured grids. However,
we were forced to add a small Laplacian diffusion to the model to be able to get an acceptable
solution. In other words, numerical diffusion has to be incorporated explicitly when using the high
order semi-Lagrangian model. In the Eulerian approach, it is observed that the amount of numer-
ical diffusion introduced by upwinding is quite small in comparison.

The comparison of the computational cost between Eulerian and semi-Lagrangian methods is
not straightforward as it depends strongly on the implementation, on some numerical strategies
and on the linear solver. In one hand, the main advantage of the semi-Lagrangian method com-
pared to the Eulerian scheme, is the possibility of using larger time steps. However, the use of
larger time steps leads to a poorer conditioning of the linear system and the benefit in terms of
computational cost is not always as good as expected. Moreover, the interpolation procedure
and the tracking calculation requires cumbersome implementation and a high computational
cost. In the other hand, the Eulerian approach is quite more easy to implement and seems
to be considerably much cheaper in terms of CPU requirements. As implemented in our
codes, the semi-Lagrangian calculations are at least ten times more expensive than the Eulerian
ones.

The Eulerian PNC
1 � P 1 model seems to be a promising initial step toward the construction of an

ocean general circulation model using unstructured triangular meshes. The PNC
1 � P 1 finite ele-

ment pair combines several advantages such as the absence of pressure modes, a reasonable com-
putational cost even compared to traditional finite-difference schemes and the possibility to
efficiently perform upwinding while computing momentum advection.
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Appendix A. Details on the matricial form of the discrete equations

The matrix figuring in (15) is written as:
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The matrix BUU is composed of the velocity mass matrix and the Coriolis matrix. As non-con-
forming shape functions are orthogonal, the four sub-matrices in BUU are diagonal and the inverse
of BUU may thus be easily computed. The matrices GUH and DHU respectively correspond to the
gradient and divergence matrices. If h is constant, the divergence matrix is proportional to the
transpose of the gradient matrix. Finally, the matrix MHH is the elevation mass matrix.

The rhs of Eq. (15) reads:
where uhn denotes the value of uh at time step n.
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