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a b s t r a c t

A flexible numerical scheme for the discretization of the space–time fractional diffusion equation is pre-
sented. The model solution is discretized in time with a pseudo-spectral expansion of Mittag–Leffler
functions. For the space discretization, the proposed scheme can accommodate either low-order finite-
difference and finite-element discretizations or high-order pseudo-spectral discretizations. A number
of examples of numerical solutions of the space–time fractional diffusion equation are presented with
various combinations of the time and space derivatives. The proposed numerical scheme is shown to
be both efficient and flexible.

! 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Transport dynamics in complex systems is often observed to
deviate from the standard laws. For instance, in the field of envi-
ronmental and geophysical fluid dynamics, several studies have
highlighted non-Brownian transport dynamics [1–4]). Discrepan-
cies can occur both for the time relaxation that can deviate from
the classical exponential Debye pattern and for the spatial diffu-
sion that can deviate from Fick’s second law [5]. The resulting
transport process exhibits a non-linear growth in time of the mean
square displacement. If the growth rate is faster than linear, the
transport process is superdiffusive and if it is slower than linear,
the transport process is subdiffusive. On the one hand, superdiffu-
sion is characterised by a heavy-tailed jump length distributions
resulting in diverging spatial moments and a non-Gaussian
dynamics. On the other hand, subdiffusion is characterised by a
heavy-tailed waiting time distribution resulting in diverging tem-
poral moments and a non-Markovian dynamics [6].

Anomalous diffusion and non-exponential relaxation patterns
can be described by a space–time fractional-order diffusion equa-
tion [7,5]. Unlike integer-order derivatives that are local operators
in the sense that the derivative of a function at a given point de-
pends only on the values of the function in the vicinity of that
point, fractional-order derivatives are non-local, integro-differen-
tial operators. As such, they can be used to represent memory ef-
fects and long-range dispersion processes. Space–time fractional-
order diffusion models have received an increasing attention in re-
cent years and have been used to model a wide range of problems

in surface and subsurface hydrology [8–12], plasma turbulence
[13,14], finance [15–18], biology [19,20] and epidemiology [21].

One of the key issues with fractional-order diffusion models is
the design of efficient numerical schemes for the space and time
discretization. Until now, most models have relied on the finite dif-
ference (FD) method to discretize both the fractional-order space
diffusion term [22–24] and time derivative [25,26]. Some numeri-
cal schemes using low-order finite elements (FE) have also been
proposed [27,28]. Fractional derivatives being non-local operators,
they require a large number of operations and a large memory
storage capacity when discretized with low-order FD and FE
schemes. To reduce the computational burden, truncated numeri-
cal schemes based on a ‘‘short memory principle” [29] and a ‘‘log-
arithmic memory principle” [30] have been proposed. Another
approach to design an efficient numerical scheme is to discretize
the equation with a non-local numerical method, i.e. a numerical
method that naturally takes the global behaviour of the solution
into account. Following that approach, Hanert [31] has proposed
a Chebyshev pseudo-spectral (PS) method to discretize the space-
fractional diffusion equation. A similar approach has been followed
by Li and Xu [32] to discretize the time-fractional diffusion equa-
tion with a Jacobi PS method.

In this paper, we present a flexible numerical discretization of
the space–time fractional diffusion equation. The discretization is
based on the use a PS method in time and either a FD, FE or PS
method in space. For most problems, the time evolution is smooth
and the use of PS method in time significantly reduces the number
of time levels needed to obtain the solution. The spatial variations
of the solution being not necessarily smooth, it is important to
leave the possibility to choose between low-order local methods
or high-order global methods.
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2. Anomalous diffusion models

To illustrate the connection between anomalous diffusion pro-
cesses and fractional-order diffusion equations, we shall start with
a continuous-time random walk (CTRW) process. Such a process,
first described by Montroll and Weill [33], allows us to account
for the large particles displacements and long waiting times ob-
served in complex systems. A CTRW is defined by a sequence of
independent identically distributed (i.i.d.) random jumps ni 2 R

separated by i.i.d. waiting times si 2 Rþ. The position of the
‘‘walker” at time t 2 [tn,tn+1) is given by

XðtÞ ¼
Xn

i¼1

ni;

where tn ¼
Pn

i¼1si. A realisation of the process is a sequence of up
and down steps with different heights and depths (see Fig. 1). In
the simpler case of a decoupled CTRW, jumps and waiting times
are independent random variables defined by 2 probability distri-
bution functions (pdf’s): k(n) for the jumps and w(s) for the waiting
times. Different CTRW processes can then be categorized by the
characteristic waiting time T:

T ¼
Z 1

0
wðtÞt dt;

and the jump length variance R2:

R2 ¼
Z 1

%1
kðxÞx2 dx:

For classical Brownian motion, both T and R2 are finite. This is
for instance the case when using a Poissonian pdf for the waiting
times and a Gaussian pdf for the jumps:

wðsÞ ¼ le%ls;

kðnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4pr2
p e%

n2

4r2 ;

which correspond to T = l%1 and R2 = 2r2. The resulting displace-
ments are Markovian for times larger than T. If one considers a large
number of particles following that process, the pdf f(x, t) associated
with the position of the particles is a solution of the 2nd-order dif-
fusion equation:

@f ðx; tÞ
@t

¼ K
@2f ðx; tÞ
@x2 ;

where K ¼ R2

2T . In that case, the standard deviation of the solution
grows like t1/2 (see for instance [34]).

To define CTRW processes that go beyond Brownian motion, we
consider situations where the characteristic waiting time T and
jump length variance R2 diverge. This can be achieved by consid-
ering heavy-tailed pdf’s with the following asymptotic behaviour
[5]:

wðsÞ & s%c%1 0 < c < 1;

kðnÞ & jnj%a%1 1 < a < 2:
ð1Þ

In that case, both the temporal and spatial moments diverge and the
process is no more Brownian. For c = 1 and a = 2, the CTRW process
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Fig. 1. Trajectories of CTRW’s for different values of the parameters a and c: (a) Brownian process c
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defined by (1) reduces to a Brownian motion [5]. In that respect, (1)
can be seen as an extension of Brownian motion to ‘‘anomalous” dif-
fusion processes characterised by large jumps and long waiting
times. Simulating a CTRW process whose waiting times and jumps
have the asymptotic behaviour defined by (1) can be achieved by
considering a Lévy a-stable pdf for the jumps and a Mittag–Leffler
pdf with parameter c for the waiting times [35]. Methods for gener-
ating random numbers following those distributions have been de-
rived by Chambers, Mallows, and Stuck [36], and Kozubowski and
Rachev [37], respectively. Examples of CTRW processes deviating
from Brownian motion are shown in Fig. 1. As expected, reducing
the value of c slows down the diffusion process, while reducing
the value of a has the opposite effect.

The pdf f(x, t) representing the density of particles following a
CTRW defined by (1) is solution of a space–time fractional-order
diffusion equation defined as follows [5]:

C
0Dc

t f ðx; tÞ ¼ Ka;c
1þ b

2 %1Da
x f ðx; tÞ þ 1% b

2 xDa
þ1f ðx; tÞ

$ %
; ð2Þ

where C
0Dc

t is time-fractional Caputo derivative of order c and %1Da
x

and xDa
þ1 are the left and right space-fractional Riemann-Liouville

derivatives (see for instance [29,38]). The parameter b 2 [%1,1] is
a skewness parameter representing a preferential direction of
jumps that can be observed in heterogeneous systems. When
b = 0, the space derivative reduces to a so-called symmetric Riesz
derivative [29]. The coefficient Ka,c is a generalized diffusivity
whose dimension is [Ka,c] = mas%c. The fractional-order derivatives
can be defined in terms of their Fourier or Laplace transforms, and
analytically as follows:

C
0Dc

t uðtÞ ¼L%1
s sc~uðsÞ % sc%1uð0Þ
& '

¼ 1
Cð1% cÞ

Z t

0

@uðhÞ
@h

ðt % hÞc
dh;

%1Da
x vðxÞ ¼F%1

k ðikÞav̂ðkÞ
& '

¼ 1
Cð2% aÞ

@2

@x2

Z x

%1

vðyÞ
ðx% yÞa%1 dy;

xDa
þ1vðxÞ ¼F%1

k ð%ikÞav̂ðkÞ
& '

¼ ð%1Þ2

Cð2% aÞ
@2

@x2

Z 1

x

vðyÞ
ðy% xÞa%1 dy;

where u(0) is the initial condition, C(') is Euler’s gamma function,
and F and L denote the Fourier and Laplace transforms:

~uðsÞ ¼Lt½uðtÞ)ðsÞ ¼
Z þ1

0
uðtÞe%st dt;

v̂ðkÞ ¼Fx½vðxÞ)ðkÞ ¼
Z þ1

%1
vðxÞeikx dx:

It should be noted that if u(0) = 0, the left Riemann-Liouville and
Caputo derivatives of ordre c(0 < c < 1) coincide, i.e. C

0Dc
t uðtÞ

¼0Dc
t uðtÞ [29].

The solution to Eq. (2) can be expressed in terms of Fox H-func-
tions [39]. From that solution, one can extract the scaling relation
X(t) & tc/a. The ratio c/a thus summarises the interplay between
sub- and superdiffusion. On the one hand, for a < 2c, the diffusion
process is superdiffusive as the cloud of particles spreads faster
than predicted by classical Brownian motion (see Fig. 1b). On the
other hand, for a > 2c, the diffusion process is subdiffusive
(Fig. 1c). Finally, for a = 2c, the process exhibits the same scaling
as classical Brownian motion with the difference that all the mo-
ments diverge as soon as a < 2 or c < 1 (Fig. 1d).

3. Pseudo-spectral method for the time discretization

In this section, a PS method for the time discretization of Eq. (2)
is presented. Unlike low-order FD or FE methods, the PS method
does not result in significantly higher computational cost or mem-
ory requirement when going from integer-order to fractional-order
derivatives [32,31]. The PS method is based upon the approxima-

tion of the model solution f(x, t) with a truncated series expansion
that can be defined as follows:

f ðx; tÞ *
XN

k¼%N

fkðxÞwkðtÞ;

where {wk(t):k = %N, . . . ,N} is a given set of basis functions and
{fk(x):k = %N, . . . ,N} is the set of unknown coefficients defining the
discrete solution. These coefficients still depend on x since only
the time discretization is considered at the moment. For non-peri-
odic functions defined on a bounded domain, Chebyshev and Legen-
dre polynomials are often used as basis functions [40]. However,
other choices are also possible. For instance, Li and Xu have recently
used Jacobi polynomials to solve the time-fractional diffusion equa-
tion [32]. In the present work, we consider a PS method with Mit-
tag–Leffler basis functions.

The Mittag–Leffler function Ec(t) is defined as follows:

EcðtÞ ¼
X1

n¼0

tn

Cðcnþ 1Þ
;

and can be seen as a generalization of the exponential function
since C(n + 1) = n! and thus E1(t) = exp(t). When the order c is not
an integer, these functions exhibit power-law asymptotic behaviour
[41]. Interestingly, Mittag–Leffler functions are eigenfunctions of
the Caputo fractional-derivative of order c 6 1 (see for instance
[41]):

C
0Dc

t EcðxtcÞ ¼ 1
Cð1% cÞ

Z t

0

d
ds EcðxscÞ
ðt % sÞc

ds ¼ xEcðxtcÞ:

In Fig. 2, we show a sketch of the function Ec(%tc), which is the solu-
tion of the fractional relaxation equation C

0Dc
t gðtÞ ¼ %gðtÞ with the

initial condition g(0) = 1. A long-tail, power-law behaviour is ob-
served as soon as c < 1. As the value of c decreases, the thickness
of the tail increases, indicating a slowly-decaying, scale-free mem-
ory effect. Mittag–Leffler functions thus generalize the classical
exponential relaxation to systems with a non-Markovian dynamics
[42].

By considering the following set of basis functions: {wk(t) =
Ec(iktc):k = %N, . . . ,N} and using a Galerkin formulation, we can
easily compute a discretization of the fractional order time
derivative:

C
0Dc

t f ðx; tÞ!
Z T

0
wlðtÞ0CDc

t wkðtÞdt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

+Tlk

2

6664

3

7775fkðxÞ ¼ ik
Z T

0
wlðtÞwkðtÞdt

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
+Nlk
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Fig. 2. Behaviour of the Mittag–Leffler function Ec(%tc) for c = 0.1, . . . ,1.
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where T is now the duration of the simulation. The resulting time-
derivative matrix T can thus directly be obtained from the mass
matrix N.

4. Flexible space–time discretization

We now consider the discretization in space and time of Eq. (2).
For the time discretization, we use the Mittag–Leffler PS scheme
derived in the previous section. For the space discretization, we
would like to have the possibility to use indifferently the FD, FE
or PS method. As shown by Hanert [31], the PS method is well-sui-
ted to discretize the space-fractional diffusion equation as basis
function are high-order, global functions. Hence, the computa-
tional cost is similar for integer-order and fractional-order diffu-
sion equations. However, it is well-known that the PS method is
not well-suited to non-smooth problems, although there are some
exceptions (see Section 4.2 of [43]). For non-smooth problems,
low-order FD or FE methods might yield better results.

Let us assume that we approximate the solution f(x, t) with a
series expansion in terms of some basis functions wk(t) and /l(x).
The former correspond to the Mittag–Leffler basis functions previ-
ously defined while the latter can be either low-order FE basis
function or high-order PS basis functions. The discrete solution
can then be expressed in terms of a matrix of unknown nodal val-
ues Flk:

f ðx; tÞ *
XM

l¼0

XN

k¼%N

/lðxÞFlkwkðtÞ:

By using a Galerkin formulation in space and time, the following set
of discrete equations is obtained:

h/i/lix|fflfflffl{zfflfflffl}
+Mil

Flk 0
CDc

t wkwj

) *
t|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

+Tkj

¼ /iaDa
x /l

) *
x|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

+Dil

Flk hwkwjit|fflfflfflffl{zfflfflfflffl}
+Nkj

0 6 i 6 M; %N 6 j 6 N: ð3Þ

where h'ix ¼
R b

a 'wðxÞdx; h ' it ¼
R T

0 ' dt;wðxÞ is a weight function and
a summation is assumed on repeated indices. To obtain Eq. (3), we
have left-multiplied the model equation by /i, right-multiplied by
wj and separated space and time integrals. The space mass matrix
and fractional diffusion matrix are denoted M and D, respectively.
The matrices N and T have already been defined in the previous sec-
tion. Eq. (3) can finally be expressed in matrix form as follows:

MFT ¼ DFN: ð4Þ

At this stage, it is important to note that the space and time dis-
cretizations are totally independant in Eq. (4) and that the matrices
M and D could also have been obtained by using the FD method in
space. Therefore, although a series-expansion method has been
used to derive Eq. (4), any Eulerian numerical method could fit
within that formulation. Details on the discretization of the
space-fractional diffusion equation with the FD, FE and Chebyshev
PS methods can be found in [31].

In order to be able to solve Eq. (4), we shall first recast it in a
more convenient form. To do so, we make use of the Kronecker
product (represented by ‘‘,”) to express Eq. (4) as follows:

ðTT ,M% NT , DÞvecðFÞ ¼ 0; ð5Þ

where vec(F) is the vector obtained by stacking the columns of F on
top of one another (see Appendix A for details). Eq. (5) is finally sup-
plemented with the initial and boundary conditions. For instance,
the initial condition f(x,0) = f0(x) can be discretized with a Galerkin
formulation in space as follows:

h/i/lixFlkwkð0Þ ¼ h/if0ðxÞix:

In matrix form, it reads

ðWð0ÞT ,MÞvecðFÞ ¼ hUðxÞf0ðxÞix;

where W(0) = (w%N(0), . . . ,wN(0))T and U(x) = (/0(x), . . . ,/M(x))T.
Note that the matrix approach presented here shares similarities
with the approach presented by Podlubny et al. [26]. However,
the present approach does not require homogeneous initial and
boundary conditions. It can also easily accommodate space-depen-
dent, linear reaction terms in a similar fashion as in [26]. For non-
linear reaction terms, like for instance in the fractional-order Fisher
equation, a non-linear solver would be required.

5. Numerical examples

In this section, we present a number of examples to illustrate
how the proposed method works. The following benchmark prob-
lem is considered:

C
0Dc

t cðx; tÞ ¼ Ka;c
1%b

2 %5Da
x cðx; tÞ þ 1þb

2 xDa
5cðx; tÞ

& '

cðx;0Þ ¼ expð%50x2Þ
cð%5; tÞ ¼ 0
cð5; tÞ ¼ 0

8
>>><

>>>:
ð6Þ

for x 2 [%5,5] and t 2 [0,1]. Since Eq. (6) is solved on the bounded
domain [%5,5], the space-fractional Riemann-Liouville derivatives
are defined as follows:

%5Da
x cðx; tÞ ¼ 1

Cð2% aÞ
@2

@x2

Z x

%5

cðy; tÞ
ðx% yÞa%1 dy;

xDa
5cðx; tÞ ¼ 1

Cð2% aÞ
@2

@x2

Z 5

x

cðy; tÞ
ðy% xÞa%1 dy:

To account for the change of dimension of the diffusion coeffi-
cient Ka,c when changing the values of a and c, we define it as
Ka;c ¼ kLaT%c where L and T are characteristic length and time
scales, respectively, and k is a dimensionless constant. This
amounts to make Eq. (6) dimensionless with respect to those scales
and take a dimensionless diffusion coefficient equal to k.

The time discretization of (6) is based on a Mittag–Leffler series
expansion with N = 5, i.e. the expansion uses 11 degrees of freedom
in time. However, when c = 1, the Mittag–Leffler basis functions re-
duce to the traditional Fourier basis functions (exp(ikt)). Since the
model solution is not periodic in time, such an approximation is
not optimal and an 3rd-order Adams-Bashforth FD time discretiza-
tion is used instead. Note that when c = 1, the time derivative is lo-
cal and the use of a FD time discretization leads to sparse matrices
T and N. The model performances are thus not impaired despite
the largest number of degrees of freedom.

Due to the steepness of the initial solution, the space discretiza-
tion is based on a P1 FE scheme using a non-uniform grid with 101
degrees of freedom. The average grid size is thus Dx ¼ 1=10. The
grid resolution is increased around x = 0 and near the boundaries
of the domain such that 0.026 6 Dx 6 0.158. When c = 1, the FD
time discretization is conditionally stable and the stability con-
straint on the time step can be expressed as Dt 6 fDxa/Ka,1, where
f is a constant typically smaller than 1 for explicit scheme (see for
instance [44]). In this work, we have taken f = 0.1. When c < 1, a PS
time discretization is used and the scheme is unconditionally sta-
ble. Based on the space and time discretization used, the length
and time scales are set to L ¼ Dx and T ¼ 1=10. The dimension-
less diffusion coefficient is set to k = 1.

Fig. 3 shows the evolution of the solution of the space-fractional
equation (c = 1) for different values of a and for symmetric (b = 0)
and non-symmetric (b = 1) diffusion. That example illustrates the
superdiffusive effect obtained by decreasing the values of a.
Since the diffusion operator is non-local as soon as a < 2, the
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effect increases as the value of a decreases.
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initially-localized solution is quickly spread over the entire do-
main. When the diffusion operator is symmetric (b = 0), the diffu-
sive flux is computed by integrating the solution on the entire
domain. The resulting diffusive process is anomalous and isotropic.
When the diffusion operator is entirely right-sided (b = 1), the dif-
fusive flux is computed by integrating the solution only on the
right side of x. As a result, the solution exhibits anomalous frac-
tional-order diffusion in one direction and normal second-order
diffusion in the other direction. Note that the asymmetric diffusion
effects can only be obtained for a < 2.

Fig. 4 shows the evolution of the solution of the time-fractional
equation (a = 2) for different values of c. Since a = 2, the diffusion
term can only be symmetric. That example illustrates the subdiffu-
sive effect observed as soon as c < 1. As expected, the velocity at
which the initial solution spreads decreases as the value of c de-
creases and the solution almost freezes for small values of c. Such
a behaviour highlights the memory effect that is introduced in the
model by replacing the first-order time derivative by a fractional-
order derivative of degree less than 1. As soon as c < 1, the model
keeps some ‘‘knowledge” of its previous states. It should be noted
that the fractional Caputo derivative does not tend to the zeroth-
order derivative (i.e. the function value) as c ? 0 [38]. This can
be understood from the waiting time pdf defined in Eq. (1), which
is no longer normalisable when c = 0. The physical relevance of
time-fractional diffusion models with values of c close to zero is
thus questionable.

Finally, Fig. 5 shows the evolution of the solution of the general
space–time fractional equation (a < 2 and c < 1). In that case, the
superdiffusive effect in space competes with the subdiffusive effect
in time. The resulting behaviour of the solution depends on the ra-
tio 2c

a . For 2c
a > 1, the superdiffusion dominates, while subdiffusion

dominates for 2c
a < 1. For 2c

a ¼ 1 (with a < 2), both effect counterbal-
ance and the diffusion, although anomalous, is akin to classical
diffusion.

6. Conclusions

The proposed method enables a flexible discretization of the
space–time fractional diffusion equation by combining an efficient
PS time discretization with a FD, FE or PS space discretization. The
PS method is well-suited for the time discretization as the time
evolution of the model solution is generally smooth. By using a
spectral expansion in terms of Mittag–Leffler basis functions, the
fractional-order time derivative can be computed very easily since
Mittag–Leffler functions are eigenfunctions of the Caputo deriva-
tive. The model solution being not necessarily smooth in space,
the proposed method allows the use of both local FD or FE discret-
izations and global PS discretizations in space. The former are less
efficient than the latter to discretize fractional-order space deriva-
tives but can more accurately handle solutions with sharp
gradients.

The proposed method could be easily extended to higher spatial
dimensions simply by changing the matrices M and D in Eq. (5) to
account for the additional spatial dimensions. For nonlinear prob-
lems, a linearization method would have to be combined with the
PS time integration scheme since the latter is fully implicit. Future
work should focus on the optimization of the PS Mittag–Leffler ba-
sis functions. This could be achieved by orthogonalizing the set of
basis functions while ensuring they remain eigenfunctions of the
Caputo derivative. Another promising avenue of research is to con-
sider a radial basis function methods to discretize the space–time
fractional-order diffusion equation. Such methods provide global
approximations with local node refinement and thus seem to offer
the best compromise between FE and PS discretizations (see for in-
stance [45,46]).
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Appendix A. Kronecker product

If we consider the matrices A 2 Rm-n and B 2 Rp-q, then the Kro-
necker product of A and B is defined as the matrix

A, B ¼

a11B . . . a1nB

..

. . .
. ..

.

am1B . . . amnB

2

664

3

775 2 Rmp-nq:

The Kronecker product has the useful property that for any three
matrices A, B and C for which the matrix product is defined, we
have:

vecðABCÞ ¼ ðCT , AÞvecðBÞ; ðA:1Þ

where vec(B) is the vector obtained by stacking the columns of B on
top of one another [47].

References

[1] Richardson LF. Atmospheric diffusion shown on a distance-neighbour graph.
Proc Roy Soc Lond 1926;110:709–37.

[2] Richardson LF, Stommel H. Note on eddy diffusion in the sea. J Meteorol
1948;5:238–40.

[3] Stommel H. Horizontal diffusion due to oceanic turbulence. J Marine Res
1949;8:199–225.

[4] Okubo A. Oceanic diffusion diagrams. Deep Sea Res 1971;18:789–802.
[5] Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: a

fractional dynamics approach. Phys Rep 2000;339:1–77.
[6] Metzler R, Klafter J. The restaurant at the end of the random walk: recent

development in the description of anomalous transport by fractional
dynamics. J Phys A 2004;37:161–208.

[7] Chaves AS. A fractional diffusion equation to describe Lévy flights. Phys Lett A
1998;239:13–6.

[8] Pachepsky Y, Timlin D, Rawls W. Generalized Richards’ equation to simulate
water transport in unsaturated soils. J Hydrol 2003;272:3–13.

[9] Berkowitz B, Cortis A, Dentz M, Scher H. Modelling non-Fickian transport in
geological formations as a continuous time random walk. Rev Geophys
2006;44:RG2003.

[10] Deng ZQ, de Lima JLMP, de Lima MIP, Singh VP. A fractional dispersion model
for overland solute transport. Water Resour Res 2006;42:W03416.

[11] Huang G, Huang Q, Zhan H. Evidence of one-dimensional scale-dependent
fractional advection-dispersion. J Contam Hydrol 2006;85:53–71.

[12] Kim S, Kavvas ML. Generalized Fick’s law and fractional ADE for pollution
transport in a river: detailed derivation. J Hydrol Eng 2006;11(1):80–3.

[13] del Castillo Negrete D, Carreras BA, Lynch VE. Fractional diffusion in plasma
turbulence. Phys Plasmas 2004;11(8):3854–64.

[14] del Castillo Negrete D, Carreras BA, Lynch VE. Nondiffusive transport in plasma
turbulence: a fractional diffusion approach. Phys Rev Lett 2005;94(065003).

[15] Scalas E, Gorenflo R, Mainardi F. Fractional calculus and continuous-time
finance. Phys A: Stat Mech Appl 2000;284:376–84.

[16] Mainardi F, Raberto M, Gorenflo R, Scalas E. Fractional calculus and
continuous-time finance II: the waiting-time distribution. Phys A: Stat Mech
Appl 2000;287:468–81.

[17] Gorenflo R, Mainardi F, Scalas E, Raberto R. Fractional calculus and continuous-
time finance III: the diffusion limit. In: Kohlmann M, Tang S, editors.
Mathematical finance. Birkhauser; 2010. p. 171–80.

[18] Cartea A, del Castillo Negrete D. Fractional diffusion models of option prices in
markets with jumps. Phys A: Stat Mech Appl 2007;374(2):749–63.
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