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a b s t r a c t

The PNC
1 � P1 and RT0 finite element schemes are among the most promising low order elements for use in

unstructured mesh marine and lake models. They are both free of spurious elevation modes, have good
dispersive properties and have a relatively low computational cost. In this paper, we derive both finite
element schemes in the same unified framework and discuss their respective qualities in terms of con-
servation, consistency, propagation factor and convergence rate. We also highlight the impact that the
local variables placement can have on the model solution. The main conclusion that we can draw is that
the choice between elements is highly application dependent. We suggest that the PNC

1 � P1 element is
better suited to purely hydrodynamical applications while the RT0 element might perform better for
hydrological applications that require scalar transport calculations.

Crown Copyright � 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the last 10 years, there has been an on-going effort to develop
a new generation of marine models using unstructured rather than
structured meshes. Several numerical methods have been investi-
gated such as the finite element (FE), finite volume and spectral
element methods. Among these three families of numerical meth-
ods, the FE method is the more general as the finite volume and
spectral element methods can be seen as discontinuous and high
order FE methods, respectively.

The late application of the finite element method to simulate
marine flows is partly due to the issue of computational pressure
modes, which were found to be present in most of the initial FE
models and rendered them inaccurate (Walters and Carey, 1983;
Walters, 1983; Walters and Carey, 1984). The approach originally
proposed to avoid these modes was to use a modified form of
the governing equation that does not support them. This method,
called the wave equation method (Lynch and Gray, 1979), allows
to use simple low order elements and accurately solves non-dis-
persive wave propagation problems. However, the wave equation
formulation appears to be subject to advective instabilities and
presents mass conservation issues (Kolar et al., 1994; Massey and
Blain, 2006). The shortcomings of the wave equation formulation
therefore lead to more research on finite element pairs to solve

the primitive equations without having recourse to modified for-
mulations or stabilization. Among the family of low order FE pairs,
the PNC

1 � P1 and RT0 elements have appeared to have most of the
desired qualities, i.e., absence of spurious modes, simplicity and
good dispersive properties.

The lowest order Raviart–Thomas element (Raviart and
Thomas, 1977), RT0, tries to mimic the finite difference C-grid. Like
the C-grid, the RT0 element has spurious f-modes in the velocity
but no spurious elevation modes (Raviart and Thomas, 1977; Han-
ert et al., 2003; Le Roux et al., 2007). However, there is usually no
significant development of these modes so they are not an issue as
long as the Rossby deformation radius is well resolved. The RT0 FE
scheme has been used in the unstructured mesh models developed
by Walters and Casulli (1998) and Miglio et al. (1999). Other mod-
els based on a finite volume or finite difference formalism but
using the same variables placement as the RT0 element have also
been developed (Casulli and Walters, 2000; Chen et al., 2003;
Ham et al., 2005; Walters, 2005; Fringer et al., 2006; Stuhne and
Peltier, 2006). The success of RT0 is partly due to its formulation
that has similarities with finite volumes although it is not a finite
volume scheme.

The linear non-conforming, conforming element, PNC
1 � P1, does

not really have an equivalent Arakawa-type finite difference grid
but has some similarities with the CD-grid of Adcroft et al.
(1999) with the exception that the elevation lies on the vertices
rather than at the center of the elements (Le Roux, 2005). The
PNC

1 � P1 has first been used by Hua and Thomasset (1984) to solve
the shallow-water equations but then laid dormant for about 20
years before it was analysed by Le Roux (2005) and used by Hanert
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et al. (2005) to solve the non-linear shallow water equations. The
PNC

1 � P1 element has since then been used in unstructured mesh
models developed by Greenberg et al. (2007), Sobolev et al.
(2007), White et al. (2008a) and Lambrechts et al. (2008).

Although further developments should certainly be expected in
the future, especially among fully discontinuous low and high or-
der elements (Bernard et al., 2007; Giraldo and Warburton,
2008), here we present both FE pairs within an unified framework.
This is the first time such a comparison has been made and it al-
lows us to highlight their differences and similarities. In turn this
allows us to make some recommendations regarding their domain
of applicability. Given the widespread interest in this class of FE
methods we believe this is of broad interest to not only the ocean
modelling community but also to the limnology community as
well. Both communities are actively developing these types of
numerical solution techniques.

As usual for such comparative studies, we take the shallow
water equations model as a benchmark problem. After having de-
rived the discrete formulations for both elements in Section 2, we
shall discuss their respective qualities by considering their propa-
gation factors (Section 3), conservation properties (Section 4),
convergence rates (Section 5) and the effects of different approxi-
mations (section 6). We conclude with recommendations concern-
ing the types of problems for which they are best suited.

2. Formulation

The model equations are the two-dimensional shallow water
equations. These equations are derived by vertically integrating
the Reynolds-averaged Navier–Stokes equations and using the
hydrostatic assumption and the Boussinesq approximation. The
continuity and momentum equations are

og
ot
þ $ � ðHuÞ ¼ 0; ð1Þ

Du
Dt
þ f ez � uþ g$gþD�T ¼ 0; ð2Þ

where u(x, t) is the depth-averaged horizontal velocity with compo-
nents (u,v), f is the Coriolis parameter, ez is the upward unit vector,
g is the gravitational acceleration, H = h + g is the total water depth,
h(x) is the water depth measured from a reference elevation, g(x, t)
is the distance from the reference elevation to the free surface, D
and T are dissipation and forcing terms, x = (x,y) is the horizontal
coordinate, D

Dt ¼ o
ot þ u � $ is the material derivative and $ ¼ o

ox ;
o
oy

� �
is the horizontal gradient.

No-normal flow boundary conditions are imposed on the
boundary of the domain X (u � n = 0 on oX, where n is the unit nor-
mal vector), which is assumed to be closed. Depending on the order
of the dissipation term, some additional boundary conditions
might be needed. These do generally not pose a problem and we
will assume that the no-normal flow boundary condition is suffi-
cient to find a unique solution. In the first part of the paper, we
are going to use only the linearised shallow water equations, i.e.,
the elevation is neglected in front of the water depth in the conti-
nuity equation (H = h) and advection is neglected in the momen-
tum equation. We shall only use the non-linear equations in
Section 6.

2.1. Weak formulations

In order to obtain the finite element discretization of the linear-
ised version of Eqs. (1) and (2), we first have to derive their weak
formulation on the computational domain X. The latter is obtained
by multiplying Eq. (1) and (2) by test functions ĝ and û and then
integrating on X:

Z
X

og
ot

ĝdXþ
Z

X
$ � ðhuÞĝdX ¼ 0; ð3ÞZ

X

ou
ot
� ûdXþ

Z
X

f ðez � uÞ � ûdXþ g
Z

X
$g � ûdX

þ
Z

X
ðD�TÞ � ûdX ¼ 0; ð4Þ

8ĝ 2H and 8û 2 U, where H and U are functional spaces defined
later. In order to only have space derivatives of functions in H or in
U, we may integrate by parts either the divergence or the gradient
term. Hence we respectively obtain the following weak
formulations:

ð5Þ

and

ð6Þ

where h:i ¼
R

X :dX and � :�¼
R

oX :dC. It should be noted that the
impermeability boundary conditions can be naturally incorporated
in formulation (5) by setting the boundary integral to zero. With
that formulation, it is possible to select a functional space U con-
taining only functions that either satisfy the boundary conditions
or not. In other words, we can decide to impose the no-normal flow
constraint only in a weak way (as typically natural boundary condi-
tions are imposed in second order problems) or in the usual strong
way thanks to an additional constraint on the functional space
(Hanert and Legat, 2006).

Formulations (5) and (6) have been obtained from the model Eqs.
(1) and (2) without making any assumptions about the numerical
schemes that will be used to solve these equations. The solution to
formulation (5) belongs to the functional spaces H ¼ H1ðXÞ and
U ¼ ðL2ðXÞÞ2 while the solution to formulation (6) belongs to
H ¼ L2ðXÞ and U ¼ Hðdiv; XÞ � fvjv 2 ðL2ðXÞÞ2 and $ � v 2 L2ðXÞg.

2.2. Finite element discretizations

A finite element approximation to the exact solution of Eqs. (1)
and (2) is found by replacing g and u by finite element approxima-
tions gh and uh in formulation (5) or (6). Those approximations
respectively belong to finite dimensional spaces Hh �H and
Uh � U. They read

g 	 gh ¼
XM

i¼1

gi/i;

u 	 uh ¼
XN

j¼1

ujwj or
XN

j¼1

Jjsj;

E. Hanert et al. / Ocean Modelling 28 (2009) 24–33 25



Author's personal copy

where gi, uj and Jj represent elevation, vectorial velocity and normal
velocity nodal values, and /i, wj and sj represent the elevation, sca-
lar velocity and vectorial velocity shape functions. Since the velocity
is a vectorial quantity, there are two possible finite element approx-
imations. One is to use vectorial velocity nodal values and scalar ba-
sis functions, while the other amounts to use scalar degrees of
freedom and vectorial basis functions. The former will be used for
the PNC

1 � P1 scheme and the latter for the RT0 scheme.
Nodal values and shape functions are associated with a triangu-

lation of the computational domain X into NE disjoint elements Ee.
The total number of vertices and segments in the triangulation are
respectively denoted NV and NS. The shape functions /i, wj and sj

are piecewise polynomials (not necessary of the same degree)
spanning the finite dimensional spaces Hh and Uh. Nodal values
are found by applying the Galerkin procedure which amounts to
replace ĝ by /i and û by (wj,0) and (0,wj) or by sj in the weak for-
mulation for 1 6 i 6M and 1 6 j 6 N.

In this paper, we aim to compare the PNC
1 � P1 and RT0 finite ele-

ment schemes. The former element has a linear conforming (P1)
representation of surface elevation and a linear non-conforming
(PNC

1 ) representation of the velocity. Both shape functions are scalar
and are shown in Fig. 1. Nodal values associated with a linear con-
forming approximation are located on the vertices of the mesh
whereas non-conforming nodal values lie at mid-segments
(M = NV, N = 2NS). Since there is only one common node between
two adjacent triangles, a linear non-conforming approximation is
discontinuous across triangle boundaries except at mid-side nodes.
A conforming approximation is continuous everywhere. Note that
the non-conforming finite element space is not a subspace of
H(div,X). As result, formulation (6) cannot be used to derive the
discrete equations. However, formulation (5) can be used as the
PNC

1 � P1 approximation of the velocity and elevation belongs to
(L2(X))2 � H1(X).

The RT0 element uses piecewise constant and piecewise linear
approximations for the elevation and velocity, respectively. Eleva-
tion nodal values are located at elements centroids while velocity
nodal values lie at mid-segments (M = NE, N = NS). Velocity degrees
of freedom are scalar and the corresponding shape functions are
therefore vectorial. The velocity nodal value Ji at a given node i is
equal to the normal velocity to the edge Ci. On a given element
Ee of the triangulation, the restriction of the dimensionless vector
shape function si is given by

siðxÞjEe
¼ x� xi

2di
;

where di is the normal distance from edge i to xi and xi is the coor-
dinate of the vertex i opposite to the edge Ci. RT0 velocity shape
functions have the following properties:

$ � sijEe
¼ 1

di
;

sijEe
� nm ¼ dim;

where nm is the outward normal to the edge Cm. Since the RT0

approximation of the velocity and elevation belongs to H(div,-
X) � L2(X), formulation (6) is used to derive the discrete equations.

The final set of semi-discrete equations may be written as

M
g
ij

d
dt

Ej þ DijUj ¼ 0; ð7Þ

Mu
ij

d
dt

Uj þ CijUj þ GijEj ¼ Rj; ð8Þ

where it is assumed that there is a sum on repeated indices. The no-
dal values vectors E and U, and the matrices Mg, Mu, C, G and D are
defined as follows for the two elements:

Note that the superscripts ‘‘0” and ‘‘1” have been used to indi-
cate the degree of the shape functions. In the case of a constant
bathymetry, the divergence matrix simply reads

D ¼ �h
g

GT :

The right-hand-side vector R contains the dissipation and forc-
ing components. It is worth noting that the RT0 elevation mass
matrix and the PNC

1 � P1 velocity mass matrix are diagonal. Further-
more the RT0 Coriolis matrix is uniquely defined by the Galerkin
formulation. That expression of the Coriolis matrix is naturally
skew-symmetric and does not require any reconstruction for the
tangential velocity component (Walters et al., submitted for publi-
cation). The total number of degrees of freedom for the PNC

1 � P1

and RT0 schemes is equal to NV þ 2NS 	 7
2 NE and NE þ NS 	 5

2 NE,
respectively.

It should be noted that all the integrals in the weak formula-
tion could have been computed on a partition of X into subdo-
mains Xe corresponding to the elements of the triangulation.

Fig. 1. PNC
1 � P1 (top) and RT0 (bottom) shape functions. The velocity shape

functions are shown on the left and the elevation shape functions are shown on
the right. The node associated to each of them is represented by ‘‘
”. Velocity shape
functions are scalar for PNC

1 � P1 and vectorial for RT0.

26 E. Hanert et al. / Ocean Modelling 28 (2009) 24–33
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This would amount to define h:i ¼
P

e

R
Xe
:dX and

� :�¼
P

e

R
oXe

:dC. Although this would not change formulations
(5) and (6) as all the terms in these equations are continuous, it
would lead to a different expression of the discrete Eqs. (7) and
(8). In that case, the use of the Gauss theorem would introduce
inter-element fluxes that are not uniquely defined as some of
the discrete variables can be discontinuous between elements. A
unique expression of the inter-element fluxes could be obtained
by adding continuity constraints to the weak formulation. These
constraints, which vanish in the continuous case, can be applied
to the model variables or to some combination of these variables,
like Riemann invariants. As a result, several discrete formulations
can be obtained. Computing the weak formulation on the parti-
tion of X is required as soon as the problem is non-linear (see
for instance Hanert et al., 2005 or Danilov et al., in press). For a
linear problem, the discrete formulation (7) and (8) is however
sufficient although it has some limitations. Some of these limita-
tions are discussed in Section 5.

Eqs. (7) and (8) are finally discretized in time by using an impli-
cit h-scheme for the divergence, Coriolis and gradient terms, and an
explicit scheme for the remaining terms. The fully discrete equa-
tions then read

M
g
ij

Enþ1
j � En

j

Dt
þ DijðaUnþ1

j þ ð1� aÞUn
j Þ ¼ 0 ð9Þ

Mu
ij

Unþ1
j � Un

j

Dt
þ CijðbUnþ1

j þ ð1� bÞUn
j Þ

¼ �GijðcEnþ1
j þ ð1� cÞEn

j Þ þ Rn
j ; ð10Þ

where a, b and c represent the degree of implicity of the time
discretization of the divergence, Coriolis and gradient terms,
respectively. Other time integration could also have been used,
like the explicit third order Adams–Bashforth and fourth order
Runge–Kutta schemes. These schemes being explicit, the model
efficiency could then be enhanced by lumping either the eleva-
tion mass matrix (for PNC

1 � P1) or the velocity mass matrix (for
RT0) in order to avoid having to solve a non-diagonal system of
equations. Lumping the RT0 velocity mass matrix or the PNC

1 � P1

elevation mass matrix has a small impact on the accuracy of
the solution as long as the mesh resolution is not too coarse
(Le Roux et al., in press).

3. Propagation factor

Although the PNC
1 � P1 and RT0 are known to have good disper-

sive properties, most dispersion analysis of these elements have
either followed a purely numerical or a purely analytical approach.
The former usually amounts to numerically simulate different
types of waves and see how a method performs for different
meshes and timestepping schemes. The latter is usually based on
a Fourier analysis of the space-discretized but time-continuous
equations expressed on a uniform mesh. In this section, we con-
sider a third approach, which somehow lies between the two pre-
vious ones. It consists in numerically computing the propagation
factor of the fully discrete equations obtained with both schemes
on arbitrary meshes.

The complex propagation factor has been introduced by Leend-
ertse (1967) and later used by Gray and Lynch (1977) and Kinn-
mark and Gray (1984) to evaluate the ability of a numerical
scheme to accurately represent the amplitude and phase speed of
a wave. If we introduce the parameters k = eixDt and kex ¼ eixexDt ,
where x is the computed wave frequency and xex is the analytical
wave frequency, we can define the complex propagation factor T as

T ¼ k
kex

� �N

;

where N ¼ 2p
xexDt is the number of time steps required for the analyt-

ical wave to propagate one wavelength.
The propagation factor is the ratio of the computed wave over

the analytical wave after the time required for the analytical wave
to propagate one time step. The magnitude of T therefore repre-
sents the relative change in the wave amplitude due to the numer-
ical scheme. The argument of T is the phase lag of the computed
wave compared to the analytical wave and is a measure of the rel-
ative celerity and the computed and analytical waves.

To numerically compute the propagation factor for waves with
different wave numbers, we follow the approach suggested by Ber-
nard et al. (2008). By considering oscillatory solutions of the form
En+1 = k En and Un+1 = kUn, the system of Eqs. (9) and (10) can be re-
cast as

k
Mg aDtD

cDtG MuþbDtC

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�A

En

Un

� �
¼

Mg �ð1�aÞDtD

�ð1�cÞDtG Mu�ð1�bÞDtC

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�B

En

Un

� �
;

which shows that the set of admissible discrete values of k is the
eigenvalues spectrum of the matrix A�1B. With each eigenvalue
kj, we can then associate an elevation eigenmode Ej and compute
its Fourier transform. The two components of the wave vector of
the mode Ej then correspond to the maximum of its power spec-
trum. As a result, a wave vector (kj, lj) can be associated with each
eigenvalue kj, which in turn can be used to compute the corre-
sponding propagation factor value Tj.

Computing the propagation factor numerically allows us to use
non-uniform and non-periodic meshes, with any kind of boundary
conditions. In that respect, numerical calculations are more flexible
than the usual analytical ones but lack the generality of the exact
analysis. In that respect, it should be noted that the analytical dis-
persion relations of the PNC

1 � P1 and RT0 elements have been com-
puted analytically by Le Roux et al. (2007) and Le Roux and Pouillot
(2008) for gravity and Rossby waves, respectively.

In the present work, we have computed the propagation factor
on square domain that is periodic in the x-direction and bounded
in the y-direction. No-normal flow boundary conditions are there-
fore imposed on the upper and lower boundaries. The water depth
is assumed constant. Calculations have been performed on struc-
tured meshes made of equilateral triangles and on unstructured
meshes. In each case, the meshes were composed of 288 triangles.
Two values of the time step have been selected, one that satisfies
the CFL condition associated with gravity waves and one that does
not. By using a non-constant Coriolis parameter, Eqs. (1) and (2) al-
low the existence of both fast inertia–gravity waves and slow Ross-
by waves. Thanks to the large difference in the frequency values
between these two types of waves, they can easily be distinguished
and the propagation factor can be computed for each of them. Re-
sults are shown as contour plots of the amplitude and argument of
the propagation factor as functions of the product of the wavenum-
bers k and l with the mesh size d. Since the largest value of k and l is
p/d, the range of kd and ld is limited to [0,p]. Note that a mesh
averaged value of d is used for unstructured meshes. A continuous
representation of the propagation factor is obtained by interpolat-
ing between the discrete values Tj.

In Fig. 2, we show the amplitude of the propagation factor
obtained for the PNC

1 � P1 and RT0 schemes with a semi-implicit
(a = b = c = 1/2) and fully-implicit (a = b = c = 1) time integration
scheme. In each case, results are obtained for gravity waves on
a uniform mesh of equilateral triangles and with a time step sat-

isfying the gravity waves CFL condition
�
Dt ¼ d

5
ffiffiffiffi
gh
p
�

. The ampli-

tude of the propagation factor is similar for both schemes and
the well-known dissipative behaviour of fully-implicit models
is observed.

E. Hanert et al. / Ocean Modelling 28 (2009) 24–33 27
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In Fig. 3, we show the argument of the propagation factor ob-
tained for both finite element schemes. For these experiments,
we have only considered a semi-implicit time integration scheme
and investigated the effect of the time step value on the dispersion
of inertia–gravity waves. Calculations are performed on an
unstructured mesh. When using a time step small enough to sat-
isfy the gravity waves CFL condition, the argument of T is close
to one for both finite element pairs, which shows that they both
propagate accurately fast inertia–gravity waves. When the time
step exceeds the CFL condition, small wavelength waves are signif-
icantly slowed down. Although both models are performing well,
the RT0 appears to propagate gravity waves more accurately, at
all wavelengths.

The same analysis can be performed for Rossby waves (Fig. 4).
In that case, the time step has almost no influence as Rossby waves
are much slower that inertia–gravity waves and thus evolve on a
larger time scale. As a result, the CFL condition based on the speed
of gravity waves no more acts as a threshold above which waves
are being slowed down. It can be seen that both schemes give qual-
itatively similar results and accurately represent the propagation
of these waves. The main discrepancies are observed for small
wavelengths for which both schemes tend to underestimate Ross-
by waves velocity by about 30%.

Finally, it should be mentioned that the same analysis can be
performed when both schemes are lumped. It is then observed
that both the PNC

1 � P1 and RT0 schemes are still accurately
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Fig. 2. Amplitude of the propagation factor (jTj) of inertia–gravity waves for the PNC
1 � P1 and RT0 schemes with semi-implicit (top) and fully-implicit (bottom) time

integration. Calculations are done on an uniform mesh of equilateral triangles and the time step is set to Dt ¼ d
5
ffiffiffiffi
gh
p . For each subplot, the left panel represents jTj as a function

of kd and ld. The contour interval is set to 0.1. The right panel represents jTj as a function of kd for ld = 0.
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Fig. 3. Argument of the propagation factor (arg(T)) of inertia–gravity waves for the PNC
1 � P1 and RT0 schemes with semi-implicit time integration. The time step is set to

Dt ¼ d
5
ffiffiffiffi
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p (top) and Dt ¼ 5dffiffiffiffi
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p (bottom). Calculations are performed on an unstructured mesh. For each subplot, the left panel represents arg(T) as a function of kd and ld with a

contour interval equal to 0.1. The right panel represents arg(T) as a function of kd for ld = 0.
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representing inertia–gravity and Rossby waves. As observed by
Le Roux et al. (in press), the lumped PNC

1 � P1 scheme tends to
underestimate the inertia–gravity waves propagation speed by
at most 25% for wavelengths smaller than 4d. This is not ob-
served for the lumped RT0, which still very accurately represents
all wavelengths. In the case of Rossby waves, the effect of mass
lumping is negligible and no changes in the amplitude or prop-
agation speed are observed.

4. Conservation and consistency

One of the most significant differences between the RT0 and
PNC

1 � P1 element is the discretization of the continuity equation
and the subsequent requirements for consistency with the scalar
transport equation. For purely hydrodynamic calculations with
(1) and (2), this is not an issue. However, for passive scalar trans-
port or baroclinic calculations, this choice presents a significant
consideration.

For the RT0 element, the elevation test function is a constant on
each element. Hence the continuity equation, the first equation in
(6), can be written in a finite volume form by converting the flux
divergence term into a line integral around an element Xe:

Ae
dge

dt
¼
Z

Xe

$ � ðhuhÞdX ¼
Z

oXe

huh � ndC; ð11Þ

where Ae is the area of Xe and oXe are the edges for that element.
For the PNC

1 � P1 element, the test function is a linear conforming
(P1) representation (see Fig. 1). After the global integration in (5) or
(6), this function can be represented as a hat function which is
unity at a particular vertex and zero at the adjacent vertices. Hence
continuity is satisfied in a weighted-residual sense in the support
for a particular vertex. This element does not therefore naturally
satisfy continuity on an element by element basis. However, an
elementwise continuity equation can be recovered by defining
the thickness fluxes between elements as being equal to the contri-
bution of the other mesh elements (Hughes et al., 2000; Berger and
Howington, 2002).

Consistency requires that for a constant value of the scalar var-
iable the discretized continuity equation and the scalar transport
equation are identical (Gross et al., 2002; White et al., 2008b).

Otherwise there will be spurious sources and sinks for the scalar
variable and the solution will not necessarily converge.

As a result, finite volume scalar transport approximations can
be used with the RT0 formulation with access to the large body
of knowledge that has been developed for these methods (see for
instance Durran, 1999). In particular, methods are available to
solve for advection-dominated flows as represented by the Euler
equation. This class of problems is important in many geophysical
flows of interest.

On the other hand, continuous Galerkin methods must be used
with the PNC

1 � P1 element. That is, the scalar transport equation is
solved in the same weighted-residual form about each vertex.
These methods generally work well when the scalar variable field
is smooth. However, they tend to produce over and undershoots
when there are abrupt changes in the magnitude of the scalar var-
iable (see for instance Hanert et al., 2004). Moreover, it is problem-
atic trying to construct robust advection approximations for these
schemes.

In the end, consistency requirements present another criterion
to apply in choosing between these two elements. Ultimately,
the particular problem under consideration has a strong influence
on the choice.

5. Convergence analysis

In this section, we compare the convergence rates of both FE
schemes by solving the steady Stommel problem. This problem
amounts to find the steady state solution of the linearised Eqs.
(1) and (2) on a beta plane (f = f0 + b0y) with linear bottom friction
and wind stress. The Stommel problem analyses the balance be-
tween the Coriolis force, bottom drag and wind stress. In a closed
domain with an anti-cyclonic wind-stress, the resulting flow is
equatorwards in the interior of the domain. The equatorwards flow
is exactly balanced by a more intense polewards flow in the wes-
tern boundary layer. In the western boundary layer, the balance
is principally between the bottom friction and the beta effect. A
length scale for the boundary layer width can then be obtained
by taking the ratio between the linear friction and beta coefficients
(see for instance Vallis, 2006).

An analytical solution of the steady Stommel problem has been
derived by Mushgrave (1985) and can be used to compute the
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Fig. 4. Argument of the propagation factor as in Fig. 3 but for Rossby waves.
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discretization error. Fig. 5 shows the L2-error on the elevation and
velocity for different mesh resolutions. Calculations have been per-
formed on structured uniform and unstructured meshes. The mod-
el equations have been solved on the domain [0,L] � [0,L] where
L = 106 m. The parameters f0, b0 and h are equal to 10�4 s�1,
10�11 m�1 s�1 and 1000 m, respectively. The forcing and dissipation
terms have the following expression: T ¼ 0:2 sinðy� L=2Þex

kg m�1 s�2 and D ¼ cu, where c = 10�5 s�1.
The rate of convergence in the L2-norm is theoretically ex-

pected to be quadratic for PNC
1 � P1 and linear for RT0 as the

elevation is only piecewise constant for that element. These
rates of convergence are indeed observed on a structured uni-
form mesh. The same results are observed on an unstructured
mesh with the exception that the convergence rate of the
velocity with the PNC

1 � P1 scheme is only linear. This drop in
the order of convergence of the PNC

1 � P1 scheme that is ob-
served as soon as the mesh is not uniform seems to indicate
that there is a shortcoming in the discrete formulation used.
It might be due to the Continuous Galerkin approach that
has been followed to derive the discrete equations. Indeed,
the discrete PNC

1 velocity is discontinuous between elements ex-
cept at mid-segments. Therefore, one may question the use of
a Continuous Galerkin method to derive the discrete equations
as this method does not introduce fluxes between elements as
it is required for fully discontinuous approximations. In partic-
ular, for such approximations the discrete divergence term
should be expressed as

Z
X

$ � ðhuhÞwidX ¼
XNE

e¼1

Z
Xe

$ � ðhuhÞwidX

¼
XNE

e¼1

Z
oXe

huh � newidC
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

–0

�
XNE

e¼1

Z
Xe

huh � $widX;

where ne is the outward normal vector to oXe. The boundary inte-
gral in that expression is usually different from zero as uh is discon-
tinuous between elements. However, it is neglected in the weak
formulation (5) used to derive the discrete PNC

1 � P1 continuity equa-
tion. By doing so, one constrains the discrete velocity field to be
such that the thickness flux is continuous between elements. Such
a constraint on the velocity might be the cause of the observed de-
crease in the convergence rate.

As mentioned by Legat and coworkers (personal communica-
tion), the PNC

1 � P1 scheme should indeed be derived by following
a Discontinuous Galerkin approach, which would introduce fluxes
between elements. An exact or approximate Riemann solver would
then be needed to compute these fluxes. Such an approach might
allow to recover the quadratic rate of convergence on non-uniform
meshes and improve the stability of the scheme. However, the
computational cost of the scheme is also likely to be substantially
increased because of these additional fluxes involving solution val-
ues in adjacent elements. A similar approach to improve the cur-
rent PNC

1 � P1 formulation could be to apply the interface
stabilisation method suggested by Labeur and Wells (2007).
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Fig. 5. Convergence analysis for the PNC
1 � P1 and RT0 schemes on structured uniform (top) and unstructured (bottom) meshes. The elevation, and x- and y-components of the

velocity error curves are represented by ‘‘�”, ‘‘�” and ‘‘+” symbols, respectively.
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6. Numerical example: Stommel problem

In this section, we present a numerical illustration of the effect
that the placement of local variables within an element can have
on the accuracy of the solution. The RT0 and PNC

1 � P1 element differ
in the sense that the former has only one velocity degree of free-
dom per segment while the latter has two. As a result, when
imposing the no-normal flow boundary condition, all the RT0

velocity nodal values that are on the boundary have to be set to
zero. This is however not the case with the PNC

1 � P1 scheme as only
one of the two boundary velocity degrees of freedom is constrained
when boundary conditions are imposed strongly. This suggests
that the PNC

1 � P1 scheme might be more accurate to simulate flows
presenting boundary layer, especially when the mesh resolution is
coarse compared to the boundary layer width.

As an illustration, we consider the solution of the transient non-
linear Stommel problem. The computational domain and experi-
ment setup is the same as in Section 5 except that the problem
is now non-linear and time dependent. The non-linear terms both
the RT0 and PNC

1 � P1 schemes are discretized by following a similar
approach as in Hanert et al. (2005). The physical parameters have
the same values as in Section 5 with the exception of the linear
bottom drag coefficient (c) which is now equal to 10�7 s�1 in order
to have a more intense western boundary layer. The mesh is struc-
tured with a uniform resolution of about 30 km. The time integra-
tion scheme is semi-implicit for the linear terms and explicit for
the non-linear ones. The time step is set to 103 s.

The elevation field obtained with both schemes after 106,
2 � 106, 4 � 106 and 6 � 106 s is shown in Fig. 6. At the beginning
of the simulation, the flow velocity is quite weak and the main
driving mechanisms are the wind, friction and beta effect. As the
flow in the boundary layer intensifies, non-linear terms become

more important and tend to advect the vorticity of the gyre pole-
wards. The center of the gyre therefore moves polewards, which
results in an intensification of the current in the poleward half
and a weakening in the equatorward half. The importance of that
polewards displacement of the gyre’s center obviously depends
on the magnitude of the velocity in the boundary layer.

Since the PNC
1 � P1 has an unconstrained tangential velocity de-

gree of freedom on the boundary, it is able to represent quite accu-
rately the velocity field in the boundary layer despite the coarse
mesh resolution. The RT0 scheme, on the other hand, does not have
any tangential velocity degree of freedom on the boundary. The
closest velocity nodal value is at a distance d/2 from the boundary,
where d is the mesh resolution. As a result, non-linear terms have a
stronger effect with the PNC

1 � P1 model than with the RT0 model. As
can be seen from Fig 6, the RT0 solution seems to start lagging be-
hind the PNC

1 � P1 solution as soon as the boundary layer develops.
As time increases, the difference between both solutions also in-
creases and leads to totally different results.

7. Conclusions

The PNC
1 � P1 and RT0 finite element pairs have been known for

some time to be good elements to solve the shallow water equa-
tions. Previous studies have shown that these elements were free
of spurious computational modes and had good dispersion proper-
ties for both inertia–gravity and Rossby waves. However, the rea-
sons for selecting one element rather than the other were less
clear and were generally due to personal preferences or previous
experience with the finite element or finite volume/difference
methods. In this work, we have tried to highlight the differences
between these two elements in order to propose more quantitative
selection criteria. The main conclusion that we can draw is that the

Fig. 6. Elevation field after 106, 2 � 106, 4 � 106 and 6 � 106 s (from top to bottom), obtained with PNC
1 � P1 and RT0 models of the non-linear Stommel problem. The contour

interval is set to 0.05 m. Minimum and maximum values of the elevation (in m) and norm of the velocity (in ms�1) are given at each stage. Note that for RT0, the piecewise
constant elevation field has been interpolated on the vertices to produce the figures.
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choice between elements is highly application dependent. For
purely hydrodynamic problems, the PNC

1 � P1 generally provides
greater accuracy. This element may be used for applications with
scalar transport, but continuous methods must be used to maintain
consistency. On the other hand, the RT0 element leads to a finite
volume approximation of the continuity and scalar transport equa-
tions which may be more appropriate for certain applications.

For applications where the simulation of tracers transport is not
required, the consistency of the tracer equation with the continuity
equation is not an issue. In that case, the PNC

1 � P1 element has the
advantage of having more degrees of freedom than RT0 and a better
placement of these degrees of freedom over an element. The use of
full velocity rather than normal velocity nodal values on each seg-
ment allows for a more accurate representation of inertial bound-
ary layer flows even with rather coarse meshes. Although the finite
element formulation used in this work could be improved, the
PNC

1 � P1 scheme is more accurate than the RT0 scheme in the
L2-norm and has at least the same convergence rate.

For applications that require the simulation of tracers transport,
the consistency constraint renders the RT0 more attractive. This is
due to the finite volume form of the continuity equation that al-
lows the use of a large variety of finite volume scalar advection
schemes, some of which have proved to be quite accurate for
advection-dominated flows. For the PNC

1 � P1 element, the finite
element formulation of the continuity equation combined with
the use of a piecewise linear approximation of the elevation in-
volves the use of P1 tracer advection schemes, which could be inac-
curate for advection-dominated flows.

Finally, we would like to stress that the present comparison has
been carried out only for 2D shallow water problems. Additional
difficulties are to be expected when solving the 3D primitive equa-
tions, which may result in additional selection criteria. In the
three-dimensional case, the consistency constraint requires the
horizontal discretization of the vertical velocity to be identical to
the one of the surface elevation (see for instance White et al.,
2008b). This leads to the use of P1 and P0 horizontal discretizations
of the vertical velocity in 3D models based on the PNC

1 � P1 and RT0

elements, respectively. The use of a P1 vertical velocity could have a
significant detrimental effect on the model efficiency while a P0

vertical velocity is not well suited for representing upwelling in
unresolved boundary layers. The latter can result in a patchy verti-
cal velocity (Danilov, personal communication). Further work
should therefore be undertaken to extend the present comparison
to three-dimensional problems.

Acknowledgements

E.H. thanks the Nuffield Foundation for a newly appointed lec-
turer award. The work of D.Y.L. is supported by grants from the
Natural Sciences and Engineering Research Council (NSERC).

References

Adcroft, A.J., Hill, C.N., Marshall, J.C., 1999. A new treatment of the Coriolis terms in
C-grid models at both high and low resolutions. Monthly Weather Review 127
(8), 1928–1936.

Berger, R.C., Howington, S.E., 2002. Discrete fluxes and mass balance in finite
elements. Journal of Hydraulic Engineering 87, 87–92.

Bernard, P.-E., Chevaugeon, N., Legat, V., Deleersnijder, E., Remacle, J.-F., 2007. High-
order h-adaptive discontinuous Galerkin methods for ocean modeling. Ocean
Dynamics 57, 109–121.

Bernard, P.-E., Remacle, J.-F., Legat, V., Deleersnijder, E., 2008. Dispersion analysis of
discontinuous Galerkin schemes applied to Poincaré, Kelvin and Rossby waves.
Journal of Scientific Computing 34, 26–47.

Casulli, V., Walters, R.A., 2000. An unstructured grid, three-dimensional model
based on the shallow water equations. International Journal for Numerical
Methods in Fluids 32, 331–348.

Chen, C., Liu, H., Beardsley, R.C., 2003. An unstructured grid, finite-volume, three-
dimensional, primitive equations ocean model: applications to coastal ocean
and estuaries. Journal of Atmospheric and Oceanic Technology 20, 159–186.

Danilov, S., Kivman, G., Schröter, J., in press. Modeling ocean circulation on
unstructured meshes: comparison of two horizontal discretizations. Ocean
Dynamics.

Durran, D.R., 1999. Numerical Methods for Wave Equations in Geophysical Fluid
Dynamics. Texts in Applied Mathematics. Springer.

Fringer, O.B., Gerritsen, M., Street, R.L., 2006. An unstructured-grid, finite-volume,
nonhydrostatic, parallel coastal ocean simulator. Ocean Modelling 14, 139–173.

Giraldo, F.X., Warburton, T., 2008. A high-order triangular discontinuous Galerkin
oceanic shallow water model. International Journal for Numerical Methods in
Fluids 56, 899–925.

Gray, W.G., Lynch, D.R., 1977. Time-stepping schemes for finite element tidal model
computations. Advances in Water Resources 1, 83–95.

Greenberg, D.A., Dupont, F., Lyard, F., Lynch, D.R., Werner, F.E., 2007. Resolution
issues in numerical models of oceanic and coastal circulation. Continental Shelf
Research 27, 1317–1343.

Gross, E.S., Bonaventura, L., Rosatti, G., 2002. Consistency with continuity in
conservative advection schemes for free-surface modes. International Journal
for Numerical Methods in Fluids 38, 307–327.

Ham, D.A., Pietrzak, J., Stelling, G.S., 2005. A scalable unstructured grid 3-
dimensional finite volume model for the shallow water equations. Ocean
Modelling 10, 153–169.

Hanert, E., Le Roux, D.Y., Legat, V., Deleersnijder, E., 2004. Advection schemes for
unstructured grid ocean modelling. Ocean Modelling 7, 39–58. doi:10.1016/
S1463-5003(03)00029-5.

Hanert, E., Le Roux, D.Y., Legat, V., Deleersnijder, E., 2005. An efficient Eulerian finite
element method for the shallow water equations. Ocean Modelling 10, 115–
136. doi:10.1016/j.ocemod.2004.06.006.

Hanert, E., Legat, V., 2006. How to save a bad element with weak boundary
conditions. Computers and Fluids 35, 477–484. doi:10.1016/j.compfluid.
2005.02.005.

Hanert, E., Legat, V., Deleersnijder, E., 2003. A comparison of three finite elements to
solve the linear shallow water equations. Ocean Modelling 5, 17–35.
doi:10.1016/S1463-5003(02)00012-4.

Hua, B.L., Thomasset, F., 1984. A noise-free finite element scheme for the two-layer
shallow water equations. Tellus 36A, 157–165.

Hughes, T.J.R., Engel, G., Mazzei, L., Larson, M.G., 2000. The continuous Galerkin
method is locally conservative. Journal of Computational Physics 163, 467–488.

Kinnmark, I.P., Gray, W.G., 1984. A two-dimensional analysis of the wave equation
model for finite element tidal computations. International Journal for
Numerical Methods in Engineering 20, 369–383.

Kolar, R.L., Westerink, J.J., Cantekin, M.E., Blain, C., 1994. Aspects of nonlinear
simulations using shallow water models based on the wave continuity
equation. Computers and Fluids 23, 523–538.

Labeur, R.J., Wells, G.N., 2007. A galerkin interface stabilisation method for the
advection-diffusion and incompressible Navier–Stokes equations. Computer
Methods in Applied Mechanics and Engineering 196, 4985–5000.

Lambrechts, J., Hanert, E., Deleersnijder, E., Bernard, P.-E., Legat, V., Remacle, J.-F.,
Wolanski, E., 2008. A multi-scale model of the hydrodynamics of the whole
Great Barrier Reef. Estuarine, Coastal and Shelf Science 79, 143–151.
doi:10.1016/j.ecss.2008.03.016.

Le Roux, D.Y., 2005. Analysis of the PNC
1 � P1 finite-element pair in shallow-water

ocean models. SIAM Journal of Scientific Computing 27, 394–414.
Le Roux, D.Y., Hanert, E., Rostand, V., Pouillot, B., in press. Effect of mass lumping on

gravity and Rossby waves in 2D finite-element shallow-water models.
International Journal for Numerical Methods in Fluids. doi:10.1002/fld.1837.

Le Roux, D.Y., Pouillot, B., 2008. Analysis of numerically-induced oscillations in 2D
finite-element shallow-water models. SIAM Journal of Scientific Computing 30,
1971–1991.

Le Roux, D.Y., Rostand, V., Pouillot, B., 2007. Analysis of numerically-induced
oscillations in 2D finite-element shallow-water models. Part I: inertia–gravity
waves. SIAM Journal of Scientific Computing 29, 331–360.

Leendertse, J.J., 1967. Aspects of a computational model for long period water-wave
propagation. Tech. Rep. RM-5294-PR, Santa Monica, Rand Memorandum.

Lynch, D.R., Gray, W.G., 1979. A wave equation model for finite-element tidal
computations. Computers and Fluids 7, 207–228.

Massey, T.C., Blain, C.A., 2006. In search of a consistent and conservative mass flux
for the gwce. Computer Methods in Applied Mechanics and Engineering 195,
571–587.

Miglio, E., Quarteroni, A., Saleri, F., 1999. Finite element approximation of quasi-3D
shallow water equations. Computer Methods in Applied Mechanics and
Engineering 174, 355–369.

Mushgrave, D.L., 1985. A numerical study of the roles of subgyre-scale mixing and
the western boundary current on homogenization of a passive tracer. Journal of
Geophysical Research 90, 7037–7043.

Raviart, P.A., Thomas, J.M., 1977. A mixed finite element method for 2nd order
elliptic problems. In: Galligani, I., Magenes, E. (Eds.), Mathematical Aspects of
the Finite Element Methods, Lecture Notes in Mathematics. Springer-Verlag, pp.
292–315.

Sobolev, S.V., Babeyko, A.Y., Wang, R., Hoechner, A., Galas, R., Rothacher, M., Sein,
D.V., Schroeter, J., Lauterjung, J., Subarya, C., 2007. Tsunami early warning using
GPS-shield arrays. Journal of Geophysical Research B: Solid Earth 112 (8). art.
no. B08415.

Stuhne, G.R., Peltier, W.R., 2006. A robust unstructured grid discretization for 3-
dimensional hydrostatic flows in spherical geometry: a new numerical
structure for ocean general circulation modeling. Journal of Computational
Physics 213, 704–729.

32 E. Hanert et al. / Ocean Modelling 28 (2009) 24–33



Author's personal copy

Vallis, G.K., 2006. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and
Large-scale Circulation. Cambridge University Press.

Walters, R.A., 1983. Numerically induced oscillations in finite element
approximations to the shallow water equations. International Journal for
Numerical Methods in Fluids 3, 591–604.

Walters, R.A., 2005. Coastal ocean models: two useful finite element methods.
Continental Shelf Research 25, 775–793.

Walters, R.A., Carey, G.F., 1983. Analysis of spurious oscillations modes for
the shallow water and Navier–Stokes equations. Computers and Fluids
11, 51–68.

Walters, R.A., Carey, G.F., 1984. Numerical noise in ocean and estuarine models.
Advances in Water Resources 7, 15–20.

Walters, R.A., Casulli, V., 1998. A robust, finite element model for hydrostatic
surface water flows. Communications in Numerical Methods in Engineering 14,
931–940.

Walters, R.A., Pietrzak, J., Hanert, E., Le Roux, D.Y., submitted for publication.
Solution of the shallow water equations using unstructured staggered grids.
Ocean Modelling.

White, L., Deleersnijder, E., Legat, V., 2008a. A three-dimensional unstructured mesh
finite element shallow-water model, with application to the flows around an
island and in a wind-driven, elongated basin. Ocean Modelling 22, 26–47.

White, L., Legat, V., Deleersnijder, E., 2008b. Tracer conservation for three-
dimensional, finite element, free-surface, ocean modeling on moving
prismatic meshes. Monthly Weather Review 136, 420–442.

E. Hanert et al. / Ocean Modelling 28 (2009) 24–33 33


