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Abstract A number of studies have shown that certain

drugs follow an anomalous kinetics that can hardly be

represented by classical models. Instead, fractional-order

pharmacokinetics models have proved to be better suited to

represent the time course of these drugs in the body. Unlike

classical models, fractional models can represent memory

effects and a power-law terminal phase. They give rise to a

more complex kinetics that better reflects the complexity of

the human body. By doing so, they also spotlight potential

issues that were ignored by classical models. Among those

issues is the accumulation of drug that carries on indefi-

nitely when the infusion rate is constant and the elimination

flux is fractional. Such an unbounded accumulation could

have important clinical implications and thus requires a

solution to reach a steady state. We have considered a

fractional one-compartment model with a continuous

intravenous infusion and studied how the infusion rate

influences the total amount of drug in the compartment. By

taking an infusion rate that decays like a power law, we

have been able to stabilize the amount of drug in the

compartment. In the case of multiple dosing administra-

tion, we propose recurrence relations for the doses and the

dosing times that also prevent drug accumulation. By

introducing a numerical discretization of the model

equations, we have been able to consider a more realistic

two-compartment model with both continuous infusion and

multiple dosing administration. That numerical model has

been applied to amiodarone, a drug known to have an

anomalous kinetics. Numerical results suggest that

unbounded drug accumulation can again be prevented by

using a drug input function that decays as a power law.

Keywords Fractional kinetics � Compartmental

models � Drug accumulation � Amiodarone

Introduction

Diffusion processes in complex systems are often observed

to deviate from standard laws. The discrepancies can occur

both for the time relaxation that can deviate from the

classical exponential pattern and for the spatial diffusion

that can deviate from Fick’s second law. The resulting

diffusion processes are then no longer Brownian and can-

not be represented accurately by classical models. Instead,

models based on fractional-order differential equations

(FDE’s) can provide a more realistic description of the

system behavior [24]. Such models have received an

increasing attention in recent years and have been used to

model a wide range of problems in surface and subsurface

hydrology [2, 11, 25], plasma turbulence [9, 10], finance

[6, 32], epidemiology [4, 19] and ecology [8, 18].

Fractional-order differential equations have recently

been applied in pharmacokinetics (PK) as well. Following

the seminal work of Dokoumetzidis and Macheras [12], a

number of other studies have followed [13, 14, 26, 28–31,

35, 36]. These studies have been motivated by several

examples of drugs PK that do not follow classical laws.

These include bone-seeking elements like 47Ca [1],
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amiodarone [34], cyclosporin [7], mibefradil [15] and

diclofenac [28]. All these datasets depart from the expo-

nential decay predicted by classical models and instead

exhibit a power-law time profile. Such a power law is the

hallmark of a non-Markovian time dynamics and memory

effects. In the long time limit, power laws decay more

slowly than exponentials and there is therefore a risk that

classical models could underestimate the amount of drug

remaining in an organism. Hence, the use of fractional PK

models could provide a better estimation of adverse drug

reactions by spotlighting issues that were ignored by

classical models.

One of those issues is drug accumulation. Do-

koumetzidis et al. [14] have shown that a simple one-

compartment PK model with constant intraveinous (IV)

infusion and fractional elimination predicts an unbounded

drug accumulation while classical models predict that the

system reaches a steady state. Drug accumulation is

obviously necessary to reach the drug concentration

required to maximize the therapeutic effectiveness of the

medication. However, if the drug concentration does not

reach a steady state, it will exceed the therapeutic window

and reach toxic levels. That could have serious clinical

implications and clearly shows how the behavior of a

system can be deeply modified when the kinetics becomes

fractional.

The goal of this paper is to propose a way to prevent

drug accumulation in fractional PK models. We consider

the one-compartment model used by Dokoumetzidis et al.

[14] with both continuous IV infusion and multiple IV

bolus dosing and show how to modulate the drug input in

order to avoid drug accumulation. Analytical results can be

derived for a one-compartment model. Further, we present

a flexible numerical scheme to solve FDE’s. That scheme

is used to solve a two-compartment model with continuous

infusion and multiple dosing administration. Our model is

then applied to a real PK example by considering the

kinetics of amiodarone under different multiple-dosing

regimens.

Problem statement and analytical results

To illustrate the issue of unbounded drug accumulation for

fractional PK and derive an input function that prevents

such an accumulation, we shall consider a simple one-

compartment system with a time-dependent input and a

fractional elimination. This system is schematically repre-

sented in Fig. 1. Such a simple system is of course of a

rather limited practical interest as it does not even distin-

guish regions with a well-developed blood supply from the

ones with a lower blood flow. However, its inherent sim-

plicity will allow us to gain some insight on the processes

at play and derive results that will be applicable in more

realistic systems.

The equation governing the time evolution of the

amount of drug in the compartment, A(t), can be expressed

as follows

dA

dt
¼ f ðtÞ � k10 0D1�a

t A; Að0Þ ¼ 0; ð1Þ

where f(t) is an arbitrary input function with units of mass/

time, k10 is a fractional elimination rate constant with units

of time�a; a 2�0; 1� is the fractional order of the elimina-

tion process and 0D1�a
t is a fractional time derivative of

order 1 - a. It should be noted that we have followed the

approach of Dokoumetzidis et al. [14] to fractionalize the

model equation. That approach does not change the order

of the left-hand side derivatives but instead fractionalizes

the fluxes in the right-hand side. By doing so, each flux can

have a different order without any inconsistencies between

incoming and outgoing fluxes in multi-compartment sys-

tems. Furthermore, that approach allows us to keep an

input function with units of mass/time and not mass/timea.

The time t is always assumed to be positive.

The fractional time derivative in Eq. (1) is defined in the

Riemann-Liouville sense as follows:

0D1�a
t AðtÞ ¼ 1

CðaÞ
d

dt

Z t

0

AðsÞ
ðt � sÞ1�a ds;

where C is Euler’s gamma function. Fractional derivatives

can also be defined in the Caputo sense as follows:

C
0 D

1�a
t AðtÞ ¼ 1

CðaÞ

Z t

0

A0ðsÞ
ðt � sÞ1�a ds;

where the prime symbol denotes a first-order derivative.

Both derivatives are connected through the following

relation: 0D1�a
t AðtÞ ¼ C

0 D
1�a
t AðtÞ þ Að0Þta�1

CðaÞ if a 2�0; 1�.
Caputo derivatives are often preferred to Riemann-

Liouville derivatives as they are easier to handle and

have a more physical interpretation. In particular, the

Caputo fractional derivative of a constant is zero, which is

not the case with the Riemann-Liouville derivative. The

Laplace transform of the Caputo derivative has the

following expression:

Fig. 1 Schematic representation of a one-compartment model, where

A(t) is the amount of drug in the compartment, f(t) is the drug input

function and k01 is the fractional elimination rate. The plain arrow

represents a classic kinetics of order 1 while the dashed arrow

represents a slower fractional kinetics of order a\ 1
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L C
0 D

1�a
t AðtÞ; s

n o
¼ s1�aÂðsÞ � s�aAð0Þ;

if a 2�0; 1�. In our example, we consider an homogeneous

initial condition and hence both derivatives are exactly

equivalent. That will allow us to use the Laplace transform

of a Caputo derivative to derive analytical results. More

details on fractional derivatives and their applications can

be found, for instance, in [5, 20, 22, 23].

Constant rate input leads to unbounded drug

accumulation

To illustrate the potential clinical issues associated with

fractional kinetics, we consider the case of a constant rate

input in Eq. (1), i.e. f ðtÞ ¼ k01, where k01 has units of mass/

time. That case has first been discussed by Dokoumetzidis

et al. [14]. In what follows, we reproduce their results in

order to build upon them in the following sections. For a

constant rate input, the analytical solution can be derived

by writing the model equation in the Laplace domain:

sÂðsÞ � Að0Þ ¼ k01

s
� k10 s1�aÂðsÞ � s�aAð0Þ

� �
:

Since A(0) = 0, we simply end up with

ÂðsÞ ¼ k01sa�2

sa þ k10

:

To compute the inverse Laplace transform of that

expression, we can use the following result from

Podlubny [27]:

L�1 sa�b

sa þ k

� �
¼ tb�1Ea;bð�ktaÞ;

where Ea;b is the two-parameter Mittag-Leffler function

defined as Ea;bðzÞ ¼
P1

k¼0
zk

CðakþbÞ. By taking b = 2 in the

above expression, we easily obtain:

AðtÞ ¼ k01tEa;2ð�k10taÞ: ð2Þ

It is then interesting to study the behavior of that solution

when t!1. To compute that limit, we can use the

asymptotic expansion of the Mittag-Leffler function given

by Podlubny [27]:

Ea;bðzÞ ¼ �
Xp

k¼1

z�k

Cðb� akÞ þ O jzj
�1�p

� �
; for jzj ! 1;

ð3Þ

and an arbitrary integer p [ 1. By applying that result to

Eq. (2) and keeping only the first term in the sum since all

the other terms vanish when t!1, we can express the

limit as follows:

lim
t!1

AðtÞ ¼ lim
t!1

k01tEa;2ð�k10taÞ;

¼ lim
t!1

k01

k10

t1�a

Cð2� aÞ ¼ 1 if a\1

¼ k01

k10

if a ¼ 1

This result clearly highlights the clinical issues that can

result from a fractional drug kinetics. As soon as the

fractional order a is smaller than 1, the drug starts accu-

mulating indefinitely in the compartment and will eventu-

ally reach toxic levels if the treatment is not stopped soon

enough. It is therefore important to investigate ways of

preventing such an unbounded accumulation. This could be

done by considering a non-constant input function f ðtÞ.

Power-law decaying rate input stabilizes the amount

of drug

Since power laws play a central role in fractional kinetics,

we now consider a time-dependent drug input function that

decays like a power law: f ðtÞ ¼ k01 t�n, with n[ 0. It

should be noted that k01 now has units of mass/time1-n. In

that case, the Laplace transform of Eq. (1) reads

sÂðsÞ � Að0Þ ¼ k01Cð1� nÞsn�1

� k10 s1�aÂðsÞ � s�aAð0Þ
� �

;

since L ta; sf g ¼ Cðaþ1Þ
saþ1 . The Laplace transform of the

solution is then:

ÂðsÞ ¼ k01Cð1� nÞ sn�1

sþ k10s1�a
¼ k01Cð1� nÞ snþa�2

sa þ k10

:

To invert that expression, we use the Laplace transform of the

two-parameter Mittag-Leffler function given by Podlubny [27]:

L takþb�1E
ðkÞ
a;b �atað Þ; s

n o
¼ k!sa�b

ðsa � aÞkþ1
:

The model solution can then be expressed as follows:

AðtÞ ¼ k01Cð1� nÞt1�nEa;2�nð�k10taÞ;

where the parameter n still has to be adjusted so as to

prevent the drug from accumulating indefinitely in the

compartment.

By again using Eq. (3), we can compute the asymptotic

behavior of the model solution:

lim
t!1

AðtÞ ¼ lim
t!1

k01Cð1� nÞt1�n ðk10taÞ�1

Cð2� n� aÞ ;

¼ k01

k10

Cð1� nÞ
Cð2� n� aÞ lim

t!1
t1�a�n:

The drug concentration thus diverges if n\ 1 - a and

vanishes if n[ 1 - a. The only way to reach a non-zero
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plateau is to take n = 1 - a. In that case, the input

function is

f ðtÞ ¼ k01 t�ð1�aÞ ð4Þ

and the model solution reads:

AðtÞ ¼ k01CðaÞtaEa;aþ1ð�k10taÞ: ð5Þ

The amount of drug in the compartment then converges

towards a plateau whose height is equal to k01

k10
CðaÞ: This

steady-state value reduces to the classical result k01

k10
when

a = 1. Among the 3 parameters defining the steady state,

only k01 can be adjusted through the infusion pump to set

the level of the steady state within the therapeutic window.

Fig. 2 shows both model solutions obtained with constant

and power-law input functions.

Application to multiple IV bolus dosing

So far, we have only considered systems with a continuous

drug input. However, many dosage regimens involve dis-

crete dosing events separated by time intervals. This is for

instance the case with multiple IV bolus dosing. The input

can then be seen as a series of pulses separated in time. It

can be represented by a set of doses dif gi¼0;1;... and a set of

dosing times Tif gi¼0;1;.... From a mathematical point of

view, the input function is then a sum of Dirac delta

functions centered at each dosing time:

f ðtÞ ¼
XM

i¼0

didðt � TiÞ: ð6Þ

The issue is then to find out the set dosing times Tif gi¼0;1;...

that, for a given set of doses dif gi¼0;1;..., stabilizes the

amount of drug in the compartment.

In this case, it is more difficult to derive an analytical

solution. However, by using a heuristic argument, it is

possible to derive a good estimate of the dosing times. We

can indeed use the results obtained for a continuous drug

input and require that the integral over a dosing interval of

the input function (6) be equal to the integral of the con-

tinuous power-law input function (4). Mathematically, this

can be expressed as follows:

Z

½Ti�1;Ti½

XM

j¼0

djdðt � TjÞdt ¼ di�1 ¼
Z

½Ti�1;Ti½

k01 t�ð1�aÞdt

¼ k01

a
Ta

i � Ta
i�1

� �
;

for i ¼ 1; 2; . . . In the expression above, the parameter k01

does not make much sense in the case of bolus doses.

However, by introducing a characteristic dose d and a

characteristic dosing interval Ds, we can express the

fractional input rate as follows:

k01 ¼
d

Dsa

since k01 has units of mass/timea. By doing so, we can

derive recursion formulas for the doses and dosing times:

di�1 ¼
d

aDsa
Ta

i � Ta
i�1

� �
; ð7Þ

Ti ¼ Ta
i�1 þ a

di�1

d
Dsa

� 	1=a

; ð8Þ

for i ¼ 1; 2; . . . and where we have assumed that the first

dosing time is given, e.g. T0 = 0.

In the particular case where all the dosing times are

equispaced (i.e. Ti ¼ iDs for i ¼ 0; 1; . . .), Eq. (7) reduces

to

di�1 ¼
d
a
ðia � ði� 1ÞaÞ;

and d can simply be interpreted as the constant dose that

would have been used for a non-fractional system.

Likewise, when all the doses are the same (i.e. di = d for

i ¼ 0; 1; . . .) Eq. (8) reduces to

Ti ¼ Ta
i�1 þ aDsa

� �1=a
;

and Ds can then be interpreted as the dosing interval that

would have been chosen for a non-fractional system.

A high-order numerical scheme to solve FDE’s

For models with more than one compartment or when the

drug input function is not continuous or too complex, the

solution can usually not be computed analytically. For

those cases, it is necessary to rely on efficient numerical

Fig. 2 The model solution (2) obtained with a constant rate input

ðf ðtÞ ¼ k01Þ does not converge towards a steady state and thus leads

to an unbounded drug accumulation. With the power-law input

function f ðtÞ ¼ k01 t�ð1�aÞ� �
, the model solution (5) converges

towards the steady state AðtÞ ¼ k01

k10
CðaÞ. In this example, a = 0.8

and k01 = k10 = 1. All quantities are dimensionless
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schemes to obtain an approximate solution. As mentioned

by Verotta [36], numerical schemes to solve fractional

differential equations (FDE’s) are still in their infancy and

flexible algorithms for fractional PK applications are still

missing. In this section, we present a novel approach to

solve FDE’s based on an expansion of the model solution

in terms of Chebyshev polynomials. When the model

solution is smooth, it yields an exponential rate of

convergence.

The proposed numerical scheme first requires to

approximate the exact solution A(t) by a discrete solution
~AðtÞ defined by the following expansion:

AðtÞ � ~AðtÞ ¼
XN

j¼0

Aj/jðtÞ;

in terms of unknown coefficients Aj and high-order basis

functions /j (0 B j B N). Since the problem is non-

periodic, we are using Chebyshev polynomials as basis

functions. In that case, /j is the Chebyshev polynomial of

order j and N represents the polynomial order of the

discrete solution. These polynomials have to be defined on

the interval [0,T] if the simulation is carried out from t = 0

until t = T. To compute the unknown coefficients Aj, we

use the Galerkin method which amounts to replace A(t) by
~AðtÞ in the model equation and then orthogonalize that

equation with respect to all the basis functions. The

resulting discrete equations then read:

ZT

0

/i

d ~A

dt
dt ¼

ZT

0

/if dt � k10

ZT

0

/i 0D1�a
t

~A dt

for i ¼ 0; . . .;N:

By replacing ~A by the expansion in terms of the coefficients

Aj, we obtain:

ZT

0

/i

d/j

dt
dt

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�T 1

ij

Aj ¼
ZT

0

f /i dt

|fflfflfflfflffl{zfflfflfflfflffl}
�Ri

�k10

ZT

0

/i 0D1�a
t /jdt

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�T 1�a

ij

Aj;

where we have introduced the time derivative matrices T 1

and T 1�a, and the reaction vector R. The final

(N ? 1) 9 (N ? 1) system of discrete equations can

finally be written in matrix form as follows:

T 1
ij þ k10T

1�a
ij

� �
Aj ¼ Ri:

It should be noted that by using an integral formulation, we

can easily handle the weak singularity of the input function

f ðtÞ ¼ k01 t�ð1�aÞ at t = 0. Since the basis functions are

Chebyshev polynomials, their fractional derivatives can be

computed analytically. All the integrals can also be

computed analytically or up to machine precision with a

quadrature rule. More details on spectral discretizations of

FDE’s can be found in [16, 17]. A Matlab implementation of

this numerical scheme is available as a Supplemental File.

Thanks to the use of high-order basis functions, this

numerical scheme can often achieve the same accuracy as

more standard methods, like the finite difference method,

with fewer degrees of freedoms. Since the basis functions

span over the entire domain, the time derivatives matrices

are always full matrices whatever the order of the deriva-

tive. Therefore the computational cost of the numerical

scheme is not substantially increased when going from a

integer-order to a fractional-order model. In each case, we

have to handle a small full time-derivative matrix. The

main disadvantage of this scheme is that high-order

approximations are prone to spurious oscillations when the

model solution is not smooth. In that case, a large number

of degrees of freedom might be required to obtain a

numerical solution close enough to the exact one. For those

situations, more standard methods like the finite difference

method might perform better.

To highlight the accuracy of the proposed numerical

scheme, we have performed a convergence analysis by

computing the relative L2 error defined as

error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRT
0

ðAðtÞ � ~AðtÞÞ2dt

RT
0

AðtÞ2dt

vuuuuuut

for different values of N, the polynomial order of the dis-

crete solution. We have considered the solution of Eq. (1)

with f ðtÞ ¼ ptp�1 þ k10
Cðpþ1Þ
CðpþaÞ t

pþa�1, where p 2 R
þ; a ¼

0:8 and k10 = 1. With that input function, the exact solu-

tion of Eq. (1) is simply AðtÞ ¼ tp. When p takes an integer

value, the model solution is infinitely smooth over all the

domain. However, when p takes a non-integer value, the

solution is no longer infinitely smooth as the derivative of

order dpe diverges at t = 0. This has an impact on the

convergence of the numerical scheme.

The convergence of the L2 error is shown in Fig. 3. As

expected, when p is integer, the convergence rate is

exponential (left panel of Fig. 3). The numerical solution is

equal to the exact one as soon as N = p. However, when

p takes a non-integer value, the solution contains a singu-

larity at t = 0 and convergence is only algebraic (right

panel of Fig. 3). According to Darboux’s principle, for

each type of spectral expansion the rate of convergence is

controlled by the strength of the gravest singularity in the

complex plane (see [3] for more details). In our example,

the exact solution is only C3 at t = 0 when p = 3.8. In that

particular situation where the branch point is due to a
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fractional polynomial power and is located at a corner of

the computational domain, it is possible to show that the

asymptotic convergence rate will be 2 w ? 1, where w is

the power of the gravest singularity (see [3], Table 2.2). In

this case, w = p and the algebraic convergence rate should

be 2p ? 1 = 8.6. Numerical results are in good agreement

with that theoretical rate of convergence. It should be noted

that even in that case, only 10 modes are needed for the

error to fall well below 10-6. These results do not depend

on the value of a, the order of the fractional derivative.

Numerical examples

Thanks to the numerical scheme presented in the previous

section, we are now in a position to study systems for which

there are no analytical solutions available. The first example

consists in the one-compartment system with multiple IV

bolus dosing and fractional elimination considered in sec-

tion 2.3. The second example consists in a two-compartment

system with both multiple oral dosing and continuous IV

infusion, and fractional transfer from the second compart-

ment to the first one. The third example considers the PK of

amiodarone, a drug known to have an anomalous kinetics.

For all these examples, we compute the numerical solution

and show the impact of the drug input power-law decay.

One-compartment system with multiple IV bolus

dosing

In the case of a one-compartment system with multiple IV

bolus dosing, the drug input function is given by Eq. (6). In

what follows, we shall assume that the doses remain the

same, i.e. di = d for i ¼ 1; 2; . . . and investigate the impact

of the dosing times on the drug kinetics within the com-

partment. In a first case, we assume that the dosing inter-

vals are constant, i.e. Ti ¼ iDs. In order to be able to make

comparisons with the continuous-input case, we set d ¼
k01Ds such that the integrals of the constant rate and

multiple oral dosing input functions over a dosing interval

are equal. In a second case, we apply the recursion (8) to

obtain a dosage regimen where administrations are no

longer equidistant in time. In order to be able to make

comparisons with the previous case and with the continu-

ous IV infusion case, we keep the same value for d.

Figure 4 shows that indeed a model with multiple IV

bolus dosing gives solutions in good agreement with the

corresponding continuous IV infusion solutions. In this

example, a = 0.5 and k01 = k10 = 1. When the dosing

interval is kept constant (Ds ¼ 2), we observe a drug accu-

mulation in the compartment similar to the one observed

with a constant rate input and hence unbounded drug accu-

mulation. When the time interval between two doses is no

longer constant but follows the power-law recursion given by

Eq. (8), drug no longer accumulates but reaches a plateau

similar to the one reached when using a continuous input

function that decays as a power law. It should be noted that

the Dirac delta functions have been approximated by a finite

support function in order to be able to discretize them with

our numerical scheme. The consequence of such an

approximation is that the jump in the solution value fol-

lowing a dose administration is not exactly vertical but

slightly inclined. That somehow amounts to approximate the

IV bolus dosing by an intermittent IV infusion.

Two-compartment system with continuous IV infusion

and multiple oral dosing

In this second example, we consider a two-compartment

system composed of a central compartment representing the

general circulation and well perfused tissues connected to a

peripheral compartment representing deeper tissues. This

system is schematically represented in Fig. 5. In this exam-

ple, we assume that the drug input arrives in the central

compartment. The following transfer processes are consid-

ered: classical elimination from the central compartment at a

rate k10, classical transfer from the first compartment to the

second at a rate k12 and fractional transfer from the second

compartment to the first one at a rate k21 and fractional order

a\ 1. Initially, both compartments are empty. The model

equations can then be expressed as follows:

dA1

dt
¼ f ðtÞ � ðk10 þ k12ÞA1 þ k21 0D1�a

t A2;

dA2

dt
¼ k12A1 � k21 0D1�a

t A2;

ð9Þ

Fig. 3 Relative L2 error between the numerical solution of Eq. (1) and

the exact solution AðtÞ ¼ tp with respect to the polynomial order N of

the discrete solution. In this example, a = 0.8 and k10 = 1. As

expected, the error convergence is exponential when p = 4 as the exact

solution is smooth (left panel). However, it is only algebraic when

p = 3.8 as the exact solution has a singularity at t = 0 (right panel).

According to Darboux’s principle, the algebraic rate of convergence is

controlled by the order of the singularity. Numerical results are in

agreement with a theoretical convergence rate of 2p ? 1 = 8.6
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where A1 and A2 represent the amount of drug in com-

partments 1 and 2 and f ðtÞ is the drug input function to

compartment 1. The initial condition is A1(0) = A2(0) = 0.

In what follows, we consider four different cases that

correspond to the combination of continuous IV infusion

and multiple oral dosing with a constant and a power-law

time evolution of the drug input. In the case of an IV

infusion, the drug arrives in the central compartment in

exactly the same way as for the one-compartment model.

However, in the case of multiple oral absorption, it is more

realistic to assume that the drug arrives in an imaginary

compartment corresponding to the gastrointestinal tract and

is then transferred to the central compartment. We assume

that this transfer from the gastrointestinal tract has a clas-

sical kinetics and takes place at a rate k01. For a dose d
absorbed at time Ti, the corresponding drug input in the

central compartment can be expressed as:

fiðtÞ ¼ Fdk01Hðt � TiÞe�k01ðt�TiÞ;

where H(t) is Heaviside step function and F is the bio-

available fraction of the absorbed dose. The input functions

corresponding to the four cases can be summarized as

follows:

where Tc
i ¼ iDsði ¼ 0; 1; . . .Þ; d ¼ k01Ds and the dosing

times T
p
i ði ¼ 1; 2; . . .Þ are given by the recursion (8)

with T
p
0 ¼ 0.

The time evolution of the drug content in the second

compartment is shown in Fig. 6 for the following param-

eter values: a = 0.5, k10 = 1, k12 = 0.8, k21 = 0.7, F = 1

and Ds ¼ 5. It can be seen that these results are qualita-

tively similar to the ones obtained for a one-compartment

system. Although this system is different, numerical results

suggest that drug accumulation can again be prevented by

considering a drug input that decays like a power law. The

solutions obtained for continuous IV infusion and a mul-

tiple oral absorptions show similar trends. By allowing the

drug input to decay as a power law or, equivalently, letting

the dosing intervals increase like a power law, the drug

content in the second compartment no longer increases

indefinitely but instead reaches a plateau. The height of the

plateau cannot be expressed analytically in terms of k01.

However, an optimization procedure could be used to solve

the inverse model and hence estimate the value of k01 that

would yield the desired steady state. Popović et al. [28]

have used the Particle Swarm Optimization algorithm for a

similar problem.

Evaluation of three multiple dosing regimens

of amiodarone

In this final example, we use the two-compartment model

described by Eq. (9) to examine the effect of three different

dosing regimens of amiodarone, a drug known to have an

anomalous kinetics. Amiodarone is an antiarrhythmic agent

Time

Amount
Constant
input

Power-law
input

Fig. 4 The one-compartment model solutions obtained for multiple

IV bolus dosing (solid curves) and for the corresponding continuous

infusion (dashed curves). For a constant infusion rate or equidistant

dosing times, there is a drug accumulation in the compartment. When

dosing times are computed according to Eq. (8) or when the infusion

rate decays like a power law, drug accumulation is controlled and the

solution does not diverge. In this example, a = 0.5, k01 = k10 = 1

and Ds ¼ 2. All quantities are dimensionless

Fig. 5 Schematic representation of a two-compartment PK model,

where Ai(t) is the amount of drug in the compartment i, f ðtÞ is the

drug input function to compartment 1 and kij are transfer rate

coefficients from compartment i to j. The plain arrows represent a

classic kinetics of order 1 while the dashed arrow represents a slower

fractional kinetics of order a\ 1

continuous IV infusion multiple oral dosing

constant in time f ðtÞ ¼ k01 f ðtÞ ¼
PMc

i¼1

Fdk01Hðt � Tc
i Þe�k01ðt�Tc

i Þ

power� law in time f ðtÞ ¼ k01t�ð1�aÞ f ðtÞ ¼
PMp

i¼1

Fdk01Hðt � T
p
i Þe�k01ðt�T

p
i
Þ
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that is used to treat ventricular arrhythmias and atrial

fibrillation. It has been known for a long time that amio-

darone plasma concentration does not converge towards a

steady state following multiple dosing because of its ten-

dency to accumulate in deeper tissues [21]. Classical PK

models have proved unable to describe the long-term

kinetics of the drug. Those observations lead to the

development of non-classical PK models based on fractal

kinetics [37] or fractional derivatives [12].

To parametrize the model, we use the parameter esti-

mates computed by Dokoumetzidis et al. [14] from the

amiodarone IV database of Holt et al [21]. That database

has been obtained during a single-dose study that involved

four healthy volunteers who received a 400 mg dose of

amiodarone as a 10-min IV infusion. In our example, we

look at the amiodarone plasma concentration that would

result from the following multiple dosing regimens:

(a) constant doses and equispaced dosing times, (b) equi-

spaced dosing times and doses that decrease according to

Eq. (7), and (c) constant doses and dosing times that

increase according to Eq. (8). The reference values of the

dose and dosing interval are d = 400 mg and Ds ¼ 1 day.

This means that with regimen (a), the patient receives an

IV bolus dose of 400 mg each day during all the duration

of the treatment. The parameters estimates taken from [14]

are k10 = 1.4913 days-1, k12 = 2.9522 days-1, k21 = 0.4854

days-a and a = 0.5870. We assume that the plasma volume is

3 L and that the treatment takes place during 21 days.

Figure 7 shows the time evolution of the drug plasma

concentration for the three dosing regimens. For regimen

(a), we observe a steady drug accumulation characteristic

of an anomalous PK. It suggests that the drug concentra-

tion does not converge towards a steady state and might

eventually reach toxic levels if the treatment is not stopped

soon enough. For regimen (c), the doses are still constant

and all equal to 400 mg but the time interval between 2

doses is no more constant. In that case, the drug concen-

tration converges towards a steady state around which it

oscillates. Since the time interval between two doses

steadily increases and is of about 3 days after 2 weeks of

treatment, the amplitude of the oscillations is quite large.

In this example, the difference between the peak and

through concentrations reaches 30 mg/L. For regimen (b),

a dose is injected every day but the amount of drug

injected steadily decreases. The first two doses of the

treatment are of about 680 and 340 mg but by the end of

the treatment the doses are just slightly larger than

100 mg. For that dosing regimen, the drug concentration

also converges towards a steady state around which it

oscillates. However, the amplitude of the oscillations is

smaller than with regimen (c) and does not exceed 6 mg/L

at the end of the treatment.

Conclusions

Among all the complex systems that one can imagine, from

financial markets to ecosystems, the human body is cer-

tainly one of the most intricate. It is therefore hardly sur-

prising that the time course of some drugs in the body does

not always follow the exponential kinetics predicted by

classical models. More complex kinetics characterized by

power-law terminal phases are indeed observed and require

specific tools. Fractional differential equations are one of

these tools and provide a much more realistic picture of

these drugs kinetics. By providing a better picture of the

processes at play, they also shed some light on issues that

Time

Amount
Constant
input

Power-law
input

Fig. 6 For the two-compartment model (9), drug accumulation can

again be prevented by considering a drug input that decays as a

power-law. The model solution in the second compartment, A2(t), is

shown for continuous IV infusion (dashed curves) and the multiple

oral dosing corresponding to the exponential input from the gastro-

intestinal tract to the central compartment (solid lines). In this

example, a = 0.5, k10 = 1, k12 = 0.8, k21 = 0.7, F = 1 and Ds ¼ 5.

All quantities are dimensionless

Time [days]

Plasma concentration [mg/L]

Regimen (a)

Regimen (b)

Regimen (c)

Fig. 7 Amiodarone plasma concentrations resulting from the follow-

ing multiple IV dosing regimens: (a) constant doses d and constant

dosing intervals Ds, (b) constant dosing intervals Ds and doses that

decrease according to Eq. (7) and (c) constant doses d and dosing

intervals that increase according to Eq. (8). Regimen (a) leads to an

increasing drug concentration while regimens (b) and (c) stabilize the

drug concentration. In this example, d = 400 mg and Ds ¼ 1 day
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were ignored by classical models. One of those issues is the

accumulation of drug that can carry on indefinitely when

the elimination flux is fractional and the infusion takes

place at a constant rate.

In this paper, we have shown that this issue can be

avoided by considering a time-dependent rather than a

constant-rate drug input. In particular, we have shown that

an infusion rate that decays like a power law can stabilize

the amount of drug in the compartment. In the case of

multiple IV bolus dosing, the analytical results derived for

a continuous IV infusion can be used to derive recursion

relations for the doses and for the dosing times. These

recursions provide a sequence of decreasing doses and

increasing dosing intervals. The resulting power-law time

dynamics of the drug input counterbalances the slower

kinetics of the drug in the body and hence prevents

unbounded drug accumulation.

We have only been able to derive analytical results for a

one-compartment model. To consider more complex sys-

tems, we had to rely on a numerical discretization of the

model equations. That has allowed us to study a two-

comportment system with both continuous infusion and

multiple dosing. Our simulation results suggest that the

input functions derived analytically for a one-compartment

system are still valid in the case of two-compartment sys-

tem. In particular, we have been able to propose two

multiple dosing regimens of amiodarone that can stabilize

the plasma concentration of that drug. We hope that the

present study will contribute to the wider use of fractional

PK models and to their practical application to tailor dos-

age regimens that maximize therapeutic effectiveness

while minimizing toxicity.
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29. Popović JK, Dolicanin D, Rapaić MR, Popović SL, Pilipović S,
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