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Abstract

A one-dimensional water column model using the Mellor and Yamada level 2.5 parameterization of
vertical turbulent fluxes is presented. The model equations are discretized with a mixed finite element
scheme. Details of the finite element discrete equations are given and adaptive mesh refinement strategies
are presented. The refinement criterion is an ‘‘a posteriori’’ error estimator based on stratification, shear
and distance to surface. The model performances are assessed by studying the stress driven penetration
of a turbulent layer into a stratified fluid. This example illustrates the ability of the presented model to
follow some internal structures of the flow and paves the way for truly generalized vertical coordinates.
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1. Introduction

In many marine modelling applications, a reliable parameterization of eddy coefficients is
needed to accurately represent vertical turbulent fluxes. Nowadays, most ocean models use
one- or two-equation turbulence closures. The most popular are the Mellor and Yamada
(1982) level 2.5 model and the k–emodel (e.g., Rodi, 1987). A detailed comparison of both models
has been performed by Burchard et al. (1998) and Burchard and Petersen (1999). Beside these two
models, other two-equation models exist, like the k–x model, introduced by Wilcox (1988) and
extended to buoyancy affected flows by Umlauf et al. (2003). Although all three models have very
similar physical parameterizations (Umlauf and Burchard, 2003), only the model of Mellor and
Yamada took stratification into account since its inception. As a result, it has been used
frequently in atmospheric and oceanic applications (e.g., Yamada, 1983; Blumberg and Mellor,
1987; Rosati and Miyakoda, 1988; Timmermann and Beckmann, 2004).
The numerical discretization of such turbulence closures is usually accomplished in finite differ-

ences, on a staggered or non-staggered grid. Details of the discretization of the turbulence energy
equations, on different finite difference grids and with various time discretization have been given in
Davies and Jones (1991) and Burchard (2002a). For problems in which the shape of eddy viscosity
is constant in time, although its magnitude may change, functional approaches have been sug-
gested (Davies, 1987). More recently, Burchard (2002b) proposed an energy-conserving discretiza-
tion of the shear and production terms for the turbulent kinetic energy. The issue of non-uniform
adaptive vertical grids has been studied by Burchard and Beckers (2004). They proposed a finite
difference scheme using a grid that can follow the relevant internal structures of the flow.
Common to all the previous works is the use of the finite difference method to discretize the

hydrodynamic equations. However, over recent years other numerical methods have been
contemplated for simulating oceanic and coastal flows. These are mainly the finite element
(e.g., Lynch et al., 1996; Le Roux et al., 2000; Danilov et al., 2004; Ford et al., 2004a,b; Hanert
et al., 2005), the finite volume (e.g., Casulli and Walters, 2000; Chen et al., 2003) and the spectral
element (e.g., Iskandarani et al., 1995, 2003) methods. Their principal advantage is that they allow
the use of unstructured meshes. Such meshes have proved to be particularly well suited to repre-
sent localized phenomena and complex geometries (Legrand et al., 2000). They also provide a nat-
ural framework to perform dynamical mesh adaptation (Piggot et al., 2005). This seems to be a
very promising tool for use in 3D ocean modelling as it permits to adapt the mesh in both space
and time. Therefore, an optimal use of the computational power is always possible as the mesh
‘‘follows’’ the dynamically active regions. Until now, most of the work on unstructured mesh
ocean modelling has focused on horizontal processes while little interest has been paid to the
discretization of vertical ones.
The purpose of this paper is to investigate the ability of the finite element method, combined

with adaptive mesh procedures, to discretize vertical oceanic processes. As a test problem, we sim-
ulate the stress-driven deepening of the ocean mixed layer by using Mellor–Yamada level 2.5
turbulence closure scheme. This phenomenon exhibits a transient dynamics and is therefore well
suited to assess mesh adaptivity methods. All simulations have been performed with a MATLAB
software, which is freely available at the following address: http://www.mema.ucl.ac.be/~hanert/
FEMY25.html. This is a way to provide all numerical and technical tricks required to obtain an
accurate solution of this non-linear problem. While the MATLAB programming language is well

http://www.mema.ucl.ac.be/~hanert/FEMY25.html
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suited for educational purposes, it is not the most efficient for heavy computations. In that
respect, the finite difference General Ocean Turbulence Model (GOTM, http://www.gotm.net)
provides a comprehensive package of efficient turbulence models.
2. A simple water column model

For some very idealized situations where all variables are horizontally homogeneous, the
following one-dimensional water column model may be used:
ou

ot
þ f ez � u ¼ o

oz
Ku

ou

oz

� �
; ð1Þ

ob
ot

¼ o

oz
Kb

ob
oz

� �
; ð2Þ
where f is the Coriolis factor, z is the vertical coordinate (increasing upward), ez is the vertical unit
vector, Ku is the eddy viscosity and Kb is the eddy diffusivity. The unknowns are the horizontal
velocity u = (u,v) and the buoyancy b = �g(q � q0)/q0, where g is the gravitational acceleration,
q is the water density and q0 is a reference value of the density. The model domain is a water col-
umn that goes from z = �h to the sea surface (z = 0). The initial and boundary conditions depend
on the problem under consideration and will be specified later.
In Eqs. (1) and (2), eddy coefficients are parameterized with the Mellor–Yamada level 2.5 tur-

bulence closure:
Ku ¼ lqSu;

Kb ¼ lqSb;
where l and q are, respectively, an appropriate length scale, termed the turbulence macroscale, and
a velocity scale, obtained from the turbulent kinetic energy k = q2/2. The stability functions Su
and Sb are dimensionless functions of GM and GH:
ðGM ;GHÞ ¼
l2

q2
ðM2;�N 2Þ;
where M and N are the Prandtl and Brunt-Väisälä frequencies, i.e.,
ðM2;N 2Þ ¼ ou

oz

����
����
2

;
ob
oz

 !
.

The usual Eulerian norm is denoted kÆk.
The velocity and length scales obey the following equations:
oq2
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2q3
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� �
. ð4Þ
The eddy diffusivity of the turbulence model equations is Kq = 0.2lq. The physical meaning of the
various terms in Eq. (3) is the following: KuM

2 is the shear production of turbulent kinetic energy

http://www.gotm.net
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(TKE), KbN
2 is the TKE conversion into potential energy and q3/(16.6l) represents the viscous

dissipation of TKE.
To compute Ku and Kb, we use the stability functions designed by Galperin et al. (1988):
Su ¼
0.393� 3.085GH

1� 40.803GH þ 212.469G2H
;

Sb ¼
0.494

1� 34.676GH
.

In addition, the following constraints are necessary:
l2 6
0.28q2

maxð0;N 2Þ
; �0.28 6 GH 6 0.0233. ð5Þ
All the empirical parameters used in the turbulence closure model are motivated by Mellor and
Yamada (1974, 1982) and Galperin et al. (1988).
In addition, the Mellor–Yamada model requires the introduction of a wall proximity function,

W, to be able to represent the logarithmic layer near boundaries. In the standard implementation
of the model, this function is defined as
W ¼ 1þ 1.33l
2

ðjLÞ2
;

where j ’ 0.4 is the von Karman constant and L is a function of the distance to the seabed, db,
and of the distance to the sea surface, ds: L = dsdb/(ds + db). It should be noted that when the dis-
tance to the sea bottom is assumed infinite, L = ds = jzj. In that case, the wall proximity function
may be written as W ¼ 1þ 1.33l2

ðjzÞ2 . Other wall proximity functions have also been suggested
(Burchard et al., 1998; Blumberg et al., 1992).
Beside the necessity to use a wall proximity function, another shortcoming of the Mellor–Yam-

ada model is that the empirical coefficients for the buoyancy and for the shear production terms
are the same. As a result, the turbulence closure does not take into account the limiting effects of
stable stratification on the size of turbulent eddies (Galperin et al., 1988). To overcome this issue,
the length scale limitation (5) has been suggested. Another remedy is to properly calibrate the
buoyancy production term. In that case, the model works well without the length scale limitation
(Burchard, 2001). Burchard and Bolding (2001) have also reported that the maximum value of the
Richardson number, Ri = 0.2, that can be reached with the stability functions of Galperin et al.
(1988) is too small. As a result, the model does not reach high turbulent Prandtl numbers. The
turbulence closure of Mellor–Yamada has been improved by several authors in recent years
(e.g., Kantha and Clayson, 1994; Canuto et al., 2001).
3. Numerical scheme

3.1. Finite element spatial discretization

The derivation of the finite element discretization is based on a variational or weak formulation
(Ciarlet, 1978; Johnson, 1990) of the model equations (1)–(4). If the model domain is X = [�h, 0],
the weak formulation of Eq. (1) reads:
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where û is an arbitrary weighting function that belongs to the Sobolev space H1(X) and
qKu

ou
oz 
 û

	 

z¼zk
(where zk = �h, 0) can be viewed as a momentum flux at the bottom and at the sur-

face respectively. It is readily seen that Neumann boundary conditions can be naturally enforced
in the weak formulation thanks to the integration by parts. The weak formulation of Eqs. (2)–(4)
is derived in the same way.
Afterwards, one has to build a discrete approximation of the exact solution u. The discrete

solution, denoted uh, is associated with a partition of the computational domain into NE non-
overlapping elements or intervals Xe (1 6 e 6 NE):
�X ¼
[NE

e¼1

�Xe and Xe \ Xf ¼ ; for e 6¼ f ;
where �X is the closure of X. The discrete solution can be expressed in terms of basis functions /i:
uhðt; zÞ ¼
XN
i¼1

uiðtÞ/iðzÞ; ð7Þ
where ui are the unknown velocity nodal values. The number of velocity degrees of freedom is
denoted N. Basis functions are low order polynomials (constant, linear, quadratic, etc.) equal
to one on a mesh node and equal to zero on all the other nodes. They are therefore referred to
as piecewise polynomials. For a given mesh, one may build a number of finite element schemes
simply by changing the nodes distribution on each element. Fig. 1 shows a 1D mesh where there
are either 1, 2, 3 or 4 nodes per element. The corresponding basis functions are constant, linear,
quadratic and cubic respectively.
The nodal values are found by applying the Galerkin procedure, which amounts to replace u by

uh and û by (/i, 0) or (0,/i) (1 6 i 6 N) in (6). Then, one obtains the following set of discrete
equations:
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. ð9Þ
It should be noted that more sophisticated techniques, like the Discontinuous Galerkin method
(Johnson, 1990; Cockburn et al., 2000), could also be used to derive the discrete equations in order
to improve the accuracy and the robustness of the numerical scheme. In particular, this technique
is mandatory for a piecewise constant approximation. By using (7), one may rewrite Eqs. (8) and
(9) in matrix form:



Fig. 1. Example of a 1D finite element mesh with different interpolations using, from the left to the right, constant,
linear, quadratic and cubic basis functions. The model variables are computed on mesh nodes (represented by ‘‘d’’).
For each mesh, the basis function associated with node i is represented. The three elements of the mesh are denoted
Xe�1, Xe and Xe+1.
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Mij
duj
dt

� fvj

� �
¼ Dijuj;

Mij
dvj
dt

þ fuj

� �
¼ Dijvj;
whereMij ¼
R 0
�h /i/jdz is the mass matrix and Dij ¼ �

R 0
�h Ku

o/i
oz

o/j

oz dz is the stiffness matrix. These
integrals are easily computed as they only involve products of low order polynomials or products
of their derivatives. The derivation of the discrete formulation of Eqs. (2)–(4) is similar, although
some integrals may be more difficult to compute because of the non-linear terms in the turbulent
variables equations.
In 1D, it is well known that finite element discrete equations are very close to those obtained

with the finite difference method. Indeed, a finite element scheme using nth order basis func-
tions is similar to a (n + 1)th order finite difference scheme. It is possible to obtain exactly
the same discrete equations by using a Dirac delta as weighting function in formulation (6).
This amounts to replace û by (d(x � xi), 0) or (0,d(x � xi)) (1 6 i 6 N). That method is usually
referred to as collocation. In 1D, the main advantage of the finite element method is that it
may accommodate uniform and non-uniform grids without any modifications. The accuracy
of the method may also be easily changed by increasing or decreasing the order of the basis
functions.
In this work, we have used piecewise linear basis functions to approximate u, v, b, q2 and q2l.

Therefore, the slope of the velocity and buoyancy, as well as the Prandtl and Brunt-Väisälä
frequencies, are piecewise constant. The eddy coefficients are computed on the vertices and are
linearly interpolated on each element. Theoretically, the numerical scheme is second-order accu-
rate in space.
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3.2. Temporal discretization

Eqs. (1)–(4) are discretized in time by using the following scheme:
unþ1 � un

Dt
¼ �f ez �

unþ1 þ un

2
þ o

oz
Kn

u

ounþ1

oz

� �
; ð10Þ
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; ð11Þ
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. ð13Þ
All the non-linear terms are discretized explicitly in order to avoid solving a non-linear system.
For the sake of clarity, we give in Appendix A the expression of Eqs. (12) and (13) where Kn

u, K
n
b,

Kn
q, M

n, Nn and Wn have been expressed in terms of un, bn, (q2)n and (q2l)n.
When discretizing Eqs. (3) and (4) in time, use is often made of the pseudo-implicit discretiza-

tion of Patankar (1980) in order to avoid generating negative values of q2 and q2l (e.g., Deleersnij-
der and Luyten, 1994; Burchard and Beckers, 2004). This scheme however still requires to impose
that l is bigger than a minimal value as it appears in the denominator of one of the terms in Eq.
(3). However, in our implementation, better results were obtained by strongly imposing the
following constraints:
q2 > q2min and q2l > ðq2lÞmin
at the end of each time step rather than using a Patankar (1980) scheme. We therefore introduce
q2min and (q

2l)min, the minimal values of q
2 and q2l.
4. Numerical example: The Kato–Philips test case

The stress-driven penetration of a turbulent layer into a stratified fluid initially at rest is a clas-
sical test case to assess turbulence closure schemes in the context of marine modelling (e.g.,
Deleersnijder and Luyten, 1994; Burchard et al., 1998; Axell and Liungman, 2001; Burchard
and Beckers, 2004). This experiment was first carried out in laboratory by Kato and Phillips
(1969) with a non-rotating tank of fluid. The water column is considered sufficiently deep so that
the only source of turbulence is the wind stress. Thus, the seabed has no influence on the flow and
the wall proximity function, W, may be assumed to depend only on the distance to the surface.
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The following initial and boundary conditions are used:
u; b½ �t¼0 ¼ 0;N 20z
� �

;

q2; q2l
� �

t¼0 ¼ q2min; ðq2lÞmin
� �

;

Ku
ou

oz
;Kb

ob
oz

� �
z¼0

¼ ku�ku�; 0½ �;

q2; q2l
� �

z¼0 ¼ 6.5074u2�; 0
� �

;

where N0 is the initial Brunt-Väisälä frequency and u* is the so-called surface friction velocity. The
minimal values of q2 and q2l are set to q2min ¼ 5� 10

�7 m2 s�2 and (q2l)min = 10
�5 m3 s�2, respec-

tively. At the bottom of the computational domain, homogeneous Neumann boundary conditions
are enforced. As mentioned before, these conditions have no impact on the flow as the computa-
tional domain is supposed to be sufficiently deep. Following Deleersnijder and Luyten (1994), we
transform this laboratory experiment to oceanic dimensions by setting ku*k = 10

�2 ms�1 and
N0 = 10

�2 s�1. The Coriolis factor is set to zero.
The convergence rate of the numerical scheme may be evaluated by computing the L2-error on

the numerical solution with respect to a high resolution solution computed on a mesh of 400
elements. The error on the velocity and buoyancy fields are defined as follows:
eu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 0
�hður � uhÞ2 þ ðvr � vhÞ2 dz

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 0
�hðurÞ

2 þ ðvrÞ2 dz
q ; eb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 0
�hðb

r � bhÞ2 dz
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 0
�hðb

rÞ2 dz
q ;
where the superscript r denotes the high-resolution reference solution. Both error measures are
represented in Fig. 2 when using uniform meshes of 10, 20 and 40 elements and a time step of
60 s. As expected, quadratic convergence rates are observed.
For the case f = 0, Price (1979) suggested an analytical solution for the evolution of the mixed-

layer depth Dm based on a constant bulk Richardson number
DmðtÞ ¼ 1.05ku�kN�1=2
0 t1=2.
Fig. 3 shows the evolution of the mixed layer during 30 h of simulation. The computational do-
main is 40 m deep, the time step is set to 60 s, the mesh is uniform and composed of 40 elements.
The analytical solution of Price (1979) is compared to numerical results obtained by defining the
mixed layer depth as the depth at which the discrete TKE reaches values of 10�4 and 10�5 m2 s�2.
Decreasing the TKE threshold value increases the accuracy. However, for threshold values smal-
ler than 10�5 m2 s�2, the computed turbulent layer depth becomes noisy. Fig. 4 shows the profiles
of buoyancy, velocity norm, TKE and mixing coefficients at the end of the simulation. These
results are totally in line with those obtained by Deleersnijder and Luyten (1994) with a finite
difference model.
5. Adaptive strategies

For applications like the deepening of the mixed layer under the influence of a wind stress, it
is readily seen that better results could be obtained with non-uniform resolution. Indeed, the
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velocity and buoyancy solutions are quite smooth everywhere except near the surface and near
the pycnocline (transition between the mixed and stratified layers). In these regions, the discrete
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solutions exhibit stronger gradients. However, since the depth of the mixed layer continuously
increases, the resolution should also change accordingly. This can be achieved by using adaptive
techniques. Such methods allow to change the resolution dynamically and fit very nicely within
the finite element formalism.
The basic idea behind adaptivity is to compute, for a given discrete solution, an interpolation

error. This can be done by using either an ‘‘a priori’’ or an ‘‘a posteriori’’ estimator of the discret-
ization error. For instance, an ‘‘a priori’’ estimator may be based on the convergence order of the
numerical method and an ‘‘a posteriori’’ estimator may be based on the knowledge of the physical
phenomenon. Once the interpolation error is computed, a new mesh is built in order to evenly
distribute the error on each element. In simple words, the resolution is increased where the error
is large and decreased where the error is small. Our point here is not to review all the theory on
which adaptive methods stand. Instead, we refer to the paper by Piggot et al. (2005) and the
references therein for more information.
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In this work, we present a simple example of adaptivity based on an heuristic ‘‘a posteriori’’
error measure. Following Burchard and Beckers (2004), we define the error on the numerical solu-
tion as:
e ¼ eb þ eu þ ed þ ek ¼ cb
maxðN 2 � N 20; 0Þ

Db
þ cu

M
Du

þ cd
1

d þ d0
þ ck
dmax

; ð14Þ
where Db is a reference buoyancy difference, Du is a reference velocity difference, d is the distance to
the surface, d0 is a variable that permits to tune the near-surface grid zooming and dmax is the depth
of the domain. The coefficients cb, cu, cd and ck allow to set the relative importance of the four com-
ponents of the error. The error is expressed in meters. With this expression for e, one may increase
the resolution in region of strong shear, strong stratification and near the surface. The last compo-
nent, ek, is a background error that prevents too coarse resolution in regions with no shear, no
stratification and far away from the surface. Again, we have to stress that this error estimator is
very heuristic and only based on our knowledge of the physical phenomenon. Details on more
rigorous ‘‘a posteriori’’ error estimates may be found in Strouboulis and Oden (1990), Cockburn
and Gremaud (1996), Ainsworth and Oden (1997), Süli (1999) and Larson and Barth (2000).
Once an error measure has been derived, the nodes may be redistributed accordingly. As the

accuracy of the finite element method depends both on the functional and geometrical discretiza-
tions, several strategies exist to uniformly distribute the interpolation error. One is to locally
increase or decrease the degree of the finite element approximation. In 1D, this is quite straight-
forward as elements have at most one node in common. Reduction of the polynomial degree may
be useful not only to reduce the accuracy of the solution, but also to eliminate spurious oscilla-
tions in the solution when non-smooth fields are present. Such an adaptive procedure is generally
referred to as p-adaptivity. It is also possible to modify the numerical scheme accuracy by chang-
ing the geometrical discretization. This might be achieved by either moving the nodes location or
by locally changing the mesh and its connectivity. The former method, refered to as r-adaptivity,
does not change the topology and keeps the number of elements constant while the latter, refered
to as h-adaptivity, allows to add and remove elements. When the number of elements remains the
same, the movement of the grid may be taken into account by adding an advection term in the
equations. The goal of this term is to counterbalance the movement of the mesh nodes and the
advection velocity is simply the opposite of the mesh velocity. When the number of elements
changes, mesh to mesh interpolation is required. It should be noted that it is possible to combine
geometrical and functional modifications. in that case, the method is called hp-adaptive. Some
authors also combine h and r methods to take advantage of both approaches (Piggot et al., 2005).
In this work, we have used only r and h adaptive methods. The r-adaptive procedure requires

the introduction of a transport term in the discrete equations to compensate the motion of the
grid. If the grid nodes are denoted zi (t) (1 6 i 6 NE + 1), the vertical velocity at which a grid node
moves is: ~wiðtÞ ¼ dzi

dt . A continuous velocity field ~wh may then be built by linearly interpolating be-
tween vertical velocity nodal values. As an illustration of the modified equations, let us present the
equation for the first component of the velocity:
Z 0

�h

ouh

ot
/idzþ

Z 0

�h
~wh ou

h

oz
/i dz� f

Z 0

�h
vh/idz ¼ �

Z 0

�h
Ku

ouh

oz
o/i

oz
dzþ ðsh0;x � sh�h;xÞ.
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In matrix form, this yields:
Fig. 5
using
(botto
Mij
duj
dt

� fvj

� �
þ Aijuj ¼ Dijuj;
where Aij ¼
R 0
�h ~w

h/i
o/j

oz dz. This advection operator is centered in space and second order accurate
if /i and /j are piecewise linear. This finite element scheme is conservative but does not guarantee
monotonicity.
An example of r-adaptation is shown in Fig. 5. We start with a mesh {xi, 1 6 i 6 NE + 1} and a

piecewise constant error field e(x). We compute the error integral on each element:
Ei ¼

R xiþ1
xi

eðxÞdx and on the whole domain: Etot ¼
PNE

i¼1Ei. A new mesh fx�i ; 1 6 i 6 NE þ 1g is
then built by imposing the following constraints:
E�
i ¼

Z x�iþ1

x�i

eðxÞdx ¼ Etot
NE

;

x�0 ¼ x0;

x�NEþ1 ¼ xNEþ1.
This is achieved by successively moving the inner nodes of the initial mesh. When using a h
method, one has to fix a priori an admissible error level per element: E*. In that case, the
new mesh is such that E�

i 6 E�. The number of elements may then change during the adaptation
process.
. Example of mesh adaptation. The initial mesh {xi, 1 6 i 6 5} is composed of 4 elements of unit length (top). By
an r-adaptive procedure, a new mesh fx�i ; 1 6 i 6 5g is obtained where the error (e(x)) is evenly distributed
m).
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Fig. 6 shows the buoyancy field obtained with a r-adaptive scheme. The number of elements
remains equal to 20 and the time step is set to 60 s. The following parameters have been used:
Fig. 6
numb
cb ¼ 1.2; cu ¼ 0.0; cd ¼ 0.3; ck ¼ 0.75;
Db ¼ 0.002 ms�2; Du ¼ 0.2 ms�1; d0 ¼ 5.0 m; dmax ¼ 40.0 m.
It can be seen that the mesh accurately follows the pycnocline. With an adaptive finite element
scheme, the mixed layer deepens much more smoothly. This is illustrated in Fig. 7 where the mesh
is only composed of 20 elements instead of 40 in Fig. 3. Fig. 8 shows the results obtained with a
h-adaptive scheme. The error level per element is set to E* = 0.12. The number of elements varies
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from 16 at the beginning to 23 by the end of the simulation and the average number of elements is
19.3. The time step is still equal to 60 s. To interpolate the discrete fields from the old mesh to the
new one, we have used cubic Hermite interpolation scheme. This method preserves monotonicity
and the shape of the data. It also has a slight smoothing effect that removes unwanted oscillations.
The best accuracy could be obtained by using a least square projection as it minimizes the L2-error
between the initial and the interpolated fields. However, this method is not monotonous and may
lead to negative buoyancy or velocity slope values.
As pointed out by Burchard and Beckers (2004) and Piggot et al. (2005), adaptive vertical

meshes are expected to play a more important part in 3D ocean circulation models as they are
able to achieve truly hybrid coordinates. Indeed, the free surface and bathymetry can be easily
resolved while, in the mid-ocean, the mesh is free to follow isopycnals. Within our adaptive
procedure, hybrid vertical coordinates may be obtained by defining an error estimator that
depends on the distance to the surface, on the distance to the bottom and on the stratification.
One of the main advantages of this adaptive strategy is that any ‘‘a priori’’ knowledge of the flow
is needed to place vertical coordinates. As the mesh evolves with the internal structure of the flow,
coordinate surfaces are always located in an optimal way. This prevents coordinate surfaces from
vanishing when the flow becomes unstratified. It also prevents them from intersecting the sea sur-
face or the sea bottom.
Finally, it should be noted that, in a 3D finite element model using prismatic elements, adjacent

columns with a different number of elements may occur. These can result from the use of a
h-adaptive scheme to move vertical coordinates or from bathymetry constraints. Indeed, changing
the number of vertical levels may be necessary to represent sharp bathymetry variations, like those
near the shelf-break (Deleersnijder and Beckers, 1992). In that case, the 3D mesh becomes
non-conforming and a suitable numerical treatment should be performed.
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6. Conclusions

We have built a simple finite element water column model using the Mellor and Yamada level
2.5 turbulence closure. All variables are approximated by piecewise linear polynomials and the
eddy coefficients are piecewise constant. The model has been assessed by simulating the deepening
of a stress driven turbulent layer into a stratified fluid. Results are comparable to those obtained
with finite difference models.
Some adaptive strategies have also been proposed. These permit to dynamically change the

mesh resolution. Hence, the physical phenomenon is always represented in an optimal way. In this
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work, we have tested r- and h-adaptive schemes. The former keeps the number of elements con-
stant and requires the addition of a transport term while the latter allows to change the number of
elements during the simulation at the cost of mesh to mesh interpolations. Both methods have
proved to be well suited to represent some internal structures of the flow, like the pycnocline posi-
tion. Therefore, the finite element method with adaptive meshes seems to be a very promising
method to represent horizontal but also vertical oceanic processes. Compared to more traditional
numerical methods, it offers an increased flexibility and efficiency, which allows to resolve a
broader range of length scales.
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Appendix A. Expression of the model equations in terms of the primal variables

In this section, we present the expression of the model equations in terms of the primal variables
u, b, q2 and q2l. This permits to highlight the non-linearity of the Mellor–Yamada level 2.5
turbulence closure. The equations for q2 and q2l may be written as:
ðq2Þnþ1 � ðq2Þn
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