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a b s t r a c t

A number of recent studies suggest that many biological species follow a Lévy random walk in their

search for food. Such a strategy has been shown to be more efficient than classical Brownian motion

when resources are scarce. However, current diffusion–reaction models used to describe many

ecological systems do not account for the superdiffusive spread of populations due to Lévy flights.

We have developed a model to simulate the spatial spread of two species competing for the same

resources and driven by Lévy flights. The model is based on the Lotka–Volterra equations and has been

obtained by replacing the second-order diffusion operator by a fractional-order one. Consistent with

previous known results, theoretical developments and numerical simulations show that fractional-

order diffusion leads to an exponential acceleration of the population fronts and a power-law decay of

the fronts’ leading tail. Depending on the skewness of the fractional derivative, we derive catch-up

conditions for different types of fronts. Our results indicate that second-order diffusion–reaction

models are not well-suited to simulate the spatial spread of biological species that follow a Lévy

random walk as they are inclined to underestimate the speed at which these species propagate.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In their search for food, many animals do random searches as
their detective and cognitive skills are often quite limited with
respect to the distribution of their targets (Viswanathan et al.,
2008). In such cases, the search for food becomes essentially a
stochastic process which has to be as efficient as possible for the
forager to survive and thrive. Viswanathan et al. (1999) have
shown that Lévy random walks (RWs) maximize the chance of
encountering randomly distributed targets when their concentra-
tion is low. Although some of the observations of Lévy foraging
patterns are still questioned (Edwards et al., 2007; Edwards,
2011; James et al., 2011), different studies suggest that this
search strategy has been adopted by many species in response
to patchy resource distribution. This is for instance the case for
jackals (Atkinson et al., 2002), spider monkeys (Boyer et al., 2006),
honey bees (Reynolds et al., 2007a,b), fruit flies (Reynolds and
Frye, 2007) and large marine predators (Sims et al., 2008;
Humphries et al., 2010). Some observations also seem to suggest
that some fishing boats might adopt a Lévy RW search strategy to
maximize anchovy catches (Bertrand et al., 2005). The recent
book by Viswanathan et al. (2011) gives an extensive review of
Lévy RW searches and foraging in biology and ecology.

Observations of Lévy foraging patterns suggest that the move-
ment of living organisms cannot always be represented by a
second-order diffusion–reaction model, which rely on the Brow-
nian motion hypothesis (see for instance Okubo and Levin, 2002).
In the case of a Brownian RW, the mean square displacement
grows linearly, i.e. /x2S� t. However, for a Lévy RW, the mean
square displacement grows superlinearly as /x2S� t2=a, where
ao2, which results in superdiffusion. Superdiffusion is charac-
terized by a heavy-tailed jump length distribution resulting in
diverging spatial moments. With such a distribution, arbitrarily
large steps occur with a power-law frequency, in contrast to
classical Brownian RW for which large steps are exponentially
rare. At the macroscopic level, the population dynamics can then
no longer be represented by a second-order diffusion–reaction
model. A fractional-order diffusion–reaction model must be used
instead (Chaves, 1998; Metzler and Klafter, 2000).

Fractional-order diffusion–reaction models rely on non-local
integro-differential operators (Oldham and Spagnier, 1974;
Podlubny, 1999), which can be used both for the time and space
derivative. On the one hand, time-fractional derivatives of order
less than one have been used to represent non-Markovian
memory effects leading to subdiffusion. On the other hand,
space-fractional derivatives of order less than two have been
used to represent long-range dispersion leading to superdiffusion
(Metzler and Klafter, 2000, 2004). Space and/or time fractional-
order diffusion–reaction models have received an increasing
attention in recent years and have been used to model a wide
range of problems in surface and subsurface hydrology
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(Pachepsky et al., 2003; Deng et al., 2006; Kim and Kavvas, 2006),
plasma turbulence (del Castillo Negrete et al., 2004, 2005), finance
(Scalas et al., 2000; Cartea and del Castillo Negrete, 2007b),
epidemiology (Brockmann, 2009; Hanert et al., 2011) and biology
(Raghib et al., 2010; Das and Gupta, 2011). Interestingly, space-
fractional diffusion models are related to discrete-time integro-
difference models that represent diffusion as a convolution with a
dispersal kernel. Classical diffusion corresponds to a Gaussian
kernel while the kernel corresponding to space-fractional diffu-
sion is a stable Lévy density function (Baeumer et al., 2007).
Several studies have shown that integro-difference models are
well suited to simulate biological and ecological phenomena and
result in more realistic spreading rates (Kot et al., 1996; Lee et al.,
2001; Medlock and Kot, 2003).

While there has been a large interest in Lévy foraging patterns
in recent years, very little has been done to adapt the diffusion–
reaction models for interacting populations to Lévy flights. All
these models are based on the classical Lotka–Volterra model and
still assume that individuals in each populations follow a Brow-
nian RW (see Volpert and Petrovskii, 2009 for a review). However,
recent studies on fractional-order Fisher–Kolmogorov (del Castillo
Negrete et al., 2003) and SIR epidemic models (Hanert et al., 2011)
show that the solution dynamics can be deeply modified when
replacing the second-order diffusion term by a fractional-order
one. In particular, traveling fronts no longer propagate at constant
speed but accelerate. The goal of this study is therefore to study
the properties of a space-fractional Lotka–Volterra model for two
competing species and show how the macroscopic populations
dynamics can be modified by Lévy foraging patterns.

The rest of the paper is organized as follows. In the next
section, we outline a simple interspecific competition model
where the second-order diffusion term has been replaced by a
fractional-order one. The impact of fractional-order diffusion on
traveling fronts is discussed in Section 3. Depending on the
skewness of the fractional derivative, we show that both accel-
erating and constant-speed fronts can occur and derive catch-up
conditions for both types of fronts. A number of numerical
examples are provided in Section 4 to confirm the theoretical
results and highlight the different front dynamics. The implica-
tions of our results are discussed in Section 5.

2. Model description

To illustrate the impact of Lévy foraging patterns on macro-
scopic population dynamics, we shall consider a two-species
Lotka–Volterra competition model with one-dimensional spatial
spread. Such a model consists in two coupled diffusion–reaction
equations and can be used to represent the spread of an invading
species into an area occupied by a competing resident species.
The classical form of the model assumes second-order diffusion
and is described by the following set of equations:

@S1

@t
¼ K1

@2S1

@x2
þa1S1ð1�b11S1�b12S2Þ, ð1Þ

@S2

@t
¼ K2

@2S2

@x2
þa2S2ð1�b21S1�b22S2Þ, ð2Þ

where, for i¼1,2, Siðx,tÞ are the population densities at position x

and time t, ai are the net birth rates, 1=bii are the carrying
capacities, bij (ja iÞ are the competition coefficients and Ki are
the diffusion coefficients (see for instance Murray, 2002a,b).

The second-order diffusion term in Eqs. (1) and (2) results
from the assumption that individuals in both populations follow a
RW characterized by a finite length scale li and a finite time scale
ti (i¼1,2). Under that assumption, the central limit theorem (CLT)

indicates that the probability density function (pdf) of the RW is a
Normal distribution characterized by a diffusion coefficient Ki

defined as the limit of l2
i =ti as both scales tend to zero. The

Normal distribution representing the density of individuals at
time t is in turn the solution of a second-order diffusion equation.
Therefore the second-order diffusion equation implicitly assumes
that the microscopic individual motion is Brownian, i.e. it has
finite length and time scales (see for instance Okubo and Levin,
2002).

However, for a Lévy RW there is no typical length scale since
arbitrarily large steps can occur with a power-law frequency. The
dispersion process is then scale-free and the standard version of
the CLT is no more relevant. Instead, the generalization due to
Lévy and Gnedenko (Gnedenko and Kolmogorov, 1954; Lévy,
1954) can be used. That version of the CLT does not rely on the
assumption that the displacements distribution has a typical
length scale but instead assumes it has a power-law tail decaying
as 9x9�ðaþ1Þ

with ar2. In that case, the pdf of the RW tends
towards a stable Lévy distribution with an exponent a (Feller,
1971), which is solution of a diffusion equation of fractional order
a (see Metzler and Klafter, 2000 for details). Fig. 1 illustrates the
random displacements of a Lévy random walker for different
values of the exponent a. It is interesting to note that when a¼ 2,
the Lévy motion reduces to a classical Brownian motion.

The generalization of Eqs. (1) and (2) to Lévy motion is achieved
by replacing the second-order derivatives by derivatives of frac-
tional-order a1 and a2, respectively. For the sake of simplicity, we
shall assume that the time dynamics is Markovian (i.e. no memory
effect), that we have a pure Lévy motion without an upper cutoff (i.e.

no truncation) and that 1oa1,a2r2. The following fractional-order
interspecific competition model is then obtained:

@S1

@t
¼ Ka1

1þb1

2 �1Da1
x S1þ

1�b1

2 xDa1
þ1S1

� �
þa1S1ð1�b11S1�b12S2Þ,

ð3Þ

@S2

@t
¼ Ka2

1þb2

2 �1Da2
x S2þ

1�b2

2 xDa2
þ1S2

� �
þa2S2ð1�b21S1�b22S2Þ,

ð4Þ

where, for i¼1,2, the parameters biA ½�1;1� are skewness para-
meters representing a preferential direction of jumps that could
result, for instance, from topographical constraints. The left- and
right-sided Riemann–Liouville derivatives are defined as

�1Dai
x Siðx,tÞ ¼F�1

k ½ðikÞ
ai Ŝiðk,tÞ� ¼

1

Gð2�aiÞ

@2

@x2

Z x

�1

Siðy,tÞ

ðx�yÞai�1
dy,

xDai
þ1Siðx,tÞ ¼F�1

k ½ð�ikÞai Ŝiðk,tÞ� ¼
1

Gð2�aiÞ

@2

@x2

Z þ1
x

Siðy,tÞ

ðy�xÞai�1
dy,

where Gð�Þ is Euler’s gamma function and F denotes the Fourier
transform:

f̂ ðkÞ ¼F x½f ðxÞ�ðkÞ ¼

Z þ1
�1

f ðxÞeikx dx:

Fig. 1. Illustration of 3 Lévy RW’s with different values of the exponent a.

Brownian motion is recovered when a¼ 2. The three trajectories have the same

number of steps and are represented with the same scaling.
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The coefficients Kai
are generalized diffusivities that have SI units of

mai s�1. With Eqs. (3) and (4), the spatial spread of both populations
is thus governed by the exponents ai, the diffusivities Kai

and the
skewnesses bi. Finally, the model equations have to be supplemen-
ted by a set of initial and boundary conditions to obtain a unique
solution. The precise expression of these is not required at this stage.

It is well known that the non-spatial Lotka–Volterra competition
model for two species has four possible equilibrium points ðSn

1,Sn

2Þ:
E1 ¼ ð0;0Þ, E2 ¼ ðð1=b11Þ,0Þ, E3 ¼ ð0,ð1=b22ÞÞ and E4 ¼ ððb22�b12Þ=

ðb11b22�b12b21Þ,ðb11�b21Þ=ðb11b22�b12b21ÞÞ. The former corre-
sponds to the extinction of both species, the second and the third
correspond to the extinction of only one of the two species while the
latter is a coexistence state where both species survive. The stability
of each of these equilibrium points depends on the sign of the
corresponding eigenvalues of the Jacobian matrix

JðS1,S2Þ ¼
a1ð1�2b11S1�b12S2Þ �a1b12S1

�a2b21S2 a2ð1�b21S1�2b22S2Þ

 !
: ð5Þ

It is then easily seen that E1 is always unstable while the three other
states can be stable for some parameter values (see for instance
Shigesada and Kawasaki, 1997 for a discussion). The steady states
are obviously not modified by the spatial dynamics of the system.
However, we expect the system evolution towards the stable steady
state to be modified when using a fractional-order diffusion term
rather than a second-order one.

In particular, the existence of Turing patterns and their structure
could be modified when replacing the second-order diffusion term
by a fractional-order one. This issue has been studied by Gafiychuk
and Datsko (2006) and Golovin et al. (2008) who have shown that
the Turing mechanism of pattern formation is indeed modified by
fractional diffusion as the value of the transition point is changed.
For the second-order Lotka–Volterra model of two competing
species, it is well known that there are no Turing patterns (see for
instance Marchuk et al., 2008). Preliminary results suggest that
these patterns are not present neither when 1oa1,a2r2.

3. Theoretical analysis

Eqs. (3) and (4) exhibit a variety of traveling wave regimes that
depend on the initial conditions and on the model parameters
values. To illustrate the impact of fractional-order diffusion on the
dynamics of traveling waves of competing species, we shall
consider the situation where S2 represent a species introduced
in the wake of S1 in order to control it, i.e. S1 is an invading species
and S2 is a stronger competitor that has been introduced to
eradicate or at least reduce the amplitude of S1. As mentioned
by Shigesada and Kawasaki (1997), the first species eventually

disappears if b21ob11 and b124b22, while a coexistence steady
state is reached if b21ob11 and b12ob22.

Without loss of generality we will only consider right-propagat-
ing fronts. Results for a left-propagating front are entirely sym-
metric. Initially, both species have a compact support and S1 is at its
carrying capacity, i.e. S1 ¼ 1=b11. The precise expression of the initial
condition is not required at this stage. We shall just assume that the
support of S2 is smaller than the support of S1 and entirely contained
within it (see Figs. 3 and 5 for an illustration). The steady states ð0;0Þ
and ðð1=b11Þ,0Þ will always be unstable for S2, while ð0;0Þ is always
unstable for S1 (Shigesada and Kawasaki, 1997). With the initial
conditions considered here, ð0;0Þ lies just ahead of the S1 front and
ðð1=b11Þ,0Þ is just ahead of the S2 front. It can be seen that the
eigenvalues of the Jacobian (5) take their largest value at the steady
state ð0;0Þ. The maximal growth rate of the reaction term is thus
realized at the S1 front leading, which means that this front is pulled
by its leading edge. The model equations can thus be linearized in
that region to derive the S1 front speed. For the S2 front, there is no
guarantee that the leading edge will always correspond to the
maximal growth rate of the solution. We therefore make the
assumption that the model equations can indeed be linearized at
the S2 leading edge to derive the S2 front velocity.

Such an assumption has been (implicitly) made in many studies,
including the one of Okubo et al. (1989) on the spreading speed of
gray squirrels in Britain. However, Hosono (1998) has shown that
there are parameter values for which the spreading speed of a
second-order Lotka–Volterra competition model is not linearly
determined. For that model, Weinberger et al. (2002) and Lewis
et al. (2002) have derived a sufficient condition for the linear
determinacy of the spreading speed. That result has been further
refined by Weinberger et al. (2007). Extending such a linear
determinacy condition to fractional-order models is not a trivial
task and beyond the scope of this paper. In the remainder of this
study, we will therefore assume that the S2 front speed can be
derived by linearizing the model equations at the leading edge.
Numerical examples presented in Section 4 suggest that such an
assumption is not unrealistic.

The fractional derivative in Eqs. (3) and (4) being a weighted
average of the left-sided Riemann–Liouville derivative �1Da

x and
the right-sided one xDa

þ1 , we shall consider the effect of both
derivatives separately. The dispersal kernels corresponding to
left- and right-sided derivatives are Lévy distributions with a
maximum skewness to the left (b¼ 1) or to the right (b¼�1),
respectively (Baeumer et al., 2007). Such distributions decay
algebraically on one side and exponentially on the other (see
Fig. 2 for an illustration). In other words, they have a heavy tail on
one side and a thin tail on the other side. As mentioned by Kot
et al. (1996), the heavy tail leads to accelerating traveling fronts
while the thin tail generates constant-speed traveling fronts.

� = −1

� = 0

� = +1 � = −1

�  = 0

� = +1

−6
0

0.1

0.2

0.3

10−4

10−1

0 6 −6 0 6

Fig. 2. Example of 3 Lévy distributions with different values of the skewness parameter b and a¼ 1:2. The right panel shows the same distributions but with a logarithmic

scale for the y-axis. Fully skewed distributions decay algebraically on one side and exponentially on the other.

E. Hanert / Journal of Theoretical Biology 300 (2012) 134–142136



Author's personal copy

Therefore, in the case of a right-propagating front, the left-sided
derivative is expected to accelerate the front while the right-sided
derivative shall keep the front speed constant.

3.1. Impact of the left-sided derivative on a right-propagating front

Here we focus only on the impact of the left-sided derivative
by taking b1 ¼ b2 ¼ 1 in Eqs. (3) and (4). The front speeds are
obtained by linearizing the model equations at the leading edge of
the corresponding fronts. As mentioned previously, we assume
that the S1 front is ahead of the S2 front and that S2 spreads in a
region where S1 is already at its carrying capacity. By linearizing
Eq. (3) at the leading edge of the first front, i.e. where S1 � 0 and
S2 � 0, we obtain

@S1

@t
¼ Ka1

ð�1Da1
x S1Þþa1S1: ð6Þ

Likewise, by linearizing Eq. (4) at the leading edge of the second
front, i.e. where S1 � 1=b11 and S2 � 0, we obtain

@S2

@t
¼ Ka2

ð�1Da2
x S2Þþa2 1�

b21

b11

� �
S2: ð7Þ

It is readily seen that Eqs. (6) and (7) have the same form as
the linearization of the fractional-order Fisher–Kolmogorov equa-
tion. Using the same approach as in del Castillo Negrete et al.
(2003) and Hanert et al. (2011), the asymptotic solution can be
expressed as follows:

S1ðx,tÞ � ðKa1
tÞea1tx�ða1þ1Þ, ð8Þ

S2ðx,tÞ � ðKa2
tÞea2ð1�b21=b11Þtx�ða2þ1Þ: ð9Þ

As expected, both solutions have a power-law decaying tail of
order �ða1þ1Þ and �ða2þ1Þ, respectively. Interestingly, if one
does not assume that S1 initially has a compact support but
instead assumes its support stretches out to �1, the following
asymptotic solution is obtained:

S1ðx,tÞ � ðKa1
tÞea1tx�a1 , ð10Þ

which has a heavier tail (see Hanert et al., 2011 for details). That
would represent the impact of an infinite initial reservoir of
individuals from the first species on the traveling front dynamics.

The front speed is obtained by computing the Lagrangian
trajectory of a point at the leading edge with a fixed value
Ŝ1 � 0 and Ŝ2 � 0:

x̂1ðtÞ ¼ xðt,Ŝ1Þ �
Ka1

t

Ŝ1

 !1=ða1þ1Þ

eða1=ða1þ1ÞÞt ,

x̂2ðtÞ ¼ xðt,Ŝ2Þ �
Ka2

t

Ŝ2

 !1=ða2þ1Þ

eða2ð1�b21=b11Þ=ða2þ1ÞÞt :

The front speed, ciðtÞ ¼ dx̂i=dt, then reads

c1ðtÞ �
1

a1þ1

Ka1
t

Ŝ1

 !1=ða1þ1Þ

eða1=ða1þ1ÞÞt a1þ
1

t

� �
, ð11Þ

c2ðtÞ �
1

a2þ1

Ka2
t

Ŝ2

 !1=ða2þ1Þ

eða2ð1�b21=b11Þ=ða2þ1ÞÞt a2 1�
b21

b11

� �
þ

1

t

� �
:

ð12Þ

Taking into account the effect of Lévy flights in the model
therefore leads to exponentially accelerating traveling fronts. This
is in agreement with the study of Kot et al. (1996) who found that
the solution of integro-difference equations with heavy-tailed
kernels that are not exponentially bounded give rise to accelerat-
ing fronts. Eqs. (11) and (12) provide a quantitative measure of

the exponential rate of acceleration resulting from Lévy disper-
sion patterns.

From Eqs. (11) and (12), we can derive the following condition
under which S2 catches up with S1:

a2ð1�b21=b11Þ

a2þ1
4

a1

a1þ1
ð13Þ

or

a2ð1�b21=b11Þ

a2þ1
4

a1

a1
, ð14Þ

when S1 does not have a compact support. Assuming that
b21ob11, which is required for S2 to be stronger than S1,
Eqs. (13) and (14) indicate that the key parameters that govern
both fronts dynamics are the birth rates ai (i¼1,2) and the Lévy
exponents ai (i¼1,2). Conditions (13) and (14) therefore combine
the spatial spread that increases as ai decreases and the growth
rate that triggers an exponential increase as soon as the density
value becomes larger than zero. The second species will thus be
more likely to control the first one if it can perform larger Lévy
flights and if it grows more quickly. Note that once the second
species has caught up with the first one or somehow ‘‘jumped
ahead’’ of it, it can reach its carrying capacity and the front speeds
become

c1ðtÞ �
1

a1þ1

Ka1
t

Ŝ1

 !1=ða1þ1Þ

eða1ð1�b12=b22Þ=ða1þ1ÞÞt a1 1�
b12

b22

� �
þ

1

t

� �
,

ð15Þ

c2ðtÞ �
1

a2þ1

Ka2
t

Ŝ2

 !1=ða2þ1Þ

eða2=ða2þ1ÞÞt a2þ
1

t

� �
, ð16Þ

which means that the S2 front further accelerates as its exponen-
tial acceleration rate becomes a2=ða2þ1Þ. On the other hand, the
exponential acceleration rate of the S1 front drops to
a1ð1�b12=b22Þ=ða1þ1Þ. The S1 front is thus slowed down and can
even be stopped if b124b22.

3.2. Impact of the right-sided derivative on a right-propagating front

A purely right-sided fractional derivative being a global
operator on the right-hand side and a local operator on the left-
hand side, we expect right-propagating fronts to travel at a
constant speed. The front speed is thus derived by following the
same approach as with second-order models. By linearizing Eqs.
(3) and (4) at the corresponding front leading edge, one obtains
linear equations similar to Eqs. (6) and (7) with the exception that
the fractional derivative is now right-sided. Dispersion relations
ciðkÞ can be derived by substituting Si � expð�kðx�citÞÞ in the
resulting equations:

c1ðkÞ ¼
a1

k þ
Ka1

k1�a1
,

c2ðkÞ ¼
a2ð1�b21=b11Þ

k
þ

Ka2

k1�a2
,

where k40 and ci is the front speed (i¼1,2). Details of the
derivation can be found in del Castillo Negrete et al. (2003) and
Hanert et al. (2011).

For a ‘‘sufficiently steep’’ initial condition, fronts propagate at
the minimum wave speed ci,min (Ebert and van Saarloos, 2000;
van Saarloos, 2003), which is obtained by minimizing ci with
respect to k:

c1,min ¼ a1K1=a1
a1

a1

a1�1

� �ða1�1Þ=a1

, k1,min ¼
a1

a1�1

� �1=a1

, ð17Þ
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c2,min ¼ a2K1=a2
a2

a2ð1�b21=b11Þ

a2�1

� �ða2�1Þ=a2

, k2,min ¼
a2ð1�b21=b11Þ

a2�1

� �1=a2

,

ð18Þ

where ki,min (i¼1,2) represents the value of k that minimizes ci.
van Saarloos (2003) has shown that the front speed algebraically
relaxes towards ci,min if the initial condition is steeper than
e�ki,minx. As mentioned by Ebert and van Saarloos (2000), the
algebraic convergence towards the asymptotic front speed is
slow, which means that there is no time beyond which conver-
gence can really be neglected. From Eqs. (17) and (18), one can
then easily derive the following ‘‘catch-up condition’’:

a2K1=a2
a2

a2ð1�b21=b11Þ

a2�1

� �ða2�1Þ=a2

4a1K1=a1
a1

a1

a1�1

� �ða1�1Þ=a1

,

which reduces to the classical result a2K2ð1�b21=b11Þ4a1K1

when a1 ¼ a2 ¼ 2 (see for instance Volpert and Petrovskii, 2009).
Once the second front has caught up with the first one, its speed
increases by the factor ð1�b21=b11Þ

ð1�a2Þ=a2 .
It should be noted that when the skewness coefficients take

values strictly between �1 and 1, i.e. �1obio1, both the left-
and right-sided derivatives influence the fronts propagation.
However, in the case of a right-propagating front, the acceleration
resulting from the left-sided derivative will eventually lead to a
front speed larger than the constant speed resulting from the
right-sided derivative. The macroscopic system dynamics will
thus be driven by accelerating fronts. Traveling waves moving
at a constant speed should be seen as an exception in systems
driven by Lévy flights as they occur only when the fractional-
order diffusion term is totally skewed towards the region ahead of
the front. For a left-propagating front, acceleration is driven by
the right-sided fractional derivative while the left-sided deriva-
tive leads to a constant front speed.

4. Numerical results

In this section, we present some numerical simulations that
illustrate the theoretical results derived in the previous section.
The model equations being solved numerically on a finite domain
½0,L�, where L40, the fractional-order derivatives �1Dai

x and

xDai
þ1 have to be replaced by 0Dai

x and xDai

L in Eqs. (3) and (4).
The latters are defined as follows:

0Dai
x Siðx,tÞ ¼

1

Gð2�aiÞ

@2

@x2

Z x

0

Siðy,tÞ

ðx�yÞai�1
dy,

xDai

L Siðx,tÞ ¼
1

Gð2�aiÞ

@2

@x2

Z L

x

Siðy,tÞ

ðy�xÞai�1
dy,

where 0rxrL. Solving the model equations on a finite domain
might have an impact on the behavior of the solution as
fractional-order derivatives are global operators. For compact-
support initial conditions, the overall system dynamics is not
modified when considering a finite rather than an infinite
domain. However, the different front dynamics and the smaller
decay rate resulting from an infinite reservoir of individuals
cannot be simulated when truncating the computational domain.

One can nevertheless take into account the effect of an infinite
reservoir of individuals by slightly modifying the model equa-
tions. For instance, to simulate the effect of an infinite reservoir of
the first species located at the left-hand side of the domain, one
has to replace 0Da1

x S1ðx,tÞ by 0Da1
x ðS1ðx,tÞ�S1ð0,tÞ�@S1=@xð0,tÞÞ. This

amounts to replace the Riemann–Liouville fractional-order deri-
vative by a Caputo fractional derivative (Podlubny, 1999), which

is defined as follows:

C
0Da1

x S1ðx,tÞ ¼
1

Gð2�aÞ

Z x

0

@2S1

@y2 ðy,tÞ

ðx�yÞa1�1
dy

¼ 0Da1
x S1ðx,tÞ�S1ð0,tÞ�

@S1

@x
ð0,tÞ

� �
:

By using some standard properties of the Caputo derivative, it can
be shown that C

0Da1
x S1 ¼�1Da1

x S1 if one assumes spatially uniform
density values for xr0, i.e. S1ðxo0,tÞ ¼ S1ð0,tÞ. One can then
represent the effect of an infinite reservoir of individuals from
the first species at the left-hand side of the domain by selecting
an initial condition such that S1ð0;0Þ40. The same can be done
for the right-sided derivative if the infinite reservoir is located at
the right-hand side of the domain.

The model equations are discretized in space with a contin-
uous piecewise-linear finite-element scheme on a uniform grid
whose resolution is equal to L=500. The finite-element scheme is
based on a Galerkin formulation that allows one to integrate the
fractional-order diffusion term by parts and hence ensure global
conservation (see Hanert, 2010 for details). The calculation of the
integrals corresponding to the non-linear terms is performed
numerically by using a Gaussian quadrature rule. A zero-slope
boundary condition is imposed on the left and right boundaries,
which allows the fronts to smoothly leave the domain. Time
integration is performed with an explicit third-order Adams–
Bashforth scheme and the time step is constrained by a CFL-like
stability condition that depends on both the reaction and frac-
tional-order diffusion terms. Thanks to the use of an explicit time
integration scheme, the non-linear terms in the model equations
only have to be evaluated at the previous time step and do not
require the use of a non-linear solver.

4.1. Test case 1

This first test case illustrates the two different front dynamics
that can arise when the fractional-order diffusion term is totally
skewed in one direction. In this example, both fractional deriva-
tives are left-sided, i.e. b1 ¼ b2 ¼ 1, and both initial conditions are
centered in the middle of the domain. They are defined as follows:

S1
2L

5
rxr

3L

5

� �
¼

1

b11
, S2

49L

100
rxr

51L

100

� �
¼

1

20
,

S1 xo
2L

5

� �
¼

1

b11
ekð2L=5�xÞ, S2 xo

49L

100

� �
¼

1

20
ekð49L=100�xÞ,

S1 x4
3L

5

� �
¼

1

b11
e�kðx�3L=5Þ, S2 x4

51L

100

� �
¼

1

20
e�kðx�51L=100Þ,

where k¼ 500=L and L¼100. The gridsize Dx is uniform and set to
L=500. The model parameters take the following values:
a1 ¼ a2 ¼ 1:95, Ka1

¼Dxa1=50, Ka2
¼Dxa2=5, a1 ¼ 0:1, a2 ¼ 0:2,

b11 ¼ b22 ¼ 1, b12 ¼ 1:2, b21 ¼ 0:6, and the simulation duration is
set to 500. The expression of the diffusion coefficients Kai

reflects
the fact that their physical dimension depends on ai. With this
choice of parameters, the equilibrium state is ðSn

1,Sn

2Þ ¼ ð0;1Þ,
which means that the system will evolve towards the extinction
of the first species. Finally, it should be noted that even though all
the model parameters have well-known physical dimensions, we
do not specify any units as our simulations are purely illustrative
of the system dynamics and do not intend to reproduce a real
system of two competing species.

The centered initial conditions give rise to a left- and a right-
propagating front. The fractional derivatives being entirely left-
sided, the former travels at a constant speed while the latter is
exponentially accelerated. Fig. 3 shows both population densities at
different time intervals starting from the initial condition. In this
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example, a1=ða1þ1Þ ¼ 3:4� 10�2, a2ð1�b21=b22Þ=ða2þ1Þ ¼ 2:7�
10�2 and a2=ða2þ1Þ ¼ 6:8� 10�2. This means that S2 is slower or at
least accelerates less than S1 in the region where S1 is still at its
carrying capacity, while it is quicker ahead of the S1 front. However,
fractional derivatives being non-local differential operators, they
have a far-reaching influence. Therefore, non-zero values of S2 can
appear ahead of the S1 front, which would subsequently lead to the
development of S2 in a region where S1 is still small. S2 being a
stronger competitor than S1, it prevents the development of S1 ahead
of the front. Furthermore, in the region where S1 is still small, the S2

front accelerates more than the S1 front and thus prevents S1 from
‘‘escaping’’. The dynamics of S2 can be seen as a consequence of Lévy
displacement patterns. Individuals having a non-negligible prob-
ability of making large displacements, some of them can ‘‘jump
ahead’’ of the region occupied by S1 and rapidly develop in that
region still mostly unoccupied.

The constant speed of the left-propagating front can be
obtained from Eqs. (17) and (18): c1,min ¼ 1:8� 10�2 and
c2,min ¼ 5:3� 10�2. The S2 front being quicker, it eventually
catches up with S1 and then further increases its speed by
ð1�b21=b11Þ

ð1�a2Þ=a2 to reach c2,min ¼ 8:3� 10�2. The speed of the
S2 front can be estimated numerically by tracking the position of a
point in the left-propagating front with a density close to zero. For
instance, the trajectory x̂2ðtÞ of the point with the density
S2 ¼ 10�4 is shown in Fig. 4. It shows that the numerical front
speed is in good agreement with the theoretical values of c2,min

before and after the catch-up.

4.2. Test case 2

In this example, we consider the case where S2 is both stronger
and quicker than S1. The fractional-order derivatives are now both
centered, i.e. b1 ¼ b2 ¼ 0, which means that diffusion is isotropic.
The initial conditions have the following expression:

S1 xr
L

5

� �
¼

1

b11
, S2 xr

L

50

� �
¼

1

20
,

S1 xZ
L

5

� �
¼

1

b11
e�kðx�L=5Þ, S2 xZ

L

50

� �
¼

1

20
e�kðx�L=50Þ,

where L¼100 and k¼ 500=L. The grid resolution is still uniform
and equal to Dx¼ L=500. The model parameters take the follow-
ing values: a1 ¼ 1:95, a2 ¼ 1:8, Kai

¼Dxai=50 (i¼1,2), a1 ¼ 0:1,
a2 ¼ 0:3, b11 ¼ b22 ¼ 1, b12 ¼ 1:2, b21 ¼ 0:6, and the simulation

duration is set to 300. With this choice of parameters, the
equilibrium state is again ðSn

1,Sn

2Þ ¼ ð0;1Þ.
Both populations being initially located in the left corner of the

domain, only right-propagating fronts are generated (see Fig. 5). The
exponential acceleration of these fronts is governed by the following
values: a1=ða1þ1Þ ¼ 3:4� 10�2, a2ð1�b21=b22Þ=ða2þ1Þ ¼ 4:3�
10�2 and a2=ða2þ1Þ ¼ 1:1� 10�1. As a result, the S2 front is quicker
than S1 both in the regions where S1 is at its carrying capacity and
ahead of the S1 front. S2 therefore quickly takes over S1, reaches its
carrying capacity and causes the decline of S1 both ahead and
behind the S1 front (Fig. 5). Fig. 6 shows the same results in
logarithmic scale to highlight the power-law decaying tail of both
fronts, i.e. Si � x�ðaiþ1Þ for i¼1,2. Furthermore, it shows that the
development of S2 is enhanced as soon as it reaches the region
ahead of the S1 front. The rapid development of S2 stops the spread
of S1 before leading to its decline.

Fig. 3. Left- and right-propagating front profiles arising from an entirely left-sided

fractional-order diffusion term. Traveling fronts for both species move to the left at a

constant speed and accelerate/decelerate when moving to the right. The S1 and S2

population densities are shown at equidistant moments. The arrows indicate the

evolution starting from the initial condition represented by a thicker curve.

Fig. 4. Time evolution of the left-propagating S2 front leading edge taken as the

Lagrangian trajectory x̂2ðtÞ ¼ xðt,S2 ¼ 10�4
Þ. The front starts at about x¼48 and

travels at the constant speed c2,min predicted by Eq. (18). After the catch-up with

the S1 front, the S2 front speed further increases by a factor ð1�b21=b11Þ
ð1�a2 Þ=a2 .

Fig. 5. Right-propagating front profiles leading to the extinction of S1. The S2 front

spreads more quickly both behind and ahead of the S1 front, leading to a rapid

decline of S1. Both population densities are shown at equidistant moments. The

arrows indicate how the solutions evolve starting from the initial condition

represented by a thicker curve.
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The acceleration of the S2 front can be estimated numerically
by again tracking the position of a point in the front with a
density close to zero. The trajectory x̂2ðtÞ ¼ xðt,S2 ¼ 2� 10�7

Þ is
shown in Fig. 7, where a logarithmic scale has been used for the y-
axis. This confirms that behind the S1 front, located around x¼20,
the S2 front moves forward as x̂2ðtÞ � eða2ð1�b21=b11Þ=ða2þ1ÞÞt . Ahead of
the S1 front, S2 further accelerates to finally move forward as
x̂2ðtÞ � eða2=ða2þ1ÞÞt . Since S2 can ‘‘jump ahead’’ of S1, the second leg
starts before the first one has reached the S1 front.

4.3. Test case 3

The final example illustrates the front dynamics that leads to a
coexistence steady state when S2 is slower than S1, and when
there is a infinite reservoir of individuals from the first species at

the left-hand side of the domain. To represent the effect of such a
reservoir, we replace 0Da1

x S1ðx,tÞ by 0Da1
x ðS1ðx,tÞ�S1ð0,tÞÞ. The first-

order derivative of S1 does not have to be taken into account since
zero-slope boundary conditions are imposed. The fractional-order
diffusion term is centered (b1 ¼ b2 ¼ 0), and the initial conditions
and the grid size are the same as for the previous test case. The
model parameters take the following values: a1 ¼ 1:8, a2 ¼ 1:95,
Kai
¼Dxai=50 (i¼1,2), a1 ¼ 0:3, a2 ¼ 0:1, b11 ¼ b22 ¼ 1, b12 ¼ 0:8,

b21 ¼ 0:6 and the simulation duration is set to 500. With this
choice of parameters, the equilibrium state is ðSn

1,Sn

2Þ ¼ ð0:38,0:77Þ,
which represents a coexistence state between both species.

The dynamics of the right-propagating fronts is shown in
Fig. 8. In this case, the S1 front is always quicker than the S2 front
as a1=a1 ¼ 1:7� 10�1, a2ð1�b21=b22Þ=ða2þ1Þ ¼ 1:4� 10�2 and
a2=ða2þ1Þ ¼ 3:4� 10�2. As a result, S1 quickly spreads over the
entire domain and reaches its carrying capacity. At that point, the
S1 front has vanished. The S2 front spreads over the domain with
some delay and leads to a decrease of S1 as both population
compete for the same resources. Eventually, the coexistence
steady state is reached. The presence of a infinite reservoir of
individuals from the first species leads to a higher acceleration of
S1 and also to a smaller rate of decay. The decay rate of S1 is now
�a1 rather than �ða1þ1Þ, while the decay rate of S2 is still
�ða2þ1Þ (Fig. 9).

Fig. 6. Same as Fig. 5 but with a logarithmic scale for both axis and a simulation duration equal to 100. The power-law decaying tail of S1 and S2 is in agreement with Eqs.

(8) and (9), i.e. Si � x�ðai þ1Þ (i¼1,2).

Fig. 7. Time evolution of the right-propagating S2 front leading edge taken as the

Lagrangian trajectory x̂2ðtÞ ¼ xðt,S2 ¼ 2� 10�7
Þ. The front starts at about x¼3.5

and accelerates according to Eq. (12), i.e. x̂2ðtÞ � eða2 ð1�b21=b11 Þ=ða2 þ1ÞÞt. Ahead of the

S1 front, located at about x¼20, the S2 front further accelerates in agreement with

Eq. (16), i.e. x̂2ðtÞ � ea2=ða2 þ1Þt .

Fig. 8. Right-propagating front profiles leading to a coexistence state between S1

and S2. Traveling fronts for both species move to the right but S1 is much quicker

than S2 and quickly reaches its carrying capacity (S1 ¼ 1) before receding towards

the coexistence steady state (S1 ¼ Sn

1). Both population densities are shown at

equidistant moments. The arrows indicate the evolution starting from the initial

condition represented by a thicker curve.
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The Lagrangian trajectory of the S2 front leading edge is similar
to the one observed in the previous test case (Fig. 7) with the
exception that the exponential rate of acceleration is always equal
to a2ð1�b21=b11Þ=ða2þ1Þ. This is because S1 is quicker than S2 and
reaches its carrying capacity in all the region ahead of S2 without
being caught up by S2. As a result, the S2 front is never able to
reach an acceleration rate equal to a2=ða2þ1Þ.

5. Conclusions

In this paper, we have proposed a fractional-order interspecific
competition model based on the standard Lotka–Volterra model
for two species competing for the same resources. Our model
takes into account the diffusion process resulting from Lévy
foraging patterns, which are optimal as resources are scarce.
The importance of Lévy flights is represented in the model by a
coefficient ar2. When a¼ 2, Brownian motion and thus second-
order diffusion are recovered. The superdiffusive effect of Lévy
flights and fractional-order diffusion occurs as soon as ao2. The
macroscopic system dynamics is strongly influenced by Lévy
flights as they give rise to accelerating rather than constant-speed
traveling fronts, which are predicted by second-order models. The
spatial behavior of the solutions is also modified as they exhibit
an algebraically decaying tail typical of long-range interactions.
This suggests that second-order diffusion–reaction models are not
well suited to represent the spread of populations that follow a
Lévy RW. Second-order models are inclined to underestimate the
speed at which an invading species propagate.

However, as mentioned by Kot et al. (1996) and Viswanathan
et al. (2008), a pure Lévy RW cannot take place in a finite space as
there will always be an upper bound on the distance that one
individual can travel and on the speed at which the population
can spread. Such an upper bound could be introduced in our
model by considering truncated Lévy distributions (Mantegna and
Stanley, 1994), which amount to introduce a cut-off length
beyond which the probability of large displacements decays
exponentially. Such distributions thus eliminate arbitrarily large
steps produced by Lévy distributions and have finite moments. At
the macroscopic level, truncated Lévy distributions translate into
truncated fractional-order diffusion models (Cartea and del
Castillo Negrete, 2007a). del Castillo Negrete (2009) has studied
the front dynamics generated by the truncated fractional-order
Fisher–Kolmogorov equation and has shown that exponential
acceleration and algebraically decaying tails then only occur in

an intermediate asymptotic regime beyond which the front speed
converges towards a constant value.

The model could also be improved by taking into account a
non-Markovian time dynamics. At the microscopic level, this
amounts to consider an algebraically decaying waiting times
distribution rather than an exponentially decaying one. At the
macroscopic level, it translates into a time-fractional diffusion
equation that leads to subdiffusion and memory effects. The
numerical solution of such an equation is quite challenging as
the entire solution history is needed at each time step. Numerical
methods have recently been proposed to discretize the space-
time fractional diffusion equation and could be applied in a non-
Gaussian and non-Markovian population model (Podlubny et al.,
2009; Hanert, 2011).
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