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Abstract

The purpose of the present study is to select a convenient mixed finite element formulation for ocean
modelling. The finite element equivalents of Arakawa’s A-, B- and C-grids are investigated by using the
linear shallow water equations. Numerical and analytical techniques are used to study the types of com-
putational noise present in each element. It is shown that the P1P1 and the P1P0 element (the equivalents of
the A- and B-grids respectively) allow the presence of spurious computational modes in the elevation field.
For the P1P1 element, these modes can be filtered out by adding a stabilizing term to the continuity
equation. This method, although consistent, can lead to dissipative unphysical effects at the discrete level.
The P?

1 P0 element or low order Raviart–Thomas element (corresponding to the C-grid) is free of elevation
noise and represents well inertia-gravity waves when the deformation radius is resolved but presents
computational velocity modes. These modes are however filtered out in a more complex model in which the
momentum diffusion term is not neglected.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The first ocean general circulation model (OGCM) was created by Bryan at the end of 1960’s
(Bryan, 1969). The spatial discretization of this model was based on a structured grid and a finite
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difference scheme. Since then, there has been a lot of improvements to the initial model of
Bryan but the large majority of today OGCMs are still based on a finite difference scheme.
This is mainly due to the inherent simplicity of structured grids (Haidvogel and Beckmann,
1999). More recently, general and coastal circulation models using a more advanced and less
traditional approach have been built (e.g. Le Provost et al., 1994; Myers and Weaver, 1995;
Lynch et al., 1996). These numerical models are based on the finite element method. Such a
method, mainly used in engineering, could be an interesting alternative to the finite difference
method.
The chief advantage of the finite element method over the finite difference method is its faculty

to deal with unstructured grids. This kind of grid is attractive for different reasons. First of all, it
permits to represent much more easily irregular domains. This is very useful in oceanography
where uneven coastlines, narrow straits and islands are numerous. The use of an unstructured grid
also allows to achieve high resolution in regions of interest thanks to convenient grid refinements.
Thus, the computational effort is concentrated where the flow necessitates it and not elsewhere.
The representation of western boundary currents is greatly improved since high resolution is only
required in the boundary layer and not in the less active interior ocean. Finally, structured grids
based on the geographical coordinates are plagued with difficulties near the North Pole (Murray
and Reason, 2002). This is due to the convergence of the meridians which requires unacceptably
small time steps to maintain stability. This constraint is irrelevant in a model using an unstruc-
tured grid.
Furthermore, the finite element method rests on a rigorous mathematical framework based on

a weighted residuals formulation which permits a precise definition of notions such as the error,
convergence rate and stability conditions. Neumann boundary conditions are easily applied as
they enter the weak statement of the problem directly with no further impositions or approxi-
mations (Myers and Weaver, 1995).
A critical issue to apply the finite element method in oceanography is to find a suitable finite

element pair for velocity and surface elevation (pressure). This pair should represent geophysical
flows correctly and not allow the existence of spurious computational modes. It should also be
mass preserving as the numerical model is aimed to be used for long term simulations. For the
moment, there is no element which entirely fulfills these requirements and hence it is still necessary
to compare finite element discretizations in the context of ocean modelling.
Therefore, in the present study, we compare the finite element equivalents of the A-, B- and C-

grids of Mesinger and Arakawa (1976) and analyze their numerical behaviour while representing a
geophysical flow. Since the A-, B- and C-grids are widely used in ocean modelling and have ac-
knowledged qualities, it seems interesting to see if their finite element equivalents have similar
properties.
To compare these three finite element discretizations, we have solved the linear, inviscid shallow

water equations (SWE). Thanks to their inherent simplicity, these equations are the traditional
test case problem to select an appropriate spatial discretization. They have been widely used for
assessing finite difference and finite element discretizations (e.g. Batteen and Han, 1981; Walters
and Carey, 1984; Le Roux et al., 1998). The shallow water model is also the simplest geophysical
model allowing the existence of inertia-gravity waves. Since the propagation of these waves is now
taken into account in modern numerical models, it is of paramount importance that the numerical
scheme used to simulate them behaves properly.
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The paper is organized as follows. In the next section, we specify the model equations and their
finite elements discretization. In Section 3, we examine the three finite elements considered and see
if they support spurious numerical oscillations. Stabilization techniques and conservation issues
are discussed in Sections 4 and 5 respectively. Finally, numerical simulations results are given in
Section 6.

2. Finite element discretization of the linear SWE

2.1. Continuous problem

The SWE describe incompressible, free surface flows in which the vertical pressure is hydro-
static. These equations are derived from the Navier–Stokes equations by integration over the
depth of the fluid layer. The two-dimensional, inviscid, linear form of the SWE reads

og
ot

þ H
ou
ox

�
þ ov
oy

�
¼ 0; ð1Þ

ou
ot

� fvþ g
og
ox

¼ 0; ð2Þ

ou
ot

þ fuþ g
og
oy

¼ 0; ð3Þ

where g is the surface elevation measured from a reference height, H is the unperturbed depth of
the water column which is taken to be constant here, u and v are the depth-averaged velocity
components in the x- and y-directions respectively, g is the gravitational acceleration and t is time.
A more complete derivation of these equations may be found in LeBlond and Mysak (1978).

2.2. Finite element approximation

Let X be the model domain with boundary C and let n be the outward unit normal vector. Let
u ¼ ðu; vÞ be in a suitable functional space V such that u � n ¼ 0 on C for all u belonging to V.
Finally let g be in W, the space of square integrable functions on X.
The weak formulation of Eqs. (1)–(3) in their vector form is found by integrating these

equations against a set of admissible test functions u and w belonging to the same function space
as u and g. Thus (u, g) satisfy

d

dt

Z
X

gwdX þ H
Z

X
$ � uwdX ¼ 0; ð4Þ

d

dt

Z
X
u � udX þ f

Z
X
ðez � uÞ � udX þ g

Z
X

$g � udX ¼ 0: ð5Þ

Eq. (5) is integrated by parts to remove elevation derivatives and thus to avoid having to impose
boundary conditions on the elevation field:Z

X
$g � udX ¼ �

Z
X

g$ � udX þ
Z

C
gu � ndC: ð6Þ
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The second term on the right hand side of (6) vanishes since u 2 V and so u � n ¼ 0.
In the Galerkin procedure, an approximate solution (uh, gh) in the finite dimensional subspace

(V h, W h) of the infinite dimensional space (V, W) is sought. The approximate solutions uh and gh

are typically piecewise-polynomials (not necessarily of the same degree) satisfying the essential
boundary conditions and such that (4) and (5) hold for any admissible test functions uh 2 V h and
wh 2 W h.
Let us now define a finite element triangulation of the model domain X and let uj 
 ujðxÞ,

j ¼ 1; . . . ;N and wj; j ¼ 1; . . . ;M be piecewise-polynomial finite element basis functions spanning
the approximation spaces V h and W h respectively. Then, for any pair (uh, gh) in V h � W h we have
the expressions

uhðxÞ ¼
XN
j¼1

ujujðxÞ; ð7Þ

ghðxÞ ¼
XM
j¼1

gjwjðxÞ; ð8Þ

where N and M are the number of velocity and elevation nodes respectively. By applying the
Galerkin procedure (which orthogonalizes the residual error to the basis functions for the L2

square product), Eqs. (4) and (5) can be summarized as seeking the nodal values uj and gj such
that

XM
j¼1

dgj

dt

Z
X

wmwjdX þ H
XN
j¼1

uj �
Z

X
wm$ujdX ¼ 0 for m ¼ 1; . . . ;M ; ð9Þ

XN
j¼1

duj

dt

Z
X

umuj dX þ f
XN
j¼1

ðez � ujÞ
Z

X
umuj dX �

XM
j¼1

ggj

Z
X

$umwj dX ¼ 0 for m ¼ 1; . . . ;N :

ð10Þ
By evaluating the integrals in Eqs. (9) and (10) and discretizing the temporal derivatives, a linear
system for the nodal values uj and gj can be found.

3. Mixed finite element formulation

In this section, the triangular finite elements corresponding to Arakawa’s A-, B- and C-grids are
compared (Fig. 1). It is shown that these three elements allow the existence of either spurious
elevation or velocity modes.
Spurious modes are internode oscillations either in the elevation or in the velocity field. More

precisely, spurious elevation modes are non-constant eigenvectors of the discrete gradient oper-
ator with zero eigenvalues. If Q is the discrete gradient operator then gh is a spurious elevation
mode if Qgh ¼ 0 with gh non-constant. Spurious velocity modes can also be found. These modes
are non-zero eigenvectors of the discrete Coriolis operator with zero eigenvalue. Thus if F is the
discrete Coriolis operator then uh is a spurious velocity mode if F uh ¼ 0 with uh non-zero. All
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these spurious modes are not seen by the scheme and can be added to any solution of the problem
considered. As a result, they will have to be filtered out in order to use the corresponding element
to solve the SWE.

3.1. P1P1 element

This element is piecewise linear for elevation and velocity (Fig. 1). Let us consider the null-space
of the discretized gradient operator Q, defined as follows:

Qgh ¼
Z

X0

gh$uidX; ð11Þ

where X0 is the support of a velocity basis function ui corresponding to an internal velocity node
denoted by i (Fig. 2). The expansion of g in terms of linear shape functions in (11) gives the 2� 6
linear system:

2ðg2 � g5Þ þ g3 � g4 þ g1 � g6 ¼ 0; ð12Þ
2ðg4 � g1Þ þ g3 � g2 þ g5 � g6 ¼ 0: ð13Þ

The general solution of (12) and (13) is of the form ðg1; g2; g3; g4; g5; g6Þ ¼ ða; b; c; aþ d; b� d;
cþ dÞ where a, b, c, d are arbitrary constants (Le Roux et al., 1998). There are four degrees of
freedom corresponding to four possible solutions. One of these is the constant elevation field and
the three others are spurious modes. Thus, if nothing is done to suppress spurious pressure modes,
the P1P1 element does not seem to be a good candidate to solve the SWE.

Fig. 1. The triangular finite elements compared in this section. The symbols ‘‘�’’, ‘‘�’’ and ‘‘}’’ indicate full velocity
nodes, surface-elevation nodes and normal velocity nodes respectively.

Fig. 2. Velocity node i and the surrounding elevation nodes for the P1P1 element.
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3.2. P1P0 element

This element is piecewise linear for velocity and piecewise constant for elevation (Fig. 1). Let us
consider the velocity shape function support in Fig. 3 and see if it permits the existence of spurious
elevation modes. The expansion of g in terms of constant polynomials in (11) gives the following
2� 6 linear system:

ðg1 þ g6Þ � ðg3 þ g4Þ ¼ 0; ð14Þ
ðg2 þ g3Þ � ðg5 þ g6Þ ¼ 0: ð15Þ

These equations still permit the existence of a checkerboard surface elevation, e.g. ðg1; g2; g3; g4;
g5; g6Þ ¼ ða;�a; a;�a;�a; aÞ. Again, it seems that this element is not a good candidate to solve the
SWE.

3.3. P?
1 P0 element

The P?
1 symbol denotes an element with normal velocity nodes in the middle of each edge of the

triangulation and the P0 symbol has the same signification as before (Fig. 1). This element, also
called low order Raviart–Thomas element (Raviart and Thomas, 1977), is based on flux con-
servation on elements edges and the resulting scheme is very close to a finite volume scheme. A
shallow water model using this element is described in Miglio et al. (1999).
The velocity is approximated in the following way:

u ’ uh ¼
XNed

i¼0
Jiui; ð16Þ

with Ji, the normal flux through the edge Ci, as a generalized scalar nodal value and Ned, the
number of edges of the triangulation. On a given element Xe of the triangulation, the restriction of
the vector shape function is given by

uiðxÞjXe
¼ x� xi

2jXej
; ð17Þ

where jXej is the surface of the element and xi is the coordinate of the vertex i opposite to the edge
Ci, (Fig. 4). For this element, we have the following properties:

Fig. 3. Velocity node i and the surrounding elevation nodes for the P1P0 element.
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$ � uijXe
¼ 1

jXej
;

uijXe
� nm ¼ dim

jCmj
;

where nm is the outward normal to the edge Cm and jCmj is the length of Cm.
To see if this element allows the existence of spurious elevation modes, we consider a velocity

node i and its support (Fig. 5). By computing expression (11) for this support with the previously
defined shape functions, we obtain the following expression:

g1 � g2 ¼ 0: ð18Þ
The solution of this equation can only be a constant elevation field and thus the P?

1 P0 element does
not present any spurious elevation modes. However, this element allows the existence of spurious
velocity modes. This can be seen by considering the discrete Coriolis operator (F) defined as
follows:

F uh 

Z

X
ðez � uhÞ � uidX ð19Þ

and its null space. By considering a velocity node i and its support (Fig. 5) and imposing that
F uh ¼ 0, the following relation is obtained:

ðJ1 � J2Þ þ ðJ4 � J3Þ ¼ 0; ð20Þ
which admits non-zero solutions. These non-trivial solutions are also called spurious ‘‘f-modes’’.

Fig. 4. Some notations for the P?
1 P0 element.

Fig. 5. Velocity node i and the surrounding elevation and velocity nodes for the P?
1 P0 element.
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Spurious velocity modes also arise in finite differences with Arakawa C-grid because of the
averaging in the discrete Coriolis operator (Batteen and Han, 1981). Methods have been suggested
to avoid them (e.g. Adcroft et al., 1999) and to still be able to use the C-grid in large scale ocean
models. Further researches are needed to ‘‘transfer’’ these techniques to finite elements. However,
these spurious modes can be filtered out easily if a diffusion term is added to the velocity equation.
Once the normal fluxes are computed, it is possible to find the normal velocity at each side of

the triangulation and then to compute the full velocity at the vertices of each triangle. The full
velocity at mid-sides is found by interpolating the velocity field between vertices (Walters and
Casulli, 1998).
The presence of normal velocity nodes at mid-sides permits to apply easily no-normal flow

boundary conditions. A drawback of P1P1 and P1P0 elements is that the normal vector at boundary
nodes has to be computed to apply no-normal flow boundary conditions. The way to define this
normal vector is not univocal; one way to define it is given by Engelman et al. (1982).

4. Stabilization techniques

All the three elements introduced before allow the existence of spurious computational modes
(either for elevation or velocity). If we want to use one of these elements to solve the SWE or a
more complex ocean circulation model, spurious modes should be filtered out. Noise control
procedures, also called stabilization techniques, are presented in this section.

4.1. Spurious elevation modes

These modes are high frequency oscillations which can be added to any correct elevation field.
The easiest way to stabilize the elevation is to add a Laplacian term to the continuity equation and
thus to consider the following equation:

og
ot

þ H
ou
ox

�
þ ov
oy

�
¼ ar2g ð21Þ

instead of Eq. (1). The parameter a is an appropriate diffusivity which can be tuned to an optimal
value such that the computational modes are filtered out with a as small as possible. The dis-
cretization of Eq. (21) yields a coupling of neighboring elevation unknowns, and consequently has
a smoothing effect (DeMulder, 1997). However, this approach violates consistency, since the exact
solution of the SWE does not satisfy (21).
A consistent stabilization term can be found by taking the divergence of Eqs. (2) and (3). This

term reads:

r2g þ 1

g
o

ot
ð$ � uÞ þ f

g
$ � ðez � uÞ: ð22Þ

By multiplying this term by a elevation shape function ðwÞ, integrating it by parts on the whole
computational domain and applying it to the approximate solution (uh, gh), the following stabi-
lization term is obtained for the discrete formulation:

�
Z

X
$gh � $wdX þ 1

g

Z
X

o

ot
ð$ � uhÞwdX � f

g

Z
X
ðez � uhÞ � $wdX; ð23Þ
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where the following natural boundary conditions have been used for the tangential velocity and
the elevation:

f
g

Z
C

wðez � uhÞ � ndC þ
Z

C
w$gh � ndC ¼ 0: ð24Þ

The problem can then be stabilized by adding (23) multiplied by an appropriate diffusivity ðaÞ to
the continuity equation in its weak formulation. This method is used in Section 6 to stabilize the
P1P1 element.
It must be pointed out that the two stabilization methods presented in this section only work if

the elevation field is approximated by shape functions of degree one or more. As a result, only the
P1P1 element can be stabilized by using these methods. Moreover, these methods lead to the
addition of a diffusion term to the continuity equation. This manipulation is numerically efficient
but has no physical justification since there are no mass diffusion processes. However, a diffusion
term is frequently added to the continuity equation in finite difference ocean models to stabilize
the B-grid (e.g. Killworth et al., 1991 or Deleersnijder and Campin, 1995).

4.2. Spurious velocity modes

To control the computational modes generated by the discretization of the Coriolis force with
the P?

1 P0 element, a diffusion term should be added to the momentum equation. This yields a
coupling between neighboring velocity unknowns and filters out high frequency oscillations.
Thus, the following momentum equation should be considered

ou

ot
þ f ez � u ¼ �g$g þ mr2u; ð25Þ

where m is the viscosity of the flow.
Of course, the exact solution of the SWE equations does not satisfy Eq. (25) but the Laplacian

term in this equation is physically realistic since there are momentum diffusion processes. In a
more complex and more realistic ocean model, the momentum diffusion term is not neglected and
thus spurious velocity modes generated by the P?

1 P0 element would be filtered out (Hanert et al.,
submitted for publication). Numerical experiments have been performed in order to see the vis-
cosity minimal value which suppresses the computational modes.

5. Temporal discretization and conservation issues

The time discretization of Eqs. (1)–(3) is based on a semi-implicit Crank–Nicolson scheme. It is
shown hereafter that this temporal discretization has interesting conservative properties. The
semi-discrete equations read:

unþ1 þ fDt
2

ez � unþ1 þ gDt
2

$gnþ1 ¼ un � fDt
2

ez � un � gDt
2

$gn; ð26Þ

ggþ1 þ HDt
2

$ � unþ1 ¼ gn � HDt
2

$ � un; ð27Þ
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where un denotes the velocity field at the previous time step and unþ1, the velocity field at the
current time step.
A key quantity to be conserved by the numerical model is the total amount of water. This is

especially important for long term simulations where even a negligible water gain or loss at each
time step could have disastrous consequences. The fluid being incompressible, conservation can be
checked by integrating the elevation field on the whole domain and verifying that this quantity is
constant in time. The total amount of fluid is obviously conserved for the exact problem. For the
discrete problem, the continuity equation in its weak formulation in terms of uh and gh has to be
considered:Z

X

ogh

ot
wjdX þ H

Z
X

$ � uhwjdX ¼ 0: ð28Þ

By using the fact that the sum of all the shape functions is equal to one, we obtain:Z
X

ogh

ot
dX ¼ �H

Z
X

$ � uh dX ¼ �H
Z

C
uh � ndC ¼ 0: ð29Þ

Mass conservation is thus ensured by imposing no-normal flow boundary conditions and com-
puting the integrals exactly. This last condition requires to increase the numerical integration
order as the shape functions order is increased.
Let us now show that the total energy of the flow is conserved if a semi-implicit time discret-

ization is used. The total energy of the flow is defined as follows:

E ¼ 1

2

Z
X

qðHu2 þ gg2ÞdX; ð30Þ

where q is the density of the fluid, supposed to be constant. The energy time derivative reads:

dE
dt

¼
Z

X
q Hu � ou

ot

�
þ gg

og
ot

�
dX: ð31Þ

By discretizing all the terms in the previous equation semi-implicitly and using Eqs. (26) and (27),
the following semi-discrete relation is obtained:

Enþ1 � En

Dt
¼
Z

X
qH

unþ1 þ un

2
�
�
� f ez �

unþ1 þ un

2
� g$

gnþ1 þ gn

2

� ��

þ qg
gnþ1 þ gn

2

�
� H$ � unþ1 þ un

2

� ��
dX: ð32Þ

After some algebraic manipulations, we finally obtain:

Enþ1 � En

Dt
¼ qgH

Z
C

gnþ1 þ gn

2

unþ1 þ un

2
� ndX ¼ 0: ð33Þ

The use of a semi-implicit time discretization has thus several advantages, it preserves the total
energy of the flow and permits to circumvent the strong Courant–Friedrichs–Lewy (CFL) con-
straint on the time step. It should however be pointed out that the time step is still limited by
accuracy requirements in practice. It can easily be seen that energy conservation holds for the
discrete problem by considering the discrete equations and recalling that uh and gh are linear
combinations of shape functions. Hence, a semi-implicit finite element discretization of the in-
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viscid SWE is totally energy preserving. Since it holds for the totally discrete equations, this result
goes a step further than results found by Lilly (1965) for the semi-discrete equations.
It should be pointed out that the use of a semi-implicit scheme requires to solve a linear system

at each time step. To solve such a system, it is possible to use direct or iterative solvers. The use of
a direct solver guarantees that a solution will be produced for a well-posed problem but the
memory storage required and the CPU needed might be very large, especially for a global cir-
culation problem where those requirements can become prohibitive. Iterative methods would then
become attractive. However, it is beyond the scope of this work to analyze the performance of
iterative methods. Our main concern is the analysis of mixed finite element formulations for the
SWE. Hence, we use a standard direct frontal method to solve the discrete system (Iron, 1970;
Leygue and Legat, 2000).

6. Numerical simulations

In this section, numerical experiments are performed in order to compare the different trian-
gular finite elements introduced previously. These experiments have allowed us to show that the
P1P1 and P1P0 elements can generate spurious elevation modes unlike the P?

1 P0 element. It is shown
that these spurious elevation oscillation are filtered out when the P1P1 element is stabilized by
adding a diffusion term to the continuity equation. Some experiments have also been performed to
see if the addition of a diffusion term to the momentum equation prevents the occurrence of
spurious velocity modes for the P?

1 P0 element. Eventually it is shown that the P?
1 P0 and the sta-

bilized P1P1 element are both mass preserving but that the stabilization technique used for the P1P1
scheme leads to a decrease in the total energy of the flow.

6.1. High frequency elevation modes

In this section the same numerical experiment as in Batteen and Han (1981) is performed in
order to compare the three triangular finite elements described before. In their paper, Batteen and
Han showed the condition of appearance of spurious elevation modes in finite differences for
Arakawa B- and C-grids by strongly forcing the short wave modes.
They used a rectangular basin with zero normal velocity at boundaries and the fluid initially at

rest. A point mass source and sink were used to force the flow. Solutions for the height field after
a hundred time steps were presented according to the ratio of the Rossby radius of deformation
ðR 


ffiffiffiffiffi
gh

p
=f Þ to the grid size ðdÞ. The finite difference B-scheme displayed a checkerboard pattern

of noise in both the gravity wave ðR=d > 1Þ and inertial ðR=d < 1Þ limit. The C-scheme displayed
an oscillatory noise only for the inertial limit.
In the present experiment, we solve the inviscid SWE ðm ¼ 0Þ and only consider the effect of a

mass diffusion term. We use a square basin of 1000 km side covered with a structured mesh of
rectangular triangles (Fig. 6). The longest edge of each triangle is equal to 62.5 km and the grid
size is supposed to be equal to 50 km. Numerical simulations are performed in both the inertial
ðR=d ¼ 1=4Þ and the gravity wave ðR=d ¼ 2Þ limit. A point mass source and a point mass sink of 1
and �1 m respectively are prescribed at fixed locations, on an horizontal line in the middle of the
domain, 500 km apart at each time step. The Coriolis parameter and the gravitational acceleration
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are set to 10�4 s�1 and 10 m s�2 respectively. The mean depth of the water column is set to 10 and
10/64 m in order to have R=d ¼ 2 and 1/4 respectively. The time step is set to 100 s for R=d ¼ 2
and 800 s for R=d ¼ 1=4 in order to have the same CFL number in both limits.
Regardless of the ðR=dÞ ratio, the P1P1 element presents a noisy elevation pattern. This is due to

the averaging in the pressure gradient force, which allows the existence of spurious elevation
modes (Fig. 7). These spurious modes are removed when the stabilization term (22) is added to the
continuity equation with a diffusivity coefficient, a, set to 5� 105 m2/s. Fig. 8 shows that the noise
in the elevation field has been totally suppressed.
The P1P0 element presents the same drawbacks as the P1P1 element. For both high and low

resolutions, the elevation field is polluted by spurious oscillations (Fig. 9). This element can
however not be stabilized by adding a diffusion term to the continuity equation since its elevation
shape functions are constant.
In the previous section, it was seen that the P?

1 P0 element is the only element which does not
present spurious elevation modes (only spurious velocity modes) and thus, in the gravity wave

Fig. 6. Structured mesh used for high frequency modes simulation. This mesh has 1024 elements.

Fig. 7. Isolines of the surface-elevation field for the P1P1 element for R=d ¼ 1=4 (left) and R=d ¼ 2 (right). In all ele-

vation fields which follow, white and grey regions denote positive and negative elevation values respectively. The

contour interval is 0.1 m. For both schemes the locations of the source and sink regions are to the left and the right,

respectively, of the center point in each figure.
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limit, the elevation field should be well represented. This is actually the case and the geostrophic
adjustment is well represented. However, when the Coriolis term dominates the pressure gradient
term (inertial limit), problems appear as the P?

1 P0 element propagates badly inertia-gravity waves
when the Rossby deformation radius is not resolved (Fig. 10). These problems are the same as
those encountered by the finite difference C-grid.
These results are similar to those found by Batteen and Han (1981) for the corresponding finite

difference discretizations. When the deformation radius is not resolved, all the elements represent
badly geostrophic adjustment processes. When, the deformation radius is resolved, the P?

1 P0 is the
only ‘‘non-stabilized’’ element to represent correctly the geostrophic adjustment without any noise
in the elevation field. The P1P1 and P1P0 elements are plagued with spurious elevation modes.
Those modes are suppressed when the P1P1 element is stabilized.

6.2. High frequency velocity modes

Let us now show that the resolution of the SWE with the P?
1 P0 element can generate spurious

velocity modes if the momentum diffusion term is neglected. If this term is not neglected, it is

Fig. 8. Same as Fig. 7 for the stabilized P1P1 element (a ¼ 5� 105 m2/s).

Fig. 9. Same as Fig. 7 for the P1P0 element.
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possible to find a threshold viscosity value to filter out the velocity modes. In this section, we only
consider the effect of the momentum diffusion term ðm 6¼ 0Þ and there is no diffusion term in the
continuity equation ða ¼ 0Þ.
For this experiment, a square basin of 1000 km side is used with the same structured mesh as

before. The depth of the water column, the Coriolis parameter, the gravitational acceleration and
the time step are set to 2000 m, 10�4 s�1, 10 m s�2 and 100 s respectively. As initial conditions, the
elevation and the velocity are set to zero except at one point in the middle of the domain where the
velocity is set to one. A vanishing normal velocity is imposed on the boundaries.
Fig. 11 shows the isolines of the first component of the velocity field after 50 time steps. It can

be seen that for the inviscid SWE, the velocity field is totally noisy. If the momentum diffusion
term is not neglected anymore, the noise in the numerical solution can be removed for viscosity
values around 5� 105 m2/s or more. These values, although quite important, are in agreement
with viscosity values commonly used in OGCMs. One must remember that the initial conditions
used in the present experiment are very different and much stronger than those commonly used in
practice.
It must be pointed out that the stabilization method used for the P1P1 and the P?

1 P0 element are
not so close as they seem to be. The P1P1 element is stabilized thanks to the addition of a diffusion
term to the continuity equation. This operation has no physical justification and is based on
numerical considerations only. The stabilization of the P?

1 P0 is based on the addition of a diffusion
term to the momentum equation. This operation is physically realistic since there are momentum
diffusion processes in oceanic flows and these processes are not neglected in more complex models.
This gives a certain advantage to the P?

1 P0 element over the stabilized P1P1 element.
The same results as in Sections 6.1 and 6.2 can be obtained by using an unstructured grid.

However, as spurious oscillations are grid dependent, we have only shown results obtained on a
structured grid since these are more ‘‘aesthetic’’.

6.3. Inertia-gravity wave propagation

This very simple test case considers the evolution of a Gaussian hill in a close system so as to see
how a finite element scheme represents the propagation of inertia-gravity waves and if the use of

Fig. 10. Same as Fig. 7 for the P?
1 P0 element.
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an unstructured grid could generate noise in the numerical solution. The use of a closed domain
also enables us to perform a mass and energy balance and thus to compare the stabilized P1P1
element (a ¼ 5� 105 m2/s, m ¼ 0) and the P?

1 P0 element (a ¼ 0, m ¼ 0) in term of mass and energy
budget.
We consider a rectangular L� L domain (L ¼ 106 m) in which the mean water depth is set to

2000 m. The Coriolis parameter and the gravitational acceleration are still set to 10�4 s�1 and
10 m s�2 respectively. Initially the fluid is at rest and the elevation (in meters) is described by the
following expression:

gðx; yÞ ¼ exp

 
� ððx� L=2Þ2 þ ðy � L=2Þ2Þ

ðL=4Þ2

!
: ð34Þ

The unstructured mesh used in the simulation is composed of 2852 triangles and 7203 nodes
(Fig. 12). The time step is set to 500 s.
The elevation field for the P?

1 P0 element is given on Fig. 13. Qualitatively, the same results are
obtained by using the stabilized P1P1 element. It can be seen that the use of an unstructured grid
does not generate noise in the numerical solution. On the right hand side of the domain, the
elevation field is sometimes a bit less sharp because of the coarser resolution in that region.

Fig. 11. Isolines of the first component of the velocity field for the P?
1 P0 element with different viscosity values. The

contour interval is 0.01 m/s.
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To see if both schemes are mass preserving, we compute every 10 time steps the elevation field
integral on the whole domain normalized by its initial value. Thus, the following quantity is
computed:

Mn ¼
j
R

X gndXj
j
R

X g0 dXj ; ð35Þ

Fig. 12. Unstructured mesh used for inertia-gravity waves propagation. This mesh has 2852 elements.

Fig. 13. Isolines of the surface elevation at different stages of gravity wave propagation and dispersion. These simu-

lation have been done by using the triangular P?
1 P0 element. The contour interval is 0.05 m. Dotted regions denote

negative elevation.
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where g0 represents the initial elevation field. Results for both schemes are given on Fig. 14. For
the P?

1 P0 and the stabilized P1P1 element, (35) remains equal to one, the variations being around
10�14 which corresponds to computer roundoff errors. This means that both elements are mass
preserving. This property is absolutely necessary to be able to use these elements for long term
simulations.
It is possible to show the effect of the stabilization term used in the P1P1 scheme by computing

the total energy of the flow normalized by its initial value. This quantity reads:

En ¼
R

X
1
2
qðHðunÞ2 þ gðgnÞ2ÞdXR

X
1
2
ðHðu0Þ2 þ gðg0Þ2ÞdX

; ð36Þ

where u0 is the initial velocity field. Results for both schemes are given on Fig. 14. It can be seen
that when the P?

1 P0 element is used, the energy is conserved as the variations are of the order of
10�10. However, the elevation diffusion term present in the stabilized P1P1 scheme leads to a de-
crease in the total energy of the flow. This shows that stabilization techniques have a non-neg-
ligible impact on the physics of the flow.

7. Conclusions

We have shown that the finite element equivalents of Arakawa’s A-, B- and C-grids have the
same characteristics as the corresponding finite difference discretizations. The finite element pairs
corresponding to the A- and B-grids allow the existence of spurious elevation modes while the
element corresponding to the C-grid allows the existence of spurious velocity modes. As a result,
noise control procedures are required to be able to use these elements.
Among the three elements studied, the triangular P?

1 P0 and the stabilized P1P1 elements are the
only usable in an OGCM. This is mainly because both elements are mass preserving, do not allow

Fig. 14. Mass (- - -) and energy (––) budgets for both elements. For the P?
1 P0 element (a ¼ 0, m ¼ 0), both mass and

energy are conserved (the two lines are one on the top of the other) whereas only the total mass of fluid is conserved by

the stabilized P1P1 element (a ¼ 5� 105 m2/s, m ¼ 0). Mass variations around the initial value are of the order of 10�14

for both elements, energy variations around the initial value are of order of 10�10 for the P?
1 P0 element.
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the existence of spurious elevation modes and propagate well inertia-gravity waves when the
Rossby radius of deformation is resolved. When the deformation radius is not resolved, only the
stabilized P1P1 element behaves properly. However, this element is stabilized by adding a diffusion
term to the continuity equation. Such a stabilization method is not very attractive from a physical
point of view since there are no mass diffusion processes. On the other hand, the spurious velocity
oscillations generated by the P?

1 P0 element while solving the inviscid SWE are filtered out in a
more complex model where momentum diffusion is not neglected. This stabilization method,
unlike the other, is physically realistic.
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