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a b s t r a c t

Unstructured grid models are receiving increased attention mainly because of their ability to provide a
flexible spatial discretization. Hence, some areas can be resolved in great detail while not over-resolving
other areas. Development of these models is an ongoing process with significant longstanding issues with
spurious computational modes, efficiency, advection and Coriolis approximations, and so forth. However,
many of these problems have been solved with the current generation of models which have much prom-
ise for coastal to global scale ocean modelling. Our purpose is to intercompare a class of unstructured grid
models where the continuity equation reduces to a finite volume approximation. The momentum equa-
tions can be approximated with finite difference, finite element, or finite volume methods. Each of these
methods can have advantages and disadvantages in different classes of problems that range from hydrau-
lics to coastal and global ocean flows. Some of the more important differences are restrictions on grid
irregularity and stability of the Coriolis term. The finite element version of the model has important
advantages in the discretization of the Coriolis term and does not require a reconstruction of a tangential
velocity component. The comparison is illustrated with a simple test case.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The shallow water equations (SWE) have wide application in
oceanography, hydraulics, and atmospheric sciences. They contain
the essential dynamics for most geophysical flows and form the
focus for this study. As may be expected, there is a wide range of
numerical methods useful for solving these equations, including
finite difference (FD), finite element (FE), and finite volume (FV)
methods.

Early in the application of numerical methods to the SWE,
spurious computational modes were observed in methods that
used the primitive equations and located dependent variables for
sea level and velocity at the same nodes. This problem is now well
understood (Walters and Carey, 1983; Le Roux et al., 2007) and
many if not most models use some form of a staggered grid where
sea level and velocity are discretized differently.

For oceanic flows, the important wave dynamics includes
gravity waves and the effect of the Coriolis force. Hence these
models must accurately reproduce simple gravity waves, Kelvin
ll rights reserved.
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waves, Poincaré waves, and Rossby waves. Many of these models
use structured, staggered FD grids (Griffies et al., 2000). More
recent models use unstructured grids and a variety of FD (Casulli
and Walters, 2000; Fringer et al., 2006; Casulli and Zanolli, 2002),
FE (Walters and Casulli, 1998; Le Roux et al., 2000; Danilov et al.,
2004; Pain et al., 2005; Hanert et al., 2005; White et al., 2008; Lane
et al., 2009), and FV methods (Bradford and Sanders, 2002; Chen
et al., 2003).

For hydraulics problems, the important dynamics includes
gravity flows with relatively large Froude number (Fr) and trans-
critical flows. The corresponding numerical models must treat
advection and shocks accurately. Hence the models generally use
the conservative form of the momentum equation with energy or
momentum conserving discretizations for advection (Stelling and
Duinmeijer, 2003) or with Riemann methods (Toro, 1997; Denlin-
ger and Iverson, 2001). Note that these same considerations also
apply to ocean models when tsunami runup with high Fr is
included.

Research over the last decade has led to a convergence of
several solution methods that use unstructured grids. These meth-
ods use a finite volume form of the continuity equation and then
discretize the momentum equation with either FD (Casulli and
Walters, 2000; Casulli and Zanolli, 2002; Fringer et al., 2006), FE
(Walters and Casulli, 1998; Miglio et al., 1999), or FV (Bradford
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and Sanders, 2002) methods. Hence the discretization of the
momentum equation defines the specific method that is used.
Two of these approaches are attractive for ocean models – one uses
a FE approach with the RT0 element (Raviart and Thomas, 1977;
Walters and Casulli, 1998), and the other uses a FD approach on
an unstructured grid (Casulli and Walters, 2000). Both of these ap-
proaches require a careful treatment of the Coriolis term both spa-
tially and temporally.

In general, the FV modeling approach uses depth and flux as the
dependent variables. The use of depth is appealing for hydraulic
problems but presents difficulties for ocean models. The horizontal
pressure gradient force depends on sea level gradient rather than
depth gradient. Hence the forcing term is split into a depth gradi-
ent and a bottom gradient which are of the same order. This gives
rise to a source balancing problem inherent in many FV models. In
addition, the ratio of sea level elevation and water depth is large
which leads to further problems with truncation errors. As a result,
we will not consider the FV approach further since our interest is in
ocean models.

Our purpose in this study is to compare and contrast the
approximations and constraints inherent in certain unstructured,
staggered grid FE and FD methods. Here, we define unstructured
staggered grids to mean those discretizations that have one degree
of freedom for the normal component of velocity on each element
edge and one degree of freedom for sea level on each element. For
structured FD grids, this is just the C-grid. While the various
unstructured staggered grid approaches have similarities, there
are also many differences in the approximations of the individual
terms. These lead to constraints that may affect stability, accuracy,
and/or efficiency.

In the next section, we define the governing equations and the
numerical approximations with particular attention to the differ-
ences in the formulations. Next is a section that discusses the dis-
cretization of the Coriolis term. The section following includes
some discussion of the properties of the methods. Finally, we pres-
ent a simple numerical example and conclusions.
h

2. Formulation

2.1. Shallow water equations

The basic equations considered here are the three-dimensional
shallow water equations. These equations are derived from the
Reynolds-averaged Navier–Stokes equations by using the hydro-
static assumption and the Boussinesq approximation. For incom-
pressible flows the continuity equation (incompressibility
constraint) is

$ � uþ @w
@z
¼ 0 ð1Þ

and the momentum equation expressed in non-conservative form is

Du
Dt
þ f ẑ� uþ g$g� @

@z
Av
@u
@z

� �
� $ � ðAh$uÞ ¼ 0 ð2Þ

where the coordinate directions (x,y,z) are aligned in the east,
north, and vertical directions; u (x,y,z, t) is the horizontal velocity
with components (u,v); w(x,y,z, t) is the vertical velocity; f is the
Coriolis parameter; ẑ is the upward unit vector; g(x,y, t) is the dis-
tance from the reference elevation to the free surface; g is the grav-
itational acceleration; Av and Ah are the kinematic vertical and
horizontal viscosities, respectively; and $ is the horizontal gradient
operator ð@=@x; @=@yÞ.

The two-dimensional vertically-averaged form of (2) is similar
with u replaced by the depth-averaged value and the vertical stress
term replaced by ðss � sbÞ=qH where sb is the bottom stress and ss
is the surface stress which is neglected here. For instance, see
the development in Pinder and Gray (1977) or many other
publications.

The bottom stress sb is given by

sb

q
¼ CDjuju ¼ cu ðz ¼ hÞ; ð3Þ

where q is a reference density, CD is a bottom drag coefficient, h(x,y)
is the bottom elevation measured from a reference elevation such
that H(x,y, t) is the total water depth given by H ¼ g� h, and c is
defined by this equation.

The free surface equation is derived by vertically-integrating
the continuity equation and using the kinematic free surface and
bottom boundary conditions (Pinder and Gray, 1977).
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Boundary conditions for (1)–(4) generally fall into two catego-
ries: conditions at open (sea) boundaries and conditions at solid
(land) boundaries. At open boundaries sea level g, radiation condi-
tions, or a combination of these are generally set. In addition, dis-
charge may be specified for river or other inflow. At land
boundaries, the normal component of velocity vanishes so that
ðu � bnÞ ¼ 0 where bn is the unit normal. If the flow is viscous, then
stress conditions also need to be specifed. Either a stress condition
is specified by (3) or ujh ¼ 0 and the bottom boundary layer needs
to be resolved by the vertical grid placement.

2.2. Time discretization

The equations are discretized in time using a semi-implicit
method such that the equations are evaluated in the time interval
Dt ¼ tnþ1 � tn where the superscript denotes the time level. Here,
the standard definition of semi-implicit is used where some of
the terms in the equations are treated implicitly and some terms
explicitly. The distance through the time interval is given by the
weight h. Then the free surface equation becomes

gnþ1 � gn

Dt
þr � h
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h
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h
undz

� �� �
¼ 0 ð5Þ

The material derivative in the momentum equation can be
approximated in a number of ways. One possibility is to use an ex-
plicit approximation for the advection terms so that stability is
then dependent on the Courant number ðCr ¼ uDt=leÞ, where u is
the current speed normal to an edge and le is an element edge
length. In previous work this term has been approximated using
semi-Lagrangian methods which take advantage of the simplicity
of Eulerian methods and the enhanced stability and accuracy of
Lagrangian methods (Staniforth and Cøté, 1991).

For simplicity in this discussion, this term is discretized using
Eulerian–Lagrangian methods (ELM) rather than semi-Lagrangian
methods (SLM). With ELM, only the term at time level n in the
material derivative is evaluated at the foot of the trajectory. This
is a two step procedure where the material derivative is treated
in a Lagrangian sense, and the remainder of the equation is treated
in an Eulerian sense at the vertices. With SLM, all terms evaluated
at time level n are evaluated at the foot of the trajectory so the en-
tire equation is treated in a Lagrangian sense. Usually there are
small differences in the approaches, except where the sea level gra-
dient is large.

Then the momentum equation becomes

unþ1 � u�
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where the superscripts n + 1 and n denote variables evaluated at
the fixed nodes in the Eulerian grid at times tnþ1 and tn, respec-
tively. At each time step, the velocity is integrated backwards with
respect to time to determine where a particle needs to start at time
tn in order to arrive at a grid node at time tnþ1. This point is referred
to as the foot of the trajectory (Staniforth and Cøté, 1991). The
superscript * denotes a variable evaluated at the foot of the trajec-
tory. The material derivative, the first term, thus has a very simple
form.

The proper choice of tracking and interpolation methods is crit-
ical for maintaining accuracy with SLM and ELM approximations
(Casulli, 1987; Staniforth and Côté, 1991). Linear interpolation
tends to be highly diffusive (McCalpin, 1988). Although higher-or-
der methods are well established for structured grids with regular
quadrilaterals, they are difficult to implement on unstructured
grids (Staniforth and Côté, 1991; Le Roux et al., 1997). A recently
proposed global-quadratic interpolation method provides a signif-
icant step in introducing accurate and efficient SLM and ELM to
unstructured grids. Here, a power-series approach in time is used
to calculate the trajectory and the global-quadratic interpolation
method is used to evaluate the velocity at the foot of the trajectory
(Walters et al., 2008).

Note that the vertical viscosity term is treated implicitly to re-
move stability constraints whereas the horizontal viscosity term
is treated explicitly to avoid the solution of a large matrix equation.
This introduces a stability constraint that is generally not impor-
tant. In the remaining discussion, the horizontal stress term will
be neglected.

The Coriolis term requires some special attention. Treating this
term explicitly such as in (6) is unconditionally unstable. On the
other hand, treating this term implicitly leads to the solution a
large set of coupled equations which may reduce the efficiency
of the model significantly. As an alternative, this term can be inte-
grated in time using some essentially explicit schemes which have
the advantage of being both stable and explicit (Durran, 1991;
Walters et al., 2009). Hence, a large matrix for velocity does not
need to be inverted in the semi-implicit approximation. In the re-
sults presented here, we use both implicit and 3rd-order Adams-
Bashforth schemes.

2.3. Space discretization

Both the continuity equation and free surface equation reduce
to a finite volume approximation for the FD and FE methods de-
scribed here. With the hydrostatic approximation, the continuity
equation is a diagnostic equation for vertical velocity and is not
considered further. The free surface equation and momentum
equation are treated next.

There is a fundamental difference between FD and FE discretiza-
tions. With FD methods, the dependent variables are defined at
discrete points in space. For instance, the FD-CC scheme is based
on locating the elevation variable at the cell circumcenter and
the velocity variable at the midpoint on an edge. The gradient
operator is then defined by a stencil that uses local values of the
dependent variables. With FE methods, the dependent variables
are defined over all space by defining time-dependent nodal values
and interpolating these values over space. For the FE discretization
used here, the elevation variable is defined at all points in an ele-
ment as a piecewise constant function. Likewise the velocity vari-
able is defined at all points in an element and the normal
component is constant along each edge.

For these staggered grids, there is one degree of freedom for sea
level g on each cell and one degree of freedom for the normal com-
ponent of velocity un on each edge. Hence it is more convenient to
express the momentum equation in terms of the normal velocity
component. Since (6) is invariant under solid rotation in the hori-
zontal plane, the momentum equation for the normal velocity
component can be written

unþ1
n � u�n
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� @
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� fun
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where un is the normal component of velocity positive outwards, ut

is the tangential component of velocity positive in a counter-clock-
wise sense around each element, the superscript denotes the time
level, gnþh ¼ hgnþ1 þ ð1� hÞgn, and @=@n is the gradient operator
normal to the cell edge. The treatment of the Coriolis term differs
significantly between the FD and FE formulations and is discussed
in a separate section. Note that horizontal friction is neglected be-
cause it is usually small compared to vertical friction. If it is in-
cluded, the discretization follows standard methods for FD
(Casulli and Walters, 2000) and FE approaches.

After the momentum equation is discretized, it takes the gen-
eral form

M
Unþ1 � U�

Dt

� �
þ CUn þ GEnþh þ TvUnþ1 ¼ 0; ð8Þ

where the matrices M, C, G, and Tv, are the velocity mass matrix,
Coriolis matrix, gradient matrix, and vertical stress matrix, respec-
tively, U is the vector of velocities, and E is the vector of sea level
values. Note that the Coriolis term is explicit but is not treated en-
tirely at time level n because the forward Euler method is uncondi-
tionally unstable for inviscid flows. These matrices are given below
for the FD and FE schemes.

2.3.1. FD methods
The free surface equation can be derived in the FD context by

assuming that the value for g represents a cell average. Moreover,
the dependent variable for velocity is defined by the normal veloc-
ity component on a cell edge and is assumed to be an edge average.
The free surface equation is then directly discretized in finite vol-
ume form as

Ae
gnþ1

e � gn
e

Dt
¼ �h

XNes
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li

Z
H

unþ1
n dz

� �
� ð1� hÞ
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Z
H

un
ndz

� �
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where subscript e ¼ 1; . . . ;Ne denotes the index for a specific cell, Ne

is the number of cells, Ae is the area of the cell in the x–y plane, li is
the edge length of side i, Nes is the number of cell sides, and a suit-
able convention is used to determine normal direction uniquely
(Casulli and Walters, 2000). In this study, we will assume Nes ¼ 3
(triangles).

For the FD-CC approximation, g is defined (discretized) at the
circumcenter of a computational cell (Casulli and Walters, 2000).
Normal velocity is defined at the intersection of the cell edge and
the line joining the adjacent circumcenters (Fig. 1). By construc-
tion, these lines are perpendicular. The pressure gradient in the
momentum equation is then the difference in values at the adja-
cent circumcenters divided by the distance between circumcenters
de.

Note this scheme places constraints on the element shape. All
angles of the triangle must be acute or the circumcenter will lie
outside the cell making the gradient discretization invalid at best.
For an edge joining two right triangles, de ¼ 0 and the pressure
gradient is either undefined or singular. Similar orthogonal grid
constraints exist for quadrilateral cells (Casulli and Walters,
2000).

The orthogonality requirement places severe restrictions on the
quality of the grids. Typically if this requirement is not adhered to,
the accuracy of the solution can be degraded in comparison with
the RT0 formulation. In fact convergence is not guaranteed for
non-orthogonal grids. In addition the calculation of the tangential



Fig. 1. Definition of an orthogonal grid.
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velocities has to be done with care in a circumcenter based
scheme. So long as skew-symmetry of the Coriolis matrix is main-
tained a stable solution is guaranteed.

For a regular grid of rectangles or equilateral triangles, the
method is second-order accurate at the circumcenter. As the grids
are distorted, the accuracy decreases. Hence the correct strategy
for building grids for this approximation is to use a regular element
shape as much as possible and grade the elements smoothly to fit a
given geometry.

The momentum equation then becomes

Dun

Dt
� @

@z
Av
@un

@z

� �
¼ �g

Dg
de

� �
þ fut þ $ � ðAh$unÞ ð10Þ

where Dg is the difference in g between the two cells adjacent to an
edge, de is the distance between circumcenters adjacent to an edge,
and ut is the tangential velocity component defined in a counter
clockwise sense around each cell. Note that there is no equation
for ut so that it must be reconstructed from known values of un.
The approximation for ut is discussed in the section on Coriolis
approximation.

From (10), the velocity mass matrix M is the identity matrix
with unity on the diagonal and zero elsewhere. This is a typical re-
sult for FD dscretizations and differs substantially from the FE
approximation.

With the FD approximation of the Coriolis term, ut must be
reconstructed from known values of un. One such method was pro-
posed by Perot (2000). However, Ham et al. (2007) and Kleptsova
et al. (2009) show that this problem is far from simple. Hence a
more complete treatment of this term is deferred to a separate
section.

The pressure gradient term GEnþh has the form gDgnþh=de on
each edge (Casulli and Walters, 2000). Because the sea level values
are defined at the circumcenters of the two cells adjacent to an
edge, the length scale for the gradient is just the distance between
circumcenters, de. As will be seen in the next subsection, the dis-
tance is imposed in a different manner with FE methods.

The vertical derivatives in the stress term in (10) are discretized
using standard cell-centered differences which leads to a tridiago-
nal matrix at each velocity node. The vertical stress matrix Tv is
then block tridiagonal with matrix elements given in Casulli and
Walters (2000).
The momentum equations can then be written in a more com-
pact matrix form as

Aunþ1
n ¼ G� ghDt

de
Dg6nþ1Z ð11Þ

where A is a block tridiagonal matrix, un is the vector of normal
velocity on each edge, Z is a vector of depth increments, Dg is a vec-
tor of the difference in cell values, and G is a vector of the explicit
terms (Casulli and Walters, 2000). The tridiagonal matrix at each
velocity node can be inverted and unþ1

n substituted into the free sur-
face Eq. (9) to derive a discrete form of a wave equation that has
only g at the n + 1 time level. Typically, gnþ1 is solved for first, fol-
lowed by a calculation of unþ1

n from (11). This method provides an
efficient means to solve the equations. The specific forms of the
matrices are shown in detail in Casulli and Walters (2000).

Another discretization based on centroids was developed by
Yeh (1981) and called the Integrated Compartment Method
(ICM). The dependent variable for sea level is defined as a cell aver-
age that is located at the centroid. Normal velocity is defined at the
midpoint on cell edges. The free surface equation is developed in
the same manner as (9). In the momentum equation, the gradient
is defined as the difference between centroid values in the cells
adjacent to an edge, divided by the distance between centroids
measured perpendicular to the edge in each cell. This approach
avoids convergence problems that occur when the centroids are
connected directly and thus avoids the cell distortion constraints
inherent in the circumcenter scheme. Moreover, this method of
calculating gradients is equivalent to the FE approach with the
RT0 element when using node point integration (NPI) as a method
of mass lumping.

2.3.2. FE methods
The FE method starts with the choice of an approximation for

the dependent variables. The approximation is composed of
time-dependent nodal values that are interpolated over space
using suitable interpolation functions. The dependent variables in
(1) and (2) are expressed in terms of these approximations which
gives rise to a residual or error for each equation because the
approximation does not satisfy the equations exactly. The residuals
are then weighted with test functions (the same as the approxima-
tion function using Galerkin’s method), integrated over all space,
and the weighted residual equations are set to zero. This procedure
results in N equations in N unknowns and in effect is a least-
squares approximation of the dependent variables. The details for
these methods and the appropriate functional spaces are described
in many references (Pinder and Gray, 1977; Hanert et al., 2005,
2009) and are not repeated here. The development of the dis-
crete equations for the RT0 element are found in Hanert et al.
(2003) for the 2D equations and Miglio et al. (1999) for the 3D
equations.

For the FE spatial discretization, the horizontal domain is di-
vided into triangular elements. Then vertical lines are drawn from
each vertex in the grid. The nodes along the verticals are placed
according to the vertical discretization desired- r-coordinates,
z-coordinates, or hybrid coordinates. The three-dimensional
elements are then pie shaped.

The FE approximation in the horizontal plane uses the Raviart–
Thomas element of lowest order (RT0) where g is approximated as
a piecewise constant function on each element, and the normal
velocity is approximated as a constant on each edge and varies lin-
early within the element (Fig. 2, left panel). In the vertical, linear
interpolation is used with the nodes located at the mid-point of
the element edges. Thus the 3D approximation function is a tensor
product between the horizontal interpolation and the vertical
interpolation functions.



Fig. 2. RT0 basis functions used to compute the velocity (left) and ‘‘perpendicular”
velocity used in the Coriolis term (right).
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Define /(x,y) as the piecewise constant approximation func-
tions for sea level, and U(x,y) as the horizontal approximation
functions (vector) and f(z) as the vertical approximation functions
for normal velocity. Then /i ¼ 1 on element i and 0 otherwise. The
horizontal approximation functions are

Ui ¼
x� xi

2Ae=li

where xi is the vertex location opposite to edge i, 2Ae=li is the height
of the triangle from edge i, and Ae is the area of the element (Fig. 2).
The vertical approximation functions are

fk ¼
z�zk�1
zk�zk�1

for ðzk�1 6 z 6 zkÞ
zkþ1�z
zkþ1�zk

for ðzk 6 z 6 zkþ1Þ

(

Then sea level and velocity are interpolated as

g � gh ¼
XNe

e¼1

ge/e

u � uh ¼
XNs

j¼1

XNv

k¼1

ujkUjfk

where superscript h denotes an approximation, ge is the value for
sea level on element e, ujk is the normal velocity on edge j and level
k as a generalized scalar nodal value, Ne is the number of elements,
Ns is the number of sides, and Nv is the number of nodes in the
vertical.

The weighted residual form (weak formulation) can be written
as (Miglio et al., 1999; Hanert et al., 2003)Z

X
L1ðgh;uhÞ/dX ¼ 0 ð12ÞZ

X

Z
H

L2ðgh;uhÞ �UfdzdX ¼ 0 ð13Þ

where L1 is the free surface equation (4), L2 is the momentum equa-
tion (2), and X is the horizontal spatial domain.

The free surface equation (4) is then written asZ
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Because g is approximated as a piecewise constant function on
each element, the free surface equation becomes
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where Ce is the boundary of the element and the last term has been
converted from a volume divergence to a surface integral using the
Gauss Divergence Theorem. Note that this approximation is identi-
cal to (9) for the FD method.

The momentum equation is also treated using standard Galer-
kin FE methods. The weighted residual statement for the momen-
tum Eq. (13) can be written in the form of (8) where
Mijkl ¼
Z
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flfkdzdX
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Note that the pressure gradient and vertical stress terms are
integrated by parts so that extra terms for the boundary integral
of sea level and surface and bottom stress appear. These terms
are useful for applying boundary conditions.

The two most significant differences between the FD and FE for-
mulation are the form of the mass matrix M and the Coriolis term
CUn. The mass matrix is composed of a horizontal part which has five
(triangles) or seven (quadrilaterals) non-zero entries for each equa-
tion corresponding to the edges in the two adjacent elements which
form the support for a particular edge. The vertical part is a tridiag-
onal matrix. Hence the structure is block tridiagonal matrices ar-
ranged in 5 or 7 diagonals. This structure differs markedly from the
FD case where the horizontal part is the identity matrix and leads
to a much higher computational expense for the FE matrix solution.

With the FE approximation, the Coriolis term is expressed di-
rectly in terms of the interpolation functions and the normal veloc-
ity on the edges. The element matrix is a fully-populated 3 � 3
matrix. When assembled into the global matrix, the Coriolis term
has 5 diagonals (triangles) or 7 diagonals (quadrilaterals) reflecting
the local support from the 2 adjacent triangles to an edge.

The pressure gradient term is trivial to integrate because the
horizontal part is constant on each element. Then

GEnþh ¼ gDtDgnþhZþ Bnþh ð16Þ

where B are the boundary terms and Z is a vector with elements
Zk ¼

R
H fkdz. Note that there is no length scale de such as with the

FD scheme. The effective length scale is determined by the horizon-
tal part of the mass matrix instead. If we write N ¼

R
X Uj �UidX,

then the length scale is related to N�1. For the full mass matrix
(FE-FM), there is no readily identifiable length because the inverse
matrix is in general fully populated. For the mass lumping scheme
proposed by Baranger et al. (1996) (FE-CC here), the diagonal con-
tains the distance between circumcenters. Hence the pressure gra-
dient term is identical to the FD-CC scheme. For the mass lumping
scheme where the normal distance to the centroid is used (FE–NPI),
the effective length is the same as that proposed in the ICM method.

In the vertical, the FD-CC and FE-CC (Miglio et al., 1999)
schemes use face centered velocity locations. The vertical compo-
nent of stress is solved using standard FD stencils and the bound-
ary conditions are applied with virtual points located outside of the
boundary. The other FE schemes along with another version of
FE-CC use edge centered velocity locations with a linear variation
within each element. A linear variation is required to approximate
the vertical stress term when it is integrated by parts. An added
benefit is that the boundary conditions arise in a natural way from
the boundary integrals.

After some manipulation, the FE momentum Eq. (2) can be writ-
ten in the same compact form as (11)

Aunþ1
n ¼ G� ghDtDgnþ1Z ð17Þ

where

A ¼ðMþ TvÞ
G ¼ðMu�n � DtCum

n Þ � ð1� hÞgDtDgnZþ B

Z ¼
Z

H
fdz
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where Dgn is the difference between element values adjacent to the
edge, the Coriolis term is evaluated at time level m, and B are
boundary terms that arise from the integration by parts of the the
horizontal sea level gradient terms.

In general, A is a large sparse matrix that is block tridiagonal at
each velocity node in the horizontal grid. There are several options
for solving this system. First, one could solve the full matrix as a
coupled system with the free surface equation (FM scheme). This
is the least efficient procedure but potentially the most accurate.
Second, one could solve the matrix by diagonalizing this matrix
in the horizontal. The solution would then involve solving a tridi-
agonal matrix at each velocity node, substituting for unþ1

n in the
free surface Eq. (9), and solving a discrete wave equation as de-
scribed for the FD-CC scheme. Thus the FD and FE scheme would
have essentially the same efficiency.

Several methods are available to diagonalize the mass matrix
(Baranger et al., 1996; Le Roux et al., 2008). One mass lumping
method was originally proposed by Baranger et al. (1996) and sub-
sequently used by Miglio et al. (1999) and for the FE-CC scheme in
this paper. The velocity mass matrix N is approximated as

Nlumped
ij ¼ didij;

where di is the distance between the circumcenters of the two
triangles sharing the edge i and dij is the Kronecker delta. Essen-
tially, this scheme reproduces the circumcenter FD-CC scheme
described in the previous subsection without the need to recon-
struct ut . Another method is to approximate the velocity mass ma-
trix N for triangular elements as

Nlumped
ij ¼ 2Ai

3li
dij;

where Ai is the sum of the area of the two elements adjacent to side
i. This scheme is denoted as FE–NPI and produces a diagonal matrix
where the diagonal contains values for the distance between ele-
ment centroids as measured perpendicular from the edge (Walters
and Casulli, 1998; Walters, 2005). Other methods are possible but
we have not tried them.

3. Coriolis discretization

A distinctive feature of these staggered grid methods is that the
dependent variables are the normal component of the velocity at
each cell edge and the sea level (pressure) at cell centers. Hence
if the full velocity vector is required, such as in the calculation of
the Coriolis acceleration, the component of velocity tangential to
the cell face must be calculated at that cell face. This is true in both
the structured grid (Arakawa C-grid) and unstructured grid cases.

Espelid et al. (2000) showed that in the calculation of the tan-
gential velocities in structured C-grid models, it was important
that the interpolation matrices were skew symmetric or similar
to skew symmetric (see eg Strang (1988)). They also demonstrated
that an energy conserving C-grid discretisation for the Coriolis
term could be achieved if the weights in the interpolation matrix
were chosen such that the semi-discrete system matrix is similar
to a skew symmetric matrix. Perot (2000) considered the case of
unstructured grid schemes for the solution of the two-dimensional
Navier–Stokes equations in a non-rotating frame of reference, in
domains with a constant depth. He presented energy conservative
discretisation methods. Ham et al. (2007) showed that many
straightforward discretisations are subject to instability. They
demonstrated that a symmetry preserving interpolation was
essential in maintaining stability. In addition, skew symmetry
could not be achieved in the case of extended centroid based
schemes where the sea level gradient is approximated over several
cells rather than the adjacent cells. As the pressure gradient stencil
is increased, the skew symmetric properties cannot be maintained
in general.

3.1. FD approximation

The FD-CC approach requires a reconstruction for ut from the
known values of un. The interpolation consists of two stages. In
the first step the full velocity vector in the cell interior is recon-
structed out the normal velocity components of the cell faces.
Then in the second step this velocity vector is projected back to
the cell face tangent direction. This results in two values for the
tangential velocity component at each cell face. Therefore the
reconstructed tangential velocity component is a cell-weighted
linear combination of these two values. Note that in the following
development, ðui; viÞ are the normal and tangential components
of velocity on edge i, not the cartesian components in the (x,y)
directions.

One of the possible velocity reconstructions in a polygon was
presented by Perot (2000). This can be expressed using the position
of the circumcenter. In the case of a triangle this is given by:

Acu ¼ uilid
c
i ni þ ujljd

c
j nj þ uklkdc

knk ð18Þ

where Ac is the cell area, ui is the normal velocity at face i and li is
length of face i, with dc

i the orthogonal distance of the circumcenter
to face i, with similar definitions for cell faces j and k. For the pro-
jection in the tangential direction of face i the unit vector ti is em-
ployed. Therefore the reconstructed tangential velocity is given by:

vi ¼
dc

j lj
Ac

ujnj � ti þ
dc

klk

Ac
uknk � ti ð19Þ

This is the tangent velocity to face i in triangle a, however, we
have another value at face i reconstructed in the adjacent triangle
b. Therefore a linear combination may be constructed so that,
vi ¼ ca

i va
i þ cb

i vb
i , where ca

i and cb
i are weights. In the case of con-

stant depth ca
i þ cb

i ¼ 1, and ca
i ¼ da

i =di and cb
i ¼ db

i =di satisfies the
skew symmetry property of the system matrix. However, in the
case of variable bathymetry this reconstruction fails to satisfy the
skew symmetry property and has to be modified. Ham et al.
(2007) suggested the choice ca

i ¼ ðd
a
i haÞ=ðdihiÞ and cb

i ¼ ðd
b
i hbÞ=

ðdihiÞ. This can be written in terms of the sum of fluxes around a
cell,

vi ¼
X

c

X
f

hid
c
i dc

f lf

hidiAc
uf nf � ti ð20Þ

where the outer sum goes over the cells c sharing face i, while the
inner summation goes over the faces f surrounding cell c, dc

f is the
distance between the face f and cell c circumcenter, lf is the length
of face f, hc is the cell depth at the circumcenter, hi is the depth at
the face i. However, Kleptsova et al. (2009) recently demonstrated
that a more consistent and accurate method is obtained by taking
into account the depth integrated continuity equation, hence they
propose,

vi ¼
X

c

X
f

hf dc
i dc

f lf

hcdiAc
uf nf � ti ð21Þ

The velocity reconstruction method leads to a piecewise con-
stant approximation of ut at cell circumcenters. This reconstruction
maintains the skew symmetric and conservation properties of the
Coriolis matrix. Other methods of reconstruction such as projecting
the velocity on a P1 basis either globally or locally do not in general
result in a Coriolis matrix that is skew symmetric.

For the centroid based methods such as ICM (Yeh, 1981), Ham
et al. (2007) indicate that it is not possible to create a Coriolis dis-
cretization with the proper skew symmetric properties except on a
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regular grid where the centroid and circumcenter are at the same
location.

3.2. FE approximation

The Coriolis term is expressed in terms of the element bases and
un in (8) using a standard FE approximation. The ‘‘perpendicular”
velocity component used in the Coriolis term ðẑ� uÞ is computed
by using the basis functions ðẑ�UjÞ. This component is defined
in each element such that it is perpendicular to the approximation
uh. Hence in order to compute the Coriolis term with RT0, we actu-
ally modify the set of basis functions rather than develop nodal val-
ues for a tangential velocity component. Both basis functions are
shown in Fig. 2.

Hence in the momentum equation, the Coriolis matrix C takes
the following form:

Cij ¼
Z

X
f Ui � ðẑ�UjÞdX ¼

Z
X

f Uj � ðUi � ẑÞdX

¼ �
Z

X
f Uj � ðẑ�UiÞdX

which shows that the Coriolis matrix is naturally skew symmetric.
As a result, the eigenvalues of the Coriolis matrix are all purely
imaginary (Fig. 3). It should be noted that the FE method does not
require a reconstruction of the tangential velocity as the Coriolis
term is directly computed from the normal velocity nodal values.
This removes the ambiguities associated with determining a meth-
od used to compute the tangential velocity from the normal
velocity.

4. Properties

4.1. Phase accuracy

The complex propagation factor was introduced by Leendertse
(1967) as a tool for assessing the accuracy of numerical schemes
used with waves. The propagation factor is the ratio of the complex
amplitude of the computed wave and that of the analytical wave
after the analytical wave propagates one wavelength. Then the
magnitude of the propagation factor is the ratio of the amplitude
of the waves and provides information on numerical damping.
The argument of the propagation factor describes the relative
phase speed between the two waves.

The analytical dispersion relation and the discrete dispersion
relation obtained from the space-discretized and time-continuous
equations for the RT0 element have been derived by Le Roux et al.
(2007) for inertia-gravity waves and Le Roux and Pouliot (2008) for
−1 −0.5 0 0.5 1
x 10−15

−0.5

0

0.5

 R

 iR

Fig. 3. Eigenvalues spectrum of the Coriolis matrix C. It can be seen that the
eigenvalues are all purely imaginary. The matrix has been computed on an
unstructured mesh of [0,1] � [0,1] composed of 256 elements.
Rossby waves. Here we present the discrete dispersion relation de-
rived from the argument of the amplification factor using the fully
discretized equations and following the methods of Bernard et al.
(2008). To obtain these results, a semi-implicit time integration
scheme has been used so that for h = 0.5 the magnitude of the
propagtion factor is unity and is not shown here.

All the dispersion analysis have been performed on an unstruc-
tured mesh with an average of 12 elements along the x- and y-
directions. The domain is assumed periodic along the x-direction
and bounded in the y-direction (solid boundaries).

The linear rotating shallow water equations have been used
with the following physical parameter values: water depth
H = 1000 m, Coriolis parameters f0 ¼ 3� 10�4s�1 and b ¼ 10�11

ðmsÞ�1, gravitational acceleration g ¼ 10ms�2 and the domain ex-
tent is L � L, where L = 106 m. A b-plane approximations is used
where f ¼ f0 þ by. When computing the dispersion relation and
amplification factor of inertia-gravity waves, we assume b = 0.
The time step has been selected so that the gravity wave CFL num-
ber is equal to 0.2.

The approximations that are compared here include FE–FM, a
solution of the full mass matrix; FE-CC, lumped mass matrix with
the distance between circumcenters on the diagonal; FE–NPI,
lumped mass matrix with the distance between centroids on the
diagonal; and FD-CC, the finite difference circumcenter approach.

The dispersion relation and argument of the amplification factor
obtained by using these methods are shown in Fig. 4 for gravity
waves and in Fig. 5 for Rossby waves. For gravity waves, the FE–
FM scheme has the best accuracy for the dispersion relation. The
accuracies of the other schemes are about the same and all would
be considered acceptable. For Rossby waves, all the schemes exhi-
bit similar accuracy.
5. Numerical example

The models were applied to a test case for a freely propagating
Kelvin wave in a circular basin (Ham et al., 2007). The basin is
250 km in radius, is 5 m in depth, uses an f plane approximation
with f estimated at 45 degrees, and has an initial velocity and sea
level specified. The two-dimensional linear shallow water equa-
tions are used where depth is constant in the continuity equation,
and there are no friction or advection terms. The time step used
was 20 min. The initial conditions are

gðr; 0Þ ¼e0 expððr � r0Þ=LDÞ cosðhÞ
uhðr; 0Þ ¼e0ðc=hÞ expððr � r0Þ=LDÞ cosðhÞ
urðr; 0Þ ¼0

where uh is the tangential component of velocity, ur is the radial
component of velocity, e0 ¼ 0:05 m, r is the radius, r0 ¼ 2:5�
105 m is the radius of the basin, LD ¼ c=f is the Rossby radius,
c ¼

ffiffiffiffiffiffi
gh

p
is phase speed, and h = 5 m is water depth.

Although this is a simple test case, it provides a demanding test
on numerical methods. First, the problem is inviscid so that any
problems with stability that arise are readily apparent (Ham
et al., 2007). On the other hand, dissipative methods can be seen
by the decrease in amplitude and energy. Approximate analytical
solutions (Csanady, 1982) can be used to assess accuracy.

Two grids were used in the tests (Fig. 6). Grid 1 was generated
with a frontal marching algorithm (Löhner and Oñate, 1998) using
a newer version of the grid generation software developed by
Henry and Walters (1993). This grid contains 1304 vertices and
2486 triangular elements and started with 120 nodes spaced
evenly around the boundary. Grid 2 is more irregular with 167
points on the boundary and contains 2782 vertices and 5395 trian-
gular elements. Grid 2 is not orthogonal because it contains
approximately 100 obtuse triangles.
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Fig. 4. Dispersion relation (top) and argument of the amplification factor (bottom) obtained for inertia-gravity waves when the velocity mass matrix is lumped with the
method proposed by Baranger et al. (1996). For the dispersion relation, the exact solution is shown in solid line and the numerical solution in dashed line.
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The FE–FM scheme uses an implicit treatment for all the terms
in the equations with a time weight h = 0.5. Because the full matrix
is inverted at each time step, there is no significant increase in run-
time by including an implicit treatment of the Coriolis terms. This
method represents the most accurate solution of the FE schemes,
but is also by far the least efficient.

The FE–NPI scheme uses a semi-implicit treatment for the grav-
ity wave terms and an explicit integration of the Coriolis term
using the third-order Adams-Bashforth method (Durran, 1991).
The stability of the solution depends on the time weight h (Walters
et al., 2009). For this simulation, h = 0.503 and the solution remains
stable for all the simulations. The efficiency of this scheme is much
higher than FE–FM.

The FE-CC scheme uses an implicit treatment for all the terms in
the equations with the time weight h = 0.5. This approach does not
make use of the higher efficiency of the lumped mass matrix, but
avoids selecting a time approximation for the Coriolis term.

The FD-CC scheme uses a semi-implicit treatment for the
gravity wave terms and a split-step integration of the Coriolis
term.

Time-series plots of the first few rotations of the wave are
shown in Fig. 7 for grid 1 and the results for grid 2 are similar.
The 5 points plotted are equidistant points arranged on a north-
south line that passes through the center of the basin. Time-series
plots near the end of the simulation are shown in Fig. 8 for grid 1
and Fig. 9 for grid 2. Note that FD-CC was not run using grid 2 be-
cause the model requires an orthogonal grid. However, FE-CC was
run anyway with the results plotted in the figures. The phase errors
for FE-CC using grid 2 could be a result of the presence of obtuse
triangles.
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Fig. 5. Same as Fig. 4 except for Rossby waves.
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The results are nearly the same on both grids with somewhat
noisier results using grid 2. Startup transients are also apparent
in the results particularly at the points in mid-basin. The different
methods display a different rotation rate for the wave that reflects
differences in computed phase speed. During the length of this
simulation (5000 steps �20 min = 105 min.), FE–FM completed
31.3 cycles, FE–NPI competed 31.5 cycles, FE-CC completed 31.3
cycles on grid 1 and 31.1 cycles on grid 2, and FD-CC completed
31.4 cycles. The phase errors at the end of the simulation can be
seen in Figs. 8 and 9.

In addition, FE–FM, FE–NPI, and FE-CC maintained the initial
amplitude of the wave. This suggests that the initial conditions
and the numerical approximations were compatible so that the
models faithfully reproduced the correct dynamics. The FD-CC
scheme suffered a small loss of amplitude suggesting that the
approximation for the Coriolis term was not as compatible as the
FE schemes. In the course of these experiments with the FE meth-
ods, we found that an accurate integration of the Coriolis terms
was essential. For the FE–NPI scheme, integrating the Coriolis
and mass matrix with the same 3-point quadrature led to 3% phase
errors. Using an exact quadrature for the Coriolis term reduced the
phase errors to aproximately the same as the other schemes.

Snapshots of the sea level and velocity are shown in Fig. 10. The
differences in rotation rate of the waves are apparent.

Dispersion analysis (Le Roux et al., 2008) and numerical results
for FE–NPI (Walters, 2005) show that the phase errors are typically
less than 1% for well resolved waves. Use of a lumped mass matrix
usually results in a smaller phase speed FE-CC (Le Roux et al., 2008)
rather that the larger phase speed observed here for FE–NPI. It is
not apparent at this time why there is a phase lead with FE–NPI.
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6. Conclusions

We have examined a class of unstructured, staggered grid mod-
els for the shallow water equations where the continuity equation
reduces to a finite-volume approximation. The momentum equa-
tions can be approximated with finite difference, finite element,
or finite volume methods. For reasons stated in the introduction,
we have not analyzed the finite volume approach. Of these, the
FD-CC approximation using circumcenters and the FE approxima-
tion using the RT0 element seem the most attractive and form
the basis for this study.

Each of these methods has advantages and disadvantages. The
FD-CC formulation tends to be more efficient but has significant
constraints on the grid which is required to be orthogonal (Casulli
and Walters, 2000). In addition, the Coriolis term must be treated
carefully to maintain skew symmetry (Ham et al., 2007; Perot,
2000; Bonaventura and Ringler, 2005). On the other hand, the FE
formulation has no significant constraints on the grid (except FE-
CC) and the Coriolis term is treated correctly using the standard
FE approximation. The full matrix FE formulation is inefficient
compared to the FD-CC and lumped FE schemes due to the pres-
ence of a large, sparse mass matrix. The FE formulations which
use lumping of the mass matrix, FE-CC and FE–NPI, have equiva-
lent efficiency as the FD-CC scheme. However, FE-CC has the same
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Fig. 10. Results using FE–FM (top), FE–NPI (top–middle), FE-CC (bottom–middle), and FD-CC (bottom) after approximately 31 cycles (105 min). Irregular grid (left) and front-
generated grid (right). The scale (bottom left) is in meters.

116 R.A. Walters et al. / Ocean Modelling 28 (2009) 106–117
grid constraints as FD-CC since they are both based on a circum-
center approach.

Of these methods, FE–FM seems to have the best phase accu-
racy, followed closely by FE-CC and FD-CC for regular grids, and
then by FE–NPI. For the irregular grid, FE-CC and FE–NPI have
about the same phase errors where they lag and lead the FE–FM re-
sults, respectively. All these schemes are reasonably accurate.
None of the approaches showed significant amplitude errors ex-
cept FD-CC during the initial period of the test problem. Appar-
ently, the reconstruction of the Coriolis term is not entirely
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compatible with the initial condition for a Kelvin wave. The cause
for this is unknown at this time.

The choice between methods can be considered in terms of stabil-
ity, accuracy and efficiency. All these methods are stable as formu-
lated here. FE–FM is the most accurate but the least efficient. FE-CC
and FD-CC have much better efficiency with a small loss in accuracy,
but are subject to grid constraints. FE–NPI has good efficiency with no
grid constraints, but has slightly worse accuracy. In the end, the choice
of methods is problem specific and can have more subjective inputs.

With the correct choice of time-stepping procedure for the
treatment of the Coriolis term (Walters et al., 2008) as well as
the maintenance of a skew-symmetric matrix for spatial interpola-
tion (Ham et al., 2007), the FD and FE unstructured grid formula-
tions presented here all perform well. Moreover, all of these
schemes allow a straightforward approach for flooding and drying.
This class of FE and FD models is robust, efficient and accurate.
They can easily be used in operational forecasting codes as has
been successfully shown by Walters et al. (2009) and Lane et al.
(2009) for New Zealand.
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