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Abstract

The goal of this paper is to develop and compare numerical discretizations that explicitely take into account the
logarithmic behaviour of the velocity field in the oceanic bottom boundary layer. This is achieved by discretizing the
governing equations by means of the finite element method and either enriching or modifying the set of shape functions
used to approximate the velocity field. The first approach is based on the extended finite element formalism and requires
additional ‘‘enriched” degrees of freedom near the bottom. The second approach amounts to using logarithmic shape func-
tions in the bottom element instead of the usual linear ones. Both approaches are compared with analytical and classical
finite element solutions in the case of rotating and non-rotating bottom boundary layer flows.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Most current ocean and coastal circulation models use a non-constant vertical eddy viscosity profile to take
into account the variations of turbulent mixing with depth. The latter is influenced by shear and stratification
and varies considerably over the depth of the ocean. Near the ocean bottom, shearing effects are dominant and
eddy viscosity is generally parametrized as a linear function of the distance to the bottom (Ellison, 1956;
Weatherly and Martin, 1978). Such a behaviour leads to a logarithmic velocity profile just above the bottom
whose height depends on the roughness of the bottom. The typical height of the logarithmic bottom boundary
layer (BBL) is generally much smaller than the vertical resolution available in a 3D ocean circulation model
(Weatherly and Martin, 1978).
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Therefore, most grid point finite difference models do not explicitely resolve the BBL. Instead, they take its
impact into account by resorting to ‘‘law of the wall” approaches (e.g. Rodi, 1993), the most popular of which
consists in estimating the bottom stress as a quadratic function of the velocity that is computed above the sea
bed (e.g. Blumberg and Mellor, 1987; Deleersnijder et al., 1992; Davies et al., 1995). This technique is consis-
tent with the logarithmic layer theory provided the first grid point above the bottom boundary is located in the
logarithmic layer (Tennekes, 1973).

Here, we would like to evaluate some finite element discretizations of the BBL and see how accurately they
can represent the velocity profile. Unlike the finite difference method, the finite element method (FEM) allows
a greater flexibility in both the geometrical discretization of the computational domain and in the functional
discretization of the model variables. Geometrical flexibility is achieved thanks to the use of unstructured
meshes that accurately represent complex domains and allow for local mesh refinement (Goreman et al.,
2006; Legrand et al., 2006). This has been extensively used to simulate 2D horizontal and 3D oceanic and
shallow-water flows (e.g. Lynch et al., 1996; Danilov et al., 2004; Hanert et al., 2005; Pain et al., 2005; Walters,
2006; White and Deleersnijder, in press). By functional flexibility, we mean the ability to locally change the
type of shape functions used to approximate the model variables. This feature has been less used for oceanic
applications except in some recent studies on the use of p-adaptive Discontinuous Galerkin methods to sim-
ulate shallow water flows.

Functional flexibility has been used to a greater extent for some engineering applications where the classical
FEM fails or is prohibitively expensive. This is typically the case for problems with rough coefficients, bound-
ary layers or highly oscillatory solutions. The main idea behind this improved FEM, usually called Partition of
Unity FEM (PUFEM) or eXtended-FEM (X-FEM) (Melenk and Babus�ka, 1996; Babus�ka and Melenk, 1997;
Moës et al., 1999), is to design the shape and test functions in view of the problem under consideration. Hence
if the analytic behaviour of the solution is available, the approximation of the solution can be improved by
taking this information into account. In contrast to that, the classical FEM has to use very small mesh sizes
in order to deal with the singular behaviour of the solution.

In this work, we are going to deal with the particular issue of the oceanic BBL and try to apply some of the
above-mentioned techniques to build finite element scheme that accurately represent the velocity field in the
BBL. The model equations are presented in Section 2 and their analytical solutions is derived in Section 3.
Finite element discretizations designed to capture the BBL are introduced in Section 4. These discretizations
follow or are inspired by the X-FEM formalism. Finally, a numerical evaluation of the suggested schemes is
performed in Section 5.
2. Model equations

For the sake of simplicity, it is assumed that the flow near the bottom is horizontally homogeneous and
only depends on Coriolis, pressure gradient and vertical friction forces. We thus neglect time derivatives,
advection terms and horizontal diffusion. These assumptions are realistic in the vicinity of the ocean bottom.
Moreover, we are also going to assume that above the BBL, the flow is in geostrophic balance and the pressure
gradient is depth-independent.

In that case, the problem reduces to seeking the horizontal velocity u(z) = (u(z),v(z)) that satisfies the
following equation:
f ðu� ugÞ � ez ¼
d

dz
m

du

dz

� �
; ð1Þ
where z 2 [0, L] is the vertical coordinate, f is the Coriolis parameter, ug = (ug,vg) is the geostrophic velocity, m
is the kinematic eddy viscosity and ez is a unit vector pointing upward.

In the sheared boundary layer, a classical parametrization of the eddy viscosity is
mðzÞ ¼ ju�z;
where j = 0.41 is the von Kàrman constant and u� is the friction velocity (Ellison, 1956). The friction velocity
can be expressed in terms of the bottom stress s as u� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksk2=q

p
, where q is the fluid’s density.
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The solution of Eq. (1) should satisfy a no-slip boundary condition at the bottom. However, as it is not
possible to represent accurately the flow below the roughness height (z0), it is generally assumed that the
horizontal velocity vanishes at the level z = z0 rather than at the bottom level z = 0. We may then redefine
the vertical coordinate as z = z � z0. In that case, the turbulent viscosity becomes m = ju�(z + z0) and the
no-slip boundary condition simply reads
uðz ¼ 0Þ ¼ 0: ð2Þ
Another boundary condition amounts to imposing the momentum flux at the bottom.
qm
du

dz

� �
z¼0

¼ s: ð3Þ
The bottom stress s � ses ¼ qu2
�es is applied in the direction es. We can also define the perpendicular direction

e\ = (es � ez)sign(f).

3. Velocity profile in the BBL

To compute the exact solution of Eq. (1), we arbitrarily impose the value of the friction velocity. The latter
is generally not imposed in practice as it depends on the magnitude of the bottom stress, which in turn is
proportional to the velocity gradient via (3). We make this approximation in order to be able to find a simple
– and easy to deal with – analytical solution to Eq. (1) without having to solve a nonlinear problem. Moreover,
the value of the geostrophic velocity is chosen in such a way that the velocity satisfies boundary conditions (2),
(3) and reduces to the geostrophic velocity faraway from the bottom. The same approach has been followed by
Ellison (1956), who first derived an analytical solution for velocity in a rotating BBL.

The solution of Eq. (1) may be reduced to a scalar problem by introducing the complex velocities
w = (u � ug) � e\ + i(u � ug) � es and wg = ug � e\ + iug � es. The imaginary part of w represents the component
of (u � ug) parallel to the bottom stress, while its real part is orthogonal to the bottom stress. Eq. (1) can then
be expressed as
d

dz
mðzÞ dw

dz

� �
¼ ijf jw; ð4Þ
where w and wg should satisfy the following conditions:
wð0Þ ¼ �wg; ð5Þ

qmðzÞ dw
dz

� �
z¼0

¼ is; ð6Þ

lim
z!1

wðzÞ ¼ 0: ð7Þ
By introducing n ¼ 2eip=4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþz0Þjf j

ju�

q
, we may rewrite Eq. (4) as
d2w

dn2
þ 1

n
dw
dn
� w ¼ 0 ð8Þ
of which the solution that satisfies (7) is
wðnÞ ¼ AK0ðnÞ;
where K0 is the 0th order modified Bessel function of the second kind. The integration constant A is found by
imposing boundary condition (6). The final velocity solution reads
wðnÞ ¼ �2i
u�
j

K0ðnÞ
n0K1ðn0Þ

; ð9Þ
where n0 ¼ 2eip=4
ffiffiffiffiffiffiffi
z0jf j
ju�

q
and K1 ¼ �K 00 is the 1st order modified Bessel function of the second kind. It should be

noted that the solution of Eq. (4) is often expressed in terms of Kelvin or Hankel functions rather than Bessel
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functions (e.g. Ellison, 1956; Cushman-Roisin and Malačič, 1997). Finally, the geostrophic velocity is found
from (5): wg = �w(n = n0).

The length scale ju�/jfj, called here the Coriolis length, represents the distance from the bottom at which the
veering of the velocity due to the Coriolis force becomes important. For z� ju�/jfj, rotational effects are small
and the velocity profile is expected to be logarithmic. This is confirmed by computing the asymptotic velocity
solution when n ? 0. The K0 and K1 Bessel functions asymptotically behave like �log(n) and 1/n, respectively
(Abramowitz and Stegun, 1965) and (9) therefore reduces to
1 No
always
wðzÞ þ wg �
u�
j

i log 1þ z
z0

� �
; for z! 0:
This is the usual logarithmic velocity profile in a turbulent boundary layer in the absence of rotation:
uðzÞ ¼ u�
j

log 1þ z
z0

� �
es: ð10Þ
The asymptotic solution has the same orientation as the bottom stress and therefore does not represent the
veering of the velocity due to rotation. It should be noted that small values of n are only possible if n0 is also
small as jnjP jn0j, which is generally the case in practice.

4. Finite element discretization

In this section, we present three finite element approximations to the exact solution of Eq. (1).
The first approach is the classical linear finite element approximation, which amounts to approximating the

exact solution as:
uðzÞ 	 uh
P 1
ðzÞ ¼

XN

i¼1

ui/iðzÞ; ð11Þ
where /i(z) is the piecewise linear P1 shape function associated with node i (see Fig. 1) and N is the number of
vertices in the 1D grid or mesh.1 This approximation yields a quadratic convergence rate in the L2-norm if the
finite element grid is able to represent the boundary layer. If this is not the case, poor convergence is expected.

In order to avoid poor rates of convergence, the extended finite element method (X-FEM) has been intro-
duced. This method amounts to locally enriching the classical finite element approximation (11) in a way that
takes the exact behaviour of the solution into account. This approximation, denoted X � P1, reads:
uðzÞ 	 uh
X�P 1
ðzÞ ¼ uh

P 1
ðzÞ þ uh

enrðzÞ; ð12Þ
where uh
P 1
ðzÞ is given by (11) and uh

enrðzÞ reads
uh
enrðzÞ ¼

XM

j¼1

bj/jðzÞF ðzÞ: ð13Þ
The additional degrees of freedom bj are added to the nodes whose support lies in the BBL. As the grid size is
usually much larger than the BBL height, additional degrees of freedom are limited to the bottommost
element. The function F is called the enrichment function (Moës et al., 1999) and allows us to incorporate
our knowledge of the exact solution directly into the finite element space. As we know that u(z) reduces to
(10) in the BBL, we define the enrichment function as
F ðzÞ ¼ log 1þ z
z0

� �
:

The resulting additional shape functions /X
j ðzÞ � /jðzÞF ðzÞ are shown in Fig. 1.
te that in a 1D problem, both mesh and grid mean the partition of the domain into non-overlapping elements. This partition will
be structured although the size of the elements may change. By vertices, we mean the nodes lying on elements extremities.
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Fig. 1. Sketch of the first three elements of the 1D finite element grid for the classical P1 scheme (left), the X � P1 scheme (center) and the
log � P1 scheme (right). The two additional shape functions used in the X � P1 scheme are represented with a dotted line.
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A third approach amounts to using logarithmic shape functions in the bottom element instead of the P1

shape functions to mimic the behaviour of the exact solution. Hence, the following approximation, denoted
log�P1, is used:
Fig
uðzÞ 	 uh
log�P 1

ðzÞ ¼
XN

i¼1

uiwiðzÞ; ð14Þ
where the shape functions wi(z) are defined as:
w1ðzÞ ¼ 1� w2ðzÞ; ð15Þ

w2ðzÞ ¼ log 1þ z
z0

� �
log 1þ d

z0

� ��
; ð16Þ

wiðzÞ ¼ /iðzÞ for i ¼ 3; . . . ;N ; ð17Þ
where d is the height of the bottommost element of the grid (i.e. X1 = [0, d], see Fig. 1). With this approach, the
logarithmic shape functions (15) and (16) are used in place of P1 shape functions in X1. Their ‘‘shape” depends
on the ratio between the element size d and the roughness height z0 (Fig. 2) and they reduce to P1 shape func-
tions when the grid is fine enough to represent the BBL, i.e. when d [ z0. The use of these shape functions in
the bottom element does not change the number of degrees of freedom.

One may argue that shape functions inspired by the velocity solution in a rotating BBL would be more
accurate than the logarithmic shape functions proposed here. Using (9) to build shape functions is however
not straightforward as the argument of the Bessel function K0, n, depends on the friction velocity u�. The latter
is generally unknown and has to be expressed in terms of the velocity near the bottom. Hence, velocity shape
. 2. Logarithmic shape functions used in the bottom element. The ratio z0/d is equal to 10�3, 10�1 and 10 (from left to right).
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functions would depend on the velocity, which might not be desirable in practice. Adding one more term to the
asymptotic development of K0(n) also leads to complex expressions that depend on the friction velocity.

We refer to Hanert et al. (2006) for details on the way to derive the discrete equations once the finite
element approximation has been defined. We shall just mention that the Galerkin procedure is used for the
P1 and X � P1 schemes while a Petrov–Galerkin procedure is used for the log�P1 scheme. The former
amounts to using test functions identical to shape functions while the latter allows to use test functions that
are different from the shape functions. In the case of the log�P1 scheme, P1 test functions are used all over the
domain (i.e. even in the bottom element). This allows us to have smoother functions to integrate. The
numerical integration order and the computational cost are thus reduced.

5. Numerical simulations and discussions

Let us now try to assess and compare the numerical schemes introduced in the previous section. Numerical
results are compared to the analytical velocity solutions (10) and (9) obtained for a non-rotating and rotating
BBL, respectively. The numerical domain is 100 m high and is discretized with different uniform grids, whose
resolution goes from 50 to 0.1 m. The model resolution could of course be locally increased near the bottom
but even then it would be hard to match the resolution required to explicitly represent the BBL. Moreover in a
realistic model, this would lead to a very severe stability condition on the time step. The model parameters
have the following values: f = 0 or 10�4 s�1, q = 1010 kg m�3, z0 = 10�3 m and u� = 10�2 m s�1. The bottom
stress is applied in the direction es ¼ ð1=

ffiffiffi
2
p

; 1=
ffiffiffi
2
p
Þ.

As boundary conditions, the value of the analytical solution is imposed at the top and at the bottom of the
domain. The latter amounts to the no-slip boundary condition (2). We also consider a free-slip boundary
condition at the bottom as this kind of condition is often used in practice. In that case, condition (3) is used
instead of (2) at the bottom. However, a free-slip condition is only used for the P1 scheme as the two others
(X � P1 and log�P1) are specially designed to deal with the no-slip bottom boundary condition.

Fig. 3 shows the analytical and numerical velocity solutions in the non-rotating BBL obtained for grid sizes
of 5 and 20 m. The grid is obviously too coarse to represent the BBL. As expected, a fully linear approxima-
tion of the velocity with a no-slip boundary condition gives a very poor velocity profile in the BBL and in the
rest of the domain as well. The velocity value at the bottom might be correct but the above solution largely
under-estimates the exact velocity. Better results are obtained when using a free-slip boundary condition as the
numerical solution is now very close to the exact solution everywhere except in the BBL where the exact velo-
city is over-estimated. The use of the boundary condition (3) instead of (2) amounts to imposing the correct
bottom stress rather than the correct velocity value. The solution in most of the domain is therefore fine except
near the bottom where it cannot vanish while still giving the right stress. This problem does not occur with the
X � P1 and log � P1 schemes as these explicitely take into account the logarithmic behaviour of the velocity in
the BBL. Both schemes are working equally well and give solutions almost identical to the exact solution.

In the general rotating case (Fig. 4), the P1 scheme behaves the same as before. However, results obtained
with the log � P1 scheme are now less accurate as the shape functions used in the bottom element do not
exactly mimic the analytical solution anymore. In particular, the logarithmic shape functions do not take
the veering of the velocity into account. The numerical solution is thus less accurate when the grid size is
not small compared to the Coriolis length, equal to about 40 m in this experiment. In this case, the X � P1

scheme is working better as P1 degrees of freedom are still present in the bottom element. These nodes can
account for the veering effect and the solution is thus qualitatively better.

A more quantitative evaluation can be achieved by computing the L2 relative error between the exact and

numerical solutions. The latter is defined as e ¼
R

X
ðuh�uexÞ2dXR

X
u2

exdX
, where uh and uex denote the discrete and exact

solutions, respectively. Fig. 5 shows the behaviour of the error for grid sizes going from 0.1 m to 50 m. A grid
size of 0.1 m is obviously unaffordable in any realistic 3D model. However, locally increasing the resolution to
achieve a 5 m grid size near the bottom while having a much coarser resolution in the mid-ocean is achievable.
For all schemes, the error is decreasing quite slowly for grid sizes larger than about 1 m. For grid sizes smaller
than that, convergence is more rapid although not quadratic. The expected quadratic convergence rate should
only be achieved for grid sizes of the order of z0 = 10�3 m.
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Fig. 3. Snapshot of the velocity profile in the non-rotating BBL (f = 0) obtained with different finite element discretizations (dashed lines)
versus the analytical solution (solid line). The grid resolution is set to 20 m (top) and 5 m (bottom). Results obtained with the P1 scheme
are shown on the left and those obtained with the log � P1 and X � P1 schemes are shown on the right. The symbols ‘‘}”, ‘‘+”, ‘‘s” and
‘‘�” represent the nodal values of the no-slip P1, free-slip P1, log � P1 and X � P1 discrete solutions, respectively. Note that the log � P1

and X � P1 solutions are almost identical to the exact solution.
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In the non-rotational case, large differences are observed between the different schemes. For the classical P1

schemes, the use of free-slip boundary conditions reduces the error by about one order of magnitude. The
error is further reduces by one order of magnitude when using the log�P1 scheme. Finally, the X � P1 scheme
is working best with numerical errors of the order of 10�5. The same trends are observed in the rotational case,
except that now the log � P1 scheme is only performing better than the P1 scheme with free-slip boundary
condition for grid sizes smaller than the Coriolis length. Again, this result was expected as the log � P1 scheme
is designed specifically for a non-rotating BBL and does not take veering into account. The X � P1 scheme is
more general than in the sense that all the P1 degrees of freedom are preserved and additional nodes are used
in the bottommost element to handle the logarithmic boundary layer. As a result, the X � P1 scheme performs
equally well in the rotational and non-rotational cases for all resolutions.

For P1 schemes, the poor rate of convergence is due to the lack of resolution in the BBL. One could how-
ever wonder why a better convergence rate is not obtained with the log � P1 scheme, in the non-rotational
case at least. Indeed errors are much smaller in that case but the error curve is not steeper. This is due to
the fact that logarithmic shape functions are only used in the bottommost element. The numerical error in that
element is therefore very small. As resolution increases, the size of that element decreases and the proportion
of the domain where P1 shape functions are used increases. As a result, the error in the bottom of the domain
might increase. For instance, if the bottom element is divided into two new elements, the finite element
approximation will be logarithmic in the first element but only linear in the second one. The error in the
two bottom elements, taken as a whole, might thus increase compared to the error in the previous bottom
element. This is likely to upset the convergence rate. The same error behaviour is also observed for the
X � P1 scheme as the enriched degrees of freedom are limited to the bottommost element.
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Fig. 4. Same as Fig. 3 but for a rotating BBL (f = 10�4 s�1). Note that the X � P1 solution is still almost identical to the exact solution
while the log � P1 solution is less accurate than in the non-rotating case.
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respectively.
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Finally, it is worth noting that the X � P1 scheme might be weaker than the other schemes in terms of
computational efficiency. Indeed, when writing the discrete equations in matrix form Ax = b, the matrix A

is tridiagonal when P1 and log � P1 schemes are used. This is however not the case with the X � P1 scheme
as there are 4 degrees of freedom in the bottommost element instead of 2 for the other schemes. This could
make the efficient implementation of the X � P1 scheme more difficult as it prevents the use of a tridiagonal
solver. Moreover, the numerical integration order required to accurately integrate products of shape and test
functions or their derivatives is low in the case of classical P1 and log � P1 schemes. This is not the case for the
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X � P1 scheme, where a large number of Gauss integration points (about 30) is required in the enriched
elements. This problem often occurs with extended FEM’s and was already mentioned in the seminal paper
of Melenk and Babuška (1996).
6. Conclusion

Two finite element schemes, denoted X � P1 and log � P1, have been proposed to solve the velocity field in
the oceanic BBL. The common idea of these schemes is to explicitely take into account the logarithmic behav-
iour of the velocity in the BBL. For the X � P1 scheme, this is achieved by enriching a classical P1 finite
element approximation with additional degrees of freedom near the bottom. The log � P1 scheme is more
specific as it amounts to replacing P1 shape functions by logarithmic shape functions in the bottom element.
The logarithmic shape functions exactly mimic the velocity profile near the ocean bottom, where rotation
effects are negligible.

The X � P1 scheme is more general in the sense that it preserves all the P1 nodes and adds some new nodes
to reproduce the logarithmic behaviour. The main advantage of the X � P1 scheme over the more specific
log � P1 scheme is that it works equally well when rotational effects are not negligible. In that case, the velo-
city undergoes some veering and deviates from the logarithmic solution. The log � P1 scheme is not able to
represent that deviation and is thus less accurate. However, despite those shortcomings, the log � P1 scheme
is interesting for small-scale applications, where rotational effects are negligible, or when the grid size is fine
enough. This is mainly due to the simplicity of that scheme that renders it more efficient and computationally
cheaper.
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