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A FRACTIONAL DIFFUSION MODEL OF CD8+ T CELLS

RESPONSE TO PARASITIC INFECTION IN THE BRAIN

Afshin Farhadi1,* and Emmanuel Hanert1,2

Abstract. Toxoplasma gondii (T. gondii) is a parasitic pathogen that causes serious brain diseases
in fetuses and patients with immunodeficiency, particularly AIDS patients. In the field of immunology,
a large number of studies have shown that effector CD8+ T cells can respond to T. gondii infection in
the brain tissue through controlling the proliferation of intracellular parasites and killing infected brain
cells. These protective mechanisms do not occur without T cell movement and searching for infected
cells, as a fundamental feature of the immune system. Following infection with a pathogen in a tissue,
in their search for infected cells, CD8+ T cells can perform different stochastic searches, including Lévy
and Brownian random walks. Statistical analysis of CD8+ T cell movement in the brain of T. gondii-
infected mouse has determined that the search strategy of CD8+ T cells in response to infected brain
cells could be described by a Lévy random walk. In this work, by considering a Lévy distribution for
the displacements, we propose a space fractional-order diffusion equation for the T cell density in the
infected brain tissue. Furthermore, we derive a mathematical model representing CD8+ T cell response
to infected brain cells. By solving the model equations numerically, we perform a comparison between
Lévy and Brownian search strategies. we demonstrate that the Lévy search pattern enables CD8+ T
cells to spread over the whole brain tissue and hence they can rapidly destroy infected cells distributed
throughout the brain tissue. However, with the Brownian motion assumption, CD8+ T cells travel
through the brain tissue more slowly, leading to a slower decline of the infected cells faraway from the
source of T cells. Our results show that a Lévy search pattern aids CD8+ T cells in accelerating the
elimination of infected cells distributed broadly within the brain tissue. We suggest that a Lévy search
strategy could be the result of natural evolution, as CD8+ T cells learn to enhance the immune system
efficiency against pathogens.
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1. Introduction

After the discovery of the Toxoplasma gondii (T. gondii) parasite in 1907, it has been extensively studied
in various fields, such as morphology, immunology, and identification of diseases caused by T. gondii parasite
[47, 80]. From a morphological point of view, there are different forms of the T. gondii parasite that lead to
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a complex life cycle for T. gondii and widespread infection in almost all warm-blooded vertebrate hosts [20].
Initially, T. gondii oocysts are created in the body of cats, as definitive hosts and then transferred to their feces,
which can contaminate the environment, such as soil, water, and food. Subsequently, through the transmission
of oocysts into the bodies of secondary hosts, other types of T. gondii parasites, known as tachyzoites and
bradyzoites, are formed. In humans, T. gondii can be perilous for the fetus during pregnancy and cause congenital
diseases, known as toxoplasmosis, such as hydrocephalus, microcephaly, and blindness [24]. T. gondii parasites
can maintain their survival in the brain tissue through the slow proliferation of bradyzoites and the creation
of tissue cysts in different types of brain cells [85]. In adults, following Toxoplasma infection in the brain, in
addition to the possibility of developing psychiatric disorders, like schizophrenia [75], the transformation of tissue
cysts into free tachyzoites can jeopardize the life of patients suffering from immunodeficiency, particularly AIDS
patients [21, 46]. This issue highlights the importance of the immune system in controlling the proliferation of
tachyzoites, which are capable of rapid division within the brain cells [18].

The human body is equipped with a complicated and ingenious system, known as the immune system that
is composed of molecules, such as cytokines and chemokines, and numerous cells, like B cells and T cells. The
goal of the immune system is to combat pathogenic organisms, like bacteria, viruses, and parasites in the body
leading to the control of the pathogen growth and the elimination of the infected cells from the host body.
There are two main groups of immune responses: innate immunity and adaptive immunity. Innate immunity
includes the first reactions of the immune system against pathogens that enter the body, like changes in the
temperature of the host body and nonspecific mechanisms of the innate immune cells, such as the secretion of
cytokines that promote the proliferation of other immune cells. These initial mechanisms are not sufficient to
clear an infection. However, adaptive immunity comprises specific mechanisms that lead to the neutralization
of pathogens through antibodies produced by B cells and the destruction of infected cells by CD8+ T cells.
Although innate and adaptive cells have different biological functions, they are closely linked to each other. For
instance, in the case of T. gondii infection, initially, the innate immune cells, such as dendritic cells respond to
T. gondii tachyzoites. One of these responses is to secrete molecules, like IL−12. Then, CD8+ T cells, as the
adaptive immune cells, are stimulated by IL−12 leading to the secretion of other molecules, such as cytokine
IFN−γ that can control the growth of intracellular parasites and help T cells to penetrate the brain, as protective
and regulatory mechanisms, respectively [22, 78]. Thus, CD8+ T cell deficiency causes inadequate production
of the cytokine IFN−γ, which triggers the multiplication of a large number of tachyzoites in the brain tissue.
For more details on basic concepts in immunology, refer to the book [57] by E. Paul.

Over the last decade, as a fundamental characteristic of the immune system, the movement of immune cells
in the body and search patterns in different tissues, including lymph nodes [79], skin [2], brain [30], and lungs
[53] have been considerably studied. As soon as pathogens enter the body, the immune cells need to move
continuously and search for different types of cells, like infected cells in various tissues. For instance, upon
infection, näıve T cells, i.e., nonactivated T cells search for antigen-presenting cells, especially dendritic cells
(DCs) in the lymph nodes. Following interactions with DCs, they can convert into effector CD8+ T cells. Effector
T cells then move toward infected tissues where they search for infected cells so that they can perform their
protective mechanisms. Therefore, the movement of T cells and their search for pathogens during an infection
in the body are essential for immune system activities. T cell movement could have two components: directional
movement (chemotaxis) and stochastic motion. By chemotaxis, T cells are directed to the infected organs by
chemical signals, such as chemokines [54, 83]. For example, Landrith et al. [42] have examined how effector
CD8+ T cells are recruited into the T. gondii-infected brain tissue by adhesion molecules, VCAM-1, VLA-4,
and chemokines CXCL9/10. However, studies of T cell motility in tissues have proposed that similar to foraging
animals, T cells do a random search for their targets [49, 79]. Analysis of these random motions suggests two
types of search strategy: Brownian motion and Lévy movement. In complex diffusion processes, occasional large
jumps between many short displacements can be considered as a distinctive characteristic of a Lévy random walk
(RW) versus a Brownian motion. In that case, for a Lévy RW, the probability distribution function (pdf) for the
random movements is obtained by a heavy tail distribution with an asymptotic behaviour as ∼ l−(α+1), where
l is the length of the displacements and 0 < α < 2 [48]. Figure 1 shows three sample random displacements of a
particle following a Lévy RW. In all cases, initially, the walker is placed at the origin (x, y) = (0, 0) and randomly



A FRACTIONAL DIFFUSION MODEL OF CD8+ T CELLS RESPONSE TO T. GONDII INFECTION 3

Figure 1. Illustration of the difference between Lévy and Brownian RWs based on the trajec-
tories of their displacements. All trajectories are drawn from a Lévy distribution with different
values of α. (A) and (B) In the case of a Lévy RW, there are large jumps between short dis-
placements. (C) As the value of α increases, the probability of large displacements decreases so
that with α = 2, a classical Brownian motion is obtained.

makes 103 steps with different values of α. As the value of α increases, the probability of large displacements
decreases so that with α = 2, a classical Brownian motion is obtained. For more details on the simulation of
Lévy distributions refer to [13, 81]. So the existence of large jumps for Lévy RWs enables T cells to travel large
distances within the tissues to find their targets. Studies have shown that due to finding rare DCs and also the
lack of information on the exact location of DCs in the lymph nodes, näıve T cells perform a random search
that can be described by a Brownian RW [59, 65]. However, the search pattern of effector CD8+ T cells in a
peripheral tissue where the tissue is injured by pathogens could be represented by a Lévy RW or a Brownian
motion, depending on factors, such as the type of infection and the features of infected tissues. For instance,
Effector T cells in inflamed lungs can have a similar foraging pattern to näıve T cells [52]. However, Harris
et al. [30] observed that CD8+ T cells perform a Lévy RW search strategy in the brain of T. gondii-infected
mouse. The difference between T cell search patterns in lymph nods and peripheral tissues may result from
factors, such as the properties of tissue and intrinsic differences between nonactivated and effector CD8+ T cells
[40].

In addition to CD8+ T cells in the T. gondii-infected brains, there are many species that perform a Lévy RW
search for their targets. Some of these species are listed as follows: jackals [3], spider monkeys [9], honeybees
[63, 64], bumblebees [44], fruit flies [62], and large marine predators [32, 69]. In the field of modelling a large
number of random walkers, such as living organisms following a specific random motion in an environment,
diffusion equations for the density of the random walkers can be obtained. These equations consist of terms
with time and space derivatives. For a Brownian motion, a Gaussian probability distribution function (pdf)
for the displacements leads to a second-order diffusion equation [55]. However, for a Lévy RW, a power-law
asymptotic behaviour of the pdf for the displacements results in a space-fractional-order diffusion equation
with order 1 < α < 2. In some anomalous diffusion processes, the random walkers tend to pause between
displacements, and hence they diffuse slower than predicted by a Brownian motion. Therefore, the pdf for
waiting times between jumps exhibits a power-law asymptotic behaviour. In that case, a time-fractional-order
equation with order 0 < γ < 1 is obtained. However, in the case of a Brownian motion, considering a Poissonian
pdf for the pausing times leads to a time integer-derivative with order γ = 1 [48]. In recent years, such modelling
using fractional derivatives has been applied to a broad range of problems in finance [12, 67], plasma turbulence
[15, 16], epidemiology [27, 29], ecology, and biology [61, 76]. As well as the applications of fractional calculus,
designing efficient numerical methods for solving the fractional models is one of the key issues that has been
widely studied [4, 5, 34, 35, 50, 66].
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In immunology, mathematical models have been widely applied to study the dynamics of host immune
responses to tumour cells and viral infections, like hepatitis, human immunodeficiency virus (HIV), and influenza
in the form of an ordinary differential system of equations with integer or fractional orders (see for instance
[19, 41]). In these models, the interactions between viruses or infected cells and immune responses are considered
as predator-prey dynamics, i.e., viruses and infected cells are the prey and CD8+ T cells are the predators.
In recent years, researchers have tried to examine the interplay between viruses or tumour cells and immune
system cells based on their spread or movements in the organs of the body [8, 14]. The resulting models are in
the form of a system of reaction and diffusion equations. In these models, it is assumed that T cells search for
viruses or tumour cells based on a Brownian motion, and viruses and tumour cells proliferate logistically and
spread in the injured tissues relying on a Brownian dispersion.

Observation of the Lévy RW pattern performed by CD8+ T cells in their search for the T. gondii infected
brain cells has led to more studies on such a pattern of the movement in the body [10, 43]. Therefore, following
such studies, it would be essential to derive appropriate mathematical models based on the Lévy RW that can
shed some light on differences with the classical Brownian motion, which has been also observed in the immune
system. Such modelling based on the Lévy random motion leads to space-fractional-order diffusion equations.
However, recently, in the field of immunology, fractional-order models of infections, such as HIV have been just
designed relying on the time-fractional operators [1, 6, 33]. In these models, CD4+ T cells, as the immune cells,
are the target of HIV infection, and the dynamics of free HIV particles, healthy and infected CD4+ T cells have
been investigated by numerical and analytical methods. For instance, Baleanu et al. [6] performed a comparison
of their results by applying ordinary, Caputo, and Caputo-Fabrizio time-fractional operators to their models.
However, Khalid K et al. [1] introduced a new fractional model by using the conformable fractional derivative
and examined the analytical and numerical solutions of their model. However, in these models, the effect of the
CD8+ T cells on HIV infection has not been considered. Hence, to our knowledge, applying space-fractional-
order operators to modelling the immune system response to infection has been ignored. This is obviously a
serious knowledge gap since the function of the immune system is necessarily dependent on the movement of
T cells. Thus, the aim of this study is to address this knowledge gap by applying the Lévy foraging pattern of
T cells to the Spatio-temporal modelling of the interaction between CD8+ T cells and bradyzoite-infected cells
during T. gondii infection in the brain. Here, the main idea will be to understand how the Lévy RW of CD8+ T
cells can lead to an efficient immune response to the infected brain cells. Therefore, the fractional-order model
results will be compared with the results obtained with the classical model to highlight the effect of Lévy RW
on killing infected cells distributed broadly within the brain tissue.

We organize the remainder of the paper in the following structure. In the next section, we derive a space-
fractional-order diffusion equation for the CD8+ T cells density and also a space-time model describing the
interactions between CD8+ T cells, healthy and infected brain cells. We discuss the system parameters and the
estimation of their values in Section 3. A numerical method for solving space-fractional-order diffusion equations
is applied in Section 4. Our model is then used to estimate the efficiency of effector CD8+ T cells for a Lévy
RW versus a Brownian motion in Section 5, and in the last section, we finish the paper with a review of the
results and also some suggestions for future work.

2. Model description

In this paper, our goal is to investigate the efficacy of a Lévy search pattern performed by effector CD8+ T
cells in the T. gondii-infected brain tissue. When effector T cells enter the brain, they perform random searches
to find the infected brain cells. Therefore, we can study the impact of a Lévy random search on the density of
infected cells distributed throughout the brain tissue. To do so, we first derive a model with non-local diffusion
representing the density of CD8+ T cells, and then according to the T. gondii life cycle in the brain, we shall
formulate a model composed of three coupled equations representing the density of healthy and infected brain
cells in space and time with no diffusion term.
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2.1. Modelling the superdiffusion of CD8+ T cells

Like viral pathogens, as a result of T. gondii parasites entering the body, näıve T cells located in the lymph
nodes are activated and proliferate due to interactions with dendritic cells. Activated or effector CD8+ T cells
can then do their protective mechanisms in the infected tissues of the body, including the brain tissue [36].

It is worth noting that CD8+ T cells can infiltrate into the brain parenchyma (gray and white matter) only
during infection [31]. In the pathway of CD8+ T cells toward the brain tissue, there are barriers, known as
blood-brain barriers (BBBs) that control the penetration of the immune cells into the brain parenchyma [82].
However, CD8+ T cells can overcome such barriers through a series of steps leading to a directed migration of
CD8+ T cells into the brain tissue. In [42], for T cell infiltration into the brain parenchyma during T. gondii
infection, a process consisting of three steps has been considered. Initially, the speed of CD8+ T cells moving
in the blood vessels is slowed down by the adhesion molecules. At the next step, they can infiltrate into the
perivascular space, and eventually, chemokines lead them to the brain parenchyma. When CD8+ T cells reach
the brain, they do random searches for their targets, i.e., infected brain cells. The properties of such random
searches have been studied by Harris et al. [30].

From a statistical point of view, there are basic properties for Brownian and Lévy RWs that can be used to
understand their differences. One of these properties is the mean-square displacement (MSD). If the MSD as
a function of time, grows linearly, the random motion can be described by a Brownian RW, and the nonlinear
growth of the MSD represents a Lévy RW. By considering this property, the random search strategy of living
organisms in an environment can be determined. For instance, Harris et al. [30] examined the movement of
CD8+ T cells in the brain of T. gondii-infected mouse and suggested that the MSD grows superlinearly, i.e.,
< x2 >∼ t1.4. It means that a Lévy RW search pattern is adopted by CD8+ T cells in response to Toxoplasma
infection in the brain. In that case, CD8+ T cells can diffuse within the brain tissue faster than expected from a
Brownian motion leading to superdiffusion. Another property is the probability distribution function (pdf) for
the jumps of the random walker. For a Brownian RW, the pdf is a Gaussian function. However, in the case of
a Lévy RW, the pdf exhibits a power-law asymptotic behaviour. For instance, based on the statistical analysis
of T cell movement in the infected brain [30], the pdf for the displacements of CD8+ T cell has a power-law
asymptotic behaviour as ∼ |x|−(α+1), where |x| is the length of displacements and α = 1.15. Thus, when CD8+

T cells enter the brain tissue from a source, with non-zero probability, they can make large displacements in
the brain tissue. For more details on the properties of Lévy and Brownian RWs, refer to [38].

To derive a fractional-order diffusion equation representing the density of CD8+ T cells in the T. gondii-
infected brain, we shall consider the continuous-time random walk (CTRW) processes consisting of a large
number of walkers (here T cells) that make random jumps, x1, x2, ..., xi, ... at times t1, t2, ..., ti, .... As the
displacements xi and the waiting times τi = ti− ti−1 are random variables, we define the probability distribution
functions (pdf’s) η(x) and ψ(τ) for the jumps and waiting times, respectively. By considering a separable
CTRW and given η and ψ, we can get the probability of finding a walker P (x, t) at place x and time t by the
Montroll-Weiss equation [51] in Fourier-Laplace form as follows:

˜̂
P (k, s) =

1− ψ̃(s)

s

1

1− ψ̃(s)η̂(k)
, (2.1)

where ψ̃(s) and η̂(k) are the Laplace and Fourier transforms of the pdf’s ψ and η, respectively defined as follows:

L{ψ} = ψ̃(s) =

∫ +∞

0

e−stψ(t)dt, F{η} = η̂(k) =

∫ +∞

−∞
eikxη(x)dx.

Different CTRW processes can be obtained by different asymptotic behaviours of the jump and waiting time
pdf’s, which lead to whether integer- or fractional-order diffusion equations. For example, we suppose that the
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pdf’s for the waiting times and jumps exhibit heavy-tailed (power-law) asymptotic behaviours as follows:

ψ(τ) ∼ τ−(γ+1), η(x) ∼ |x|−(α+1), (2.2)

where 0 < γ < 1 and 1 < α < 2. If we use the fact that

F [−∞D
α
xf ] = (−ik)αf̂ , F [xD

α
+∞f ] = (ik)αf̂ , L[c0D

γ
t f ] = sγ f̃ − sγ−1f(0),

where f(0) is the initial condition, −∞D
α
x and xD

α
+∞ are the positive (left) and negative (right) space-fractional-

order Riemann-Liouville operators, and c
0D

γ
t is the time-fractional-order Caputo operator defined as:

−∞D
α
xf =

1

Γ(2− α)

∂2

∂x2

∫ x

−∞

f(ξ)

(x− ξ)α−1
dξ,

xD
α
+∞f =

(−1)2

Γ(2− α)

∂2

∂x2

∫ ∞
x

f(ξ)

(ξ − x)α−1
dξ,

c
0D

γ
t f =

1

Γ(1− γ)

∫ t

0

∂f(τ)/∂τ

(t− τ)γ
dτ,

where Γ(.) denotes Euler’s gamma function, by taking the inversion of the Laplace and Fourier transforms of
equation (2.1), one can then find the following space-time fractional-order diffusion equation:

c
0D

γ
t P (x, t) = Kα,γ

[
1− β

2
−∞D

α
xP (x, t) +

1 + β

2
xD

α
+∞P (x, t)

]
, (2.3)

where coefficient Kα,γ represents a generalised diffusivity whose dimension is [Kα,β ] = mαs−γ and the parameter
β ∈ [−1, 1] is a skewness parameter that shows a preferred direction of displacements that can be seen in
heterogeneous systems. When β = 0, the distribution is symmetric and space derivative represents a symmetric
Riesz derivative. For more details on the derivation of equation (2.3), refer to [11, 48]. Here, we note that by
defining the concentration of walkers C(x, t) in one dimension as the number of walkers per unit length at
position x and time t and assuming that there are N random walkers in total with the same probability P (x, t),
we can easily see that C(x, t) = NP (x, t) also satisfies equation (2.3).

As an application of equation (2.3) to obtain the concentration of walkers following a CTRW defined by (2.2),
by considering a large number of CD8+ T cells following a superdiffusion in the T. gondii-infected brain tissue
and the fact that the pdf for the T cell displacements has a power-law asymptotic behaviour with order α, where
α = 1.15, in one dimension, the concentration (density) of CD8+ T cells E(x, t) at position x and time t with
the dimensions of the number of T cells per unit length is the solution of the following space-fractional-order
diffusion equation:

∂E(x, t)

∂t
= Kα

[
1− β

2
0D

α
xE(x, t) +

1 + β

2
xD

α
LE(x, t)

]
, (2.4)

where L is the domain length, the parameter Kα is a fractional diffusion coefficient whose dimension is
[Kα] = mαs−1, and 0D

α
x and xD

α
L are the left and right space-fractional Riemann-Liouville derivatives on
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[0, L], respectively defined as follows:

0D
α
xE(x, t) =

1

Γ(n− α)

∂n

∂xn

∫ x

0

E(ξ, t)

(x− ξ)α−n+1
dξ, (2.5)

xD
α
LE(x, t) =

(−1)n

Γ(n− α)

∂n

∂xn

∫ L

x

E(ξ, t)

(ξ − x)α−n+1
dξ, (2.6)

where n = 1 + [α] such that [α] = max{m ∈ Z|m ≤ α} and Z is the set of integers. Here, we get n = 2 as in this
study α = 1.15. Since the Riemann-Liouville derivatives are singular on the boundaries of the domain, instead,
Caputo derivatives can be used. The left and right Caputo derivatives of order α, respectively are defined as
follows:

c
0D

α
xE(x, t) =

1

Γ(n− α)

∫ x

0

∂nE(ξ, t)/∂ξn

(x− ξ)α−n+1
dξ, (2.7)

c
xD

α
LE(x, t) =

(−1)n

Γ(n− α)

∫ L

x

∂nE(ξ, t)/∂ξn

(ξ − x)α−n+1
dξ. (2.8)

For more details on the fractional derivatives, see [56, 58].
It should be noted that in addition to the power-law asymptotic behaviour of the pdf for the CD8+ T cell

jumps in the brain, based on the same experiments in [30], the pdf for the waiting times exhibits a power-law
asymptotic behaviour as ∼ τ−(γ+1), where γ = 0.7. Here, for the sake of simplicity, we have only considered the
space-fractional-order operator in our model.

2.2. Modelling CD8+ T cells response to infection

Just as CD8+ T cells cross BBBs to enter the brain, T. gondii parasites can go through such barriers by
certain mechanisms [39] and then reach the brain parenchyma. When T. gondii parasites (tachyzoites) enter
the brain, they begin to infect brain cells, such as astrocytes, neurons, and microglia. The infection occurs as
soon as free parasites attack brain cells and multiply inside them. Tachyzoites are then placed in a covering
called parasitophorous vacuole (PV). This stage of infection is called the early stage of the T. gondii life cycle.
In order to maintain their survival, tachyzoites need to enter into the second stage of their life cycle. Therefore,
there is another form of T. gondii parasites, known as bradyzoites. Similar to tachyzoites, they multiply in a
PV. But, the growth and proliferation of bradyzoites are slower than tachyzoites. PVs containing bradyzoites
create intracellular tissue cysts over time that can be stable and persistent in the brain tissue for a long period
of time [70].

As a result of parasites entering the brain tissue, effector CD8+ T cells move from lymph nodes to the brain
parenchyma. They then exert two protective responses against infected brain cells through (IFN)-γ and perforin
molecules. The type of such mechanisms depends on the type of T. gondii parasite. It means that in the case
of infection with tachyzoites, effector CD8+ T cells are able to stop the proliferation of intracellular tachyzoites
through the secretion of (IFN)-γ [17]. It is important to note that neurons provide favourable conditions for the
creation and stability of tissue cysts in the brain tissue because neurons live longer than other brain cells, and
according to in vitro studies, (IFN)-γ mechanism has little effect on the infected neurons compared to other
infected brain cells [68]. Effector CD8+ T cells can also identify all bradyzoite-infected brain cells and also those
infected cells that carry tissue cysts of various sizes. Following the identification, CD8+ T cells bind themselves
to the surface of infected cells, enter the tissue cysts, and eventually, through the secretion of perforin, tissue
cysts are eliminated from the brain tissue [73, 74].
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Figure 2. Schematic representation of transmission from susceptibles S to infected brain cells
with tachyzoite I1 at a rate θ, tachyzoite-infected cells conversion into bradyzoite-infected brain
cells I2 at a rate β and effector CD8+ T cells E response to I2 at a rate p. The function F
represents the source of effector CD8+ T cells. The parameters d1, d2, and d3 are the mortality
rates of S, I1 and I2, respectively.

Based on the above biological information, to derive a mathematical model representing effector CD8+ T
cells response against infected cells, we shall consider the density of four cell populations at position x and time
t, the susceptibles (healthy brain cells) S(x, t), tachyzoite-infected brain cells I1(x, t), bradyzoite-infected brain
cells I2(x, t) and effector CD8+ T cells E(x, t). We assume that susceptibles convert into tachyzoite-infected
cells at a rate θ and that the transmission from tachyzoite- to bradyzoite-infected cells occurs at a rate β. In
this model, we only consider the perforin-mediated response against infected cells. Hence, it is assumed that
bradyzoite-infected cells could be killed at a rate p by effector CD8+ T cells. The parameters d1, d2, and d3
represent the mortality rate of infected cells with tachyzoite, infected cells with bradyzoite, and CD8+ T cells,
respectively. Since effector CD8+ T cells present in the infected brain are recruited from lymph nodes toward
the brain tissue, the model considers the function F (x, t) representing the source of CD8+ T cells. This model
is schematically represented in Figure 2.

By taking the schematic representation of the model and equation (2.4) into account, we obtain the follow-
ing model representing the density of healthy, T. gondii-infected brain cells and CD8+ T cells in the brain tissue:

∂S(x, t)

∂t
= −θS(x, t)I1(x, t), (2.9)

∂I1(x, t)

∂t
= θS(x, t)I1(x, t)− βI1(x, t)− d1I1(x, t), (2.10)

∂I2(x, t)

∂t
= βI1(x, t)− pE(x, t)I2(x, t)− d2I2(x, t), (2.11)

∂E(x, t)

∂t
= Kα

[
1− β

2
0D

α
xE(x, t) +

1 + β

2
xD

α
LE(x, t)

]
+ F (x, t)− d3E(x, t). (2.12)

If it is assumed that effector CD8+ T cells perform a Brownian RW search for infected brain cells, then the
model reduces to a classical model with α = 2. Therefore, the advantage of such a model is that we can compare
the results of a Lévy RW (α < 2) with those obtained by the Brownian RW assumption.

3. Model parametrization

In this section, we shall discuss the value of the parameters defined in equations (2.9)–(2.12). Since there have
been very few attempts to model T. gondii infection [71, 72] and necessary experimental data are scant, here we
try to estimate the value of the model parameters from direct measurements or by considering the parameter
value in other studies.

One of the problems in relation to brain infection with T. gondii is the infection rates of different brain cells
from different host species. Extensive studies have been conducted on the infection rate of brain cells by free
tachyzoites (see for instance [23, 45]). When we investigate the results of the experiments, we see that there
are many differences in the value of rates that are mainly due to factors, such as the type of brain cells, the
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brain regions where the cells come from, the host species (rat, human, and mouse), and the type of Toxoplasma
parasite. For instance, the rate of infection by the first type of parasites (RH strains) is higher than the second
type (ME49 and Prugniaud). Neurons of the hippocampus region of the brain from rats are infected by T.
gondii at a lower rate than astrocytes, while it is more likely that cortical neurons from rats are infected.
According to studies in vitro [23, 45], if we consider a range of infection rate 5% to 30% based on the type of
brain cells, one day after infection by adding 105 tachyzoites to the cultures and assume that each infected cell
egresses 8 to 16 tachyzoites, then we estimate a range of the infection rate given by θ = 4× 10−6 day−1cells−1 to
θ = 5× 10−5 day−1cells−1. For instance, if we consider the infection rate 5% by 105 parasites and also assume
that each infected cell egresses 8 tachyzoites, we can then compute θ = 0.05× 8× 10−5 = 4× 10−6 day−1cells−1.

In order to estimate the transmission rate β and the death rates of infected cells d1 and d2, we refer to the
experiments in [60]. When free tachyzoites attack brain cells, they multiply inside infected cells by dividing.
After 5 divisions, they go out of the infected cells, which leads to infecting the brain cells in their neighbourhood.
Tachyzoites have a half-life of 6 hours. Thus, the estimated daily death rate of tachyzoite-infected cells is given
by d1 = ln 2/(5× 6) h−1 ≈ 5× 10−1 day−1 . These tachyzoites convert into bradyzoites approximately after 20
divisions, which results in the estimated transmission rate β = 1/(20 × 6) h−1 = 2 × 10−1 day−1. Bradyzoites
have a half-life of 15 hours. If we suppose that bradyzoites go out of the infected cells after 10 divisions, the
estimated daily death rate of bradyzoite-infected cells is given by d2 = ln 2/(10× 15) h−1 ≈ 1× 10−1 day−1.

The average per capita killing rate p is the number of targets (bradyzoite-infected cells at the chronic stage)
destroyed per effector CD8+ T cell per day. There are very few studies discussing perforin-mediated response
against bradyzoite-infected cells or tissue cysts at the chronic stage of infection [73, 74]. Hence, experimental
data are scant. However, based on the experiments during 7 days in [73], if we assume that on average 50
brain cysts per day are killed by immune CD8+ T cells and also that there are about 5× 104 T cells per day,
then by the definition of p, we can measure directly an average value that is given by p = 10−3 day−1cells−1.
Although this value may be better estimated in future works, this estimated value is sufficient for our numerical
simulations because, in this work, we aim to perform a comparison between the results of Brownian and Lévy
RWs with the same conditions.

In order to obtain an approximation of diffusivity Kα, we follow the observations of Harris et al. [30]. To do
so, we know that Kα has SI units of mαs−1. Thus, the mean displacement length of diffusion L can be defined
as L = (KαT )1/α, where T is the corresponding time interval. Hence, based on the findings of Harris et al.
[30] on the diffusion coefficient of CD8+ T cells in the T. gondii-infected brain, if we assume that L = 8µm
and T = 1 min, the fractional diffusion coefficient can then be estimated as Kα = (8× 10−6)α/60 mαs−1. It is
important to note that this value could be reduced when no chemokine signals and CXCL10 are present in the
infected brain. In that case, CD8+ T cells nevertheless maintain the behaviour of the Lévy search pattern.

4. Numerical solution of space-fractional order diffusion
equations

Over the past decade, in order to solve time-space fractional-order diffusion equations, analytical methods are
replaced by various numerical methods due to the complexities of fractional derivatives. Most of these numerical
methods are based on the finite element (FE), finite-difference (FD), and Chebyshev pseudo-spectral schemes.
In this work, we have considered the same FE method used by Hanert [25] to solve fractional-order transport
models. More precisely, we have used a piecewise linear finite-element method based on a Galerkin formulation
for solving equation (2.12). In this method, the exact solution (unknown variable) E(x, t) is expressed as a sum
of the unknown coefficients ej(t) and basis functions φj(x) as follows:

E(x, t) ≈ Ẽ(x, t) =

N∑
j=1

ej(t)φj(x).
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By introducing a partition of the domain [0, L] into N − 1 subintervals [xj , xj+1] with a constant length h, i.e.,
x1 = 0, xN = L, and xj+1 − xj = h for j = 1, . . . , N − 1, we can consider the piecewise linear basis functions
φj(x) for j = 1, 2, . . . , N as follows:

φ1(x) =

{ x2 − x
x2 − x1

: x1 ≤ x ≤ x2,
0 : x 6∈ [x1, x2].

for j = 2, . . . , N − 1,

φj(x) =


x− xj−1
xj − xj−1

: xj−1 ≤ x ≤ xj ,
xj+1 − x
xj+1 − xj

: xj ≤ x ≤ xj+1,

0 : x 6∈ [xj−1, xj+1].

and for j = N ,

φN (x) =


x− xN−1
xN − xN−1

: xN−1 ≤ x ≤ xN ,

0 : x 6∈ [xN−1, xN ].

Now we approximate the source term F (x, t) by the same discretization as the model solution as follows:

F (x, t) ≈ F̃ (x, t) =

N∑
j=1

fj(t)φj(x).

Since the basis functions φj(x) for j = 1, 2, . . . , N have a value of 1 at node xj and 0 at other nodes, fj(t) =

F (xj , t). By using a Galerkin formulation, we replace Ẽ(x, t) and F̃ (x, t) in the model equation and then by
orthogonalizing the discrete equation with respect to all φj , we get the following equation:(∫ L

0

φiφjdx

)
dej
dt

(t) =

(
Kα

∫ L

0

φi
d2

dx2
Gαβ(x, φj)dx,

)
ej(t) +

(∫ L

0

φiφjdx

)
F (xj , t)

− d3

(∫ L

0

φiφjdx

)
ej(t),

for i, j = 1, . . . , N and

Gαβ(x, φj) ≡
1− β

2Γ(2− α)

∫ x

0

φj(ξ)

(x− ξ)α−1
dξ +

1 + β

2Γ(2− α)

∫ L

x

φj(ξ)

(ξ − x)α−1
dξ.

By performing integration by parts (see [25] for details), we get a semi-discrete equation in a matrix form as
follows:

M
de

dt
(t) = De(t) + M (f(t)− d3e(t)) , (4.1)

where e(t) = [e1(t) . . . eN (t)]
T

is the vector of unknown coefficients at time t and the elements of the vector

f(t) = [F (x1, t) . . . F (xN , t)]
T

are the known values of the source term at a node j at time t. The elements of
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Figure 3. Numerical solution of equation (2.12) with F (x, t) = 0, d3 = 0 at time T for α = 2
and α = 1.75. Black curve shows a Gaussian function, as the initial condition. In the case of a
Brownian motion (α = 2), the solution tails decay exponentially (red curve). But, for a Lévy
RW (α < 2), the solution has a power-law asymptotic behaviour (blue curve). Here, The y-axis
is in a logarithmic scale.

the mass matrix M and the diffusion matrix D read:

Mij =

∫ L

0

φiφjdx, Dij = −Kα

∫ L

0

dφi
dx

(x)
d

dx
Gαβ(x, φj)dx,

where
d

dx
Gαβ(x, φj) ≡

1− β
2

0D
α−1
x φj(x) +

1 + β

2
xD

α−1
L φj(x) is a combination of the left and right Riemann-

Liouville derivatives of order α − 1 of φj . Finally, we can discretize equation (4.1) by using standard time
integration methods. Here, a third-order Adams-Bashforth scheme has been considered. To solve equation
(2.12), we also need to consider initial and boundary conditions.

Here, we present an example to illustrate how different values of the parameter α affect the behaviour of the
solution. We have solved equation (2.12) with F (x, t) = 0, and d3 = 0. Figure 3, black curve shows a Gaussian
function, as the initial condition. In the case of a Brownian motion (α = 2), the solution tails decay exponentially
(Fig. 3, red curve). But, for a Lévy RW (α < 2), the solution has a power-law asymptotic behaviour (Fig. 3,
blue curve). Since with a Lévy RW, particles can make large displacements, as we see, the solution decays more
slowly compared to the Brownian motion assumption.

5. Effect of Lévy RW of CD8+++ T cells on the infected cells

In this section, by using the model equations (2.9)–(2.12) with the parameter values estimated in Section 3, we
investigate the influence of a Lévy RW search performed by T cells on the density of infected cells in the brain.
To do so, we can consider a comparison between the classical model based on the Brownian RW assumption
(α = 2) and the fractional model relying on the Lévy RW assumption (α = 1.15).

In order to solve the proposed model, we need to define a computational domain L as a part of the brain
tissue and the source function F (x, t) in equation (2.12). The Brain tissue is composed of two kinds of tissue:
grey matter and white matter. Based on the microscopic studies, tissue cysts can be formed in all regions of the
brain tissue, but most of them are distributed in the cerebral cortex and hippocampus regions [7]. The cerebral
cortex is the outer layer of grey matter that covers the brain. Hence, we assume that the computational domain
is a part of the cerebral cortex. A detailed description of the cerebral cortex is provided in [77].
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We define the source term by F (x, t) := f(t)δ(x − L/2), where the time-dependent function f(t) gives the
number of CD8+ T cells entering the domain in the middle per unit of time at time t and δ(x − L/2) is the
Dirac delta function centred in the middle of the domain. We define the input function f(t) as a decreasing
function given by f(t) := rNe−rt, where N and r represent the number of CD8+ T cells and the rate at which
they enter the domain, respectively. To estimate the input rate r, we followed the observations of John et al.
[36] who studied the kinetics of CD8+ T cells in the T. gondii infected brains. If we assume that the death rate
of CD8+ T cells is equal to 10−1 day−1 and consider a maximum number of CD8+ T cells in the brain by day
14, we can then estimate the value of the input rate to be given by r = 8× 10−2 day−1. Here, it is assumed that
CD8+ T cells enter the brain with a delay on day 3 [36]. It should be noted that in the numerical simulations,
we consider the values of N according to the estimations of Harris et al. [30] (see supplementary information in
[30]).

In order to compare the efficiency of CD8+ T cells for Lévy RW versus Brownian RW, we define the average
number of bradyzoite-infected cells n(t) during simulation time as follows:

n(t) :=

∫ L

0

I2(x, t)dx, (5.1)

where I2(x, t) is the density of bradyzoite-infected cells (tissue cysts) with units of the number of cells per
mm. We discretize equations (2.9)–(2.12) with a piecewise-linear FE method based on a Galerkin formulation.
For more details on the discretization of the model equations, see Section 4 and Appendix B. Equation (2.12)
needs to be solved with appropriate boundary conditions that guarantee mass conservation in the numerical
simulations (see Appendix A for details).

In the first numerical simulation, we consider constant initial conditions S(x, 0) = 2.5×104 healthy brain cells
and I1(x, 0) = 150 tachyzoite-infected cells per mm over the whole domain. We compare the average number
of infected cells n(t) for Lévy and Brownian RWs of CD8+ T cells over the domain [0, L] of the brain tissue.
Here, we suppose that L = 14 mm. According to our model, infected cells with tachyzoites I1 and bradyzoites
I2 will first increase in a period [0, T0] and then tend to 0 after T0. The time evolution of the average number of
infected cells n(t) over the domain [0, 14] with different foraging patterns of CD8+ T cells is shown in Figure 4.

Figure 4 shows that in the case of a Lévy RW, n(t) reaches its maximum value at time t = 8 and after
that tends to 0 at time t ≈ 35. However, in the case of a Brownian motion, n(t) grows quickly and reaches its
maximum value at time t = 11 and then decreases such that n(50) = 60. Here, we define the average of n(t) in a

period [0, T ] by N̄ =
∫ T
0
n(t)dt/T . That quantity is computed for Brownian RW (N̄B) and Lévy RW (N̄L). By

taking the ratio between the values of N̄B and N̄L, we get N̄L = 0.26N̄B in the period [0, 30]. This result shows
that a Lévy foraging pattern of CD8+ T cells is about four times more efficient than a Brownian motion in
detecting and killing infected cells distributed throughout the brain tissue. To illustrate this result, we consider
the diffusion profiles for CD8+ T cells on the domain [0, 14] with Lévy and Brownian RWs, which are shown in
Figure 5.

Figure 5 shows that the difference between Brownian and Lévy CD8+ T cell density models is most obvious in
the tails of T cell distribution. The Lévy RW search strategy increases the number of T cells further away from
the source more than a Brownian motion and thus leads to an increase in the thickness of T cell distribution
tails. However, for a Brownian motion, CD8+ T cells are present more around the source, and hence they are
not able to successfully eradicate infected cells located further away from the source (see Fig. 5A and C). T cells
with a Lévy search strategy can travel larger distances and hence scan the entire tissue much more rapidly (see
Fig. 5B and D). The objective of CD8+ T cell search is to remove all or nearly all infected cells from infected
tissues. Since a Lévy RW search allows CD8+ T cells to scan further distances from the source more efficiently
than a Brownian motion, our results suggest that a Lévy RW search can lead to a complete detection of T.
gondii-infected cells in the brain tissue. For instance, the average number of infected cells n(t) over the domain
[0, 14] with a Lévy RW vanishes after 35 days, while with the Brownian motion assumption, n(50) = 60.
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Figure 4. Time evolution of the average number of infected cells n(t) obtained by equation (5.1)
over the domain [0, 14] with Lévy RW (α = 1.15) and Brownian RW (α = 2). The average value
of n(t) in the period [0, 30] for Lévy RW (N̄L) is equal to 26% of that value for Brownian RW
(N̄B), highlighting the fact that a Lévy RW search strategy is more efficient than a Brownian
motion in killing infected cells distributed in a large distance of the brain tissue.

We here note that from a biological point of view, when initially the infection load (burden) in the brain
tissue is growing, activated CD8+ T cells migrate from lymph nodes to the brain tissue to eliminate the infected
brain cells. In that case, the number of immune cells throughout the tissue increases so that the infection load
decreases. At this stage, the spatial propagation of CD8+ T cells throughout the tissue in the case of Brownian
and Lévy random walks are shown in Figure 5A and B, respectively. Once the infection is resolved, the number
of CD8+ T cells declines. This is called the “contraction phase”. Here, the spatial decline of T cells in the case
of Brownian and Lévy random walks are compared in Figure 5C and D, respectively, and finally, T cells could
persist at a level for long periods of time in the tissue. Figure 4 shows the time evolution of the infection load
during the immune response to the infected brain cells.

In order to highlight the efficiency of Lévy RW versus Brownian RW on the domain [0, 14], we can also
compute a time such that the average number of infected cells at that time is equal to 1% of the maximum
value of n(t) for α = 2 (tB) and α = 1.15 (tL). By taking the ratio between the values of tB and tL for the domain
[0, 14], we get tL = 0.58tB . However, that ratio for the domain [0, 6] is approximately 1. Here, if we increase the
length of the domain from 6 mm to 20 mm, then tL and tB increase from 24 to 25 days and from 24 to 50 days,
respectively. In other words, the ratio tL/tB decreases from 1 to 0.5 (see Fig. 6). The numerical result shown in
Figure 6 has been obtained by considering the time dynamics of the infection load throughout the tissue with
different lengths. As the domain of infection gets larger, the average number of infected cells n(t) after reaching
its maximum value with a Brownian motion decreases more slowly compared to a Lévy RW search. Therefore,
this result highlights the importance of a Lévy RW search pattern for accelerating the elimination of infected
cells distributed broadly within the brain tissue.

The final example illustrates the differences between the elimination dynamics of infected cells with Lévy and
Brownian RWs. Here, we consider the following model for the density of CD8+ T cells and bradyzoite-infected
cells:

∂I2(x, t)

∂t
= −pE(x, t)I2(x, t), (5.2)
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Figure 5. Diffusion profiles for CD8+ T cells density at different time instants on the domain
[0, 14] with Lévy RW (α = 1.15) and Brownian RW (α = 2) obtained by solving equation (2.12),
highlighting the fact that Lévy RW assumption of T cells (α = 1.15) increases the number of
T cells further away from the source more than a Brownian motion (α = 2). (A) and (B) The
arrows indicate the direction of diffusion of CD8+ T cells starting from the zero initial condition
represented on the x-axis until reaching the maximum number of T cells on day 14. Here, we
assumed that CD8+ T cells enter the brain with a delay on day 3. The time interval between
profiles starting from day 4 is set to 2 days. (C) and (D) The arrows indicate the decrease in
the number of T cells after day 14. The time interval between profiles starting from day 16 is
set to 4 days.

∂E(x, t)

∂t
= Kα

[
1− β

2
0D

α
xE(x, t) +

1 + β

2
xD

α
LE(x, t)

]
+ F (x, t)− d3E(x, t), (5.3)

with the initial condition I2(x, 0) = I0. We suppose that an equal number of CD8+ T cells per unit of time at
time t enter the right-hand side of the domain L = [0, 14] with a Lévy RW and the left-hand side of the domain
with a Brownian motion. Here, the simulation has a duration of 5 days and I0 = 300 infected cells per mm over
the domain.

The elimination dynamics of the infected cells with Lévy and Brownian RWs are shown in Figure 7. CD8+

T cells with a Lévy RW can spread across the whole domain on the right, [7, 14], and hence they can rapidly
destroy infected cells distributed over the entire tissue. However, CD8+ T cells with a Brownian RW travel
through the tissue on the left, [0, 7], more slowly, leading to a slower decline of the infected cells faraway from
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Figure 6. The ratio tL/tB versus the length of the domain L. As L increases, the average
number of infected cells reaches 1% of its maximum value rapidly with the Lévy RW compared
to the Brownian motion assumption. It highlights the importance of a Lévy search pattern for
accelerating the elimination of infected cells distributed broadly in the brain tissue.

Figure 7. Profiles for infected cells densities at different time instants on the domain [0, 14]
with Lévy RW (α = 1.15) and Brownian RW (α = 2) obtained by solving equations (5.2) and
(5.3). The equal number of CD8+ T cells enter the right-hand side of the domain with a Lévy
RW and the left-hand side with a Brownian RW, leading to rapid elimination of infected cells
over the whole domain on the right with a Lévy RW (blue curves), and a slower decline of
infected cells faraway from the source with a Brownian RW (red curves). The arrows show the
direction of the model solutions over time beginning from the initial condition of infected cells
displayed by a black horizontal line. Here, the simulation has a duration of 5 days and the time
interval between profiles is set to 1 day.

the source. In this example, with the Lévy RW search pattern, about 90% of infected cells are killed. However,
with a Brownian motion, about 36% of infected cells are eliminated from the domain [0, 7].
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Suzuki et al. [73] studied the removal of tissue cysts in the brains of mice infected with T. gondii by perforin-
mediated protective immunity. They transferred the immune T cells to the infected brains and then observed a
significant decrease in the number of tissue cysts. They suggested that a local expansion of CD8+ T cells in the
brain tissue could lead to the high destruction of tissue cysts. In our model, we considered the impact of the
protective mechanism of CD8+ T cells by perforin on the bradyzoite-infected cells. Our results suggest that the
Lévy RW search enables T cells to accelerate the elimination of tissue cysts. Thus, we predict that in addition
to possible reasons for high reduction of cysts, such as a local proliferation of CD8+ T cells, the Lévy RW search
strategy performed by CD8+ T cells can be a possible factor for marked decreases in tissue cyst numbers in the
T. gondii-infected brain.

6. Conclusion

In their search for targets, many species in almost any biological environment do random searches when their
intellectual capacities are constrained by the distribution of their targets. For instance, T cells can perform
different search patterns for their targets across different tissues. Mathematical models are useful tools to study
how the search strategies performed by T cells can lead to an efficient immune response against pathogens.
Among all foraging patterns in tissues, random motion of CD8+ T cells in the T. gondii-infected brain is
considerable due to a switch in the random search strategy of T cells from a Brownian motion observed in other
tissues to a Lévy RW search in the brain tissue. Hence, studying the effective role of a Lévy RW search indeed
requires specific tools. One of them is to use fractional diffusion equations to obtain the density of T cells in
the infected brain.

In this work, we have derived a space fractional-order equation consisting of fractional-order diffusion and
reaction terms to get the density of T cells in the infected brain. The fractional diffusion with order α < 2
represents a complex dispersion of T cells called superdiffusion, and the reaction terms describe the recruitment
of T cells from lymph nodes into the brain and their natural death. When α = 2, the resulting equation
represents the Brownian motion. Hence, we were able to perform a comparison between the results of Lévy
and Brownian RWs. Based on the T. gondii life cycle in the brain, we have also derived space-time reaction
equations representing the density of tachyzoite- and bradyzoite-infected cells in the brain tissue. This allowed
us to study the effect of the Lévy RW search of CD8+ T cells on the bradyzoite-infected cell (tissue cysts)
density by the perforin-mediated immune response. Our simulation results have shown that the average number
of infected cells (N̄) in the period [0, 30] with a Lévy RW on the domain [0, 14] is 26% of N̄ with the Brownian
motion. This means that CD8+ T cells with a Lévy RW search are more successful than a Brownian motion
in response to infection because T cells can travel faraway from the source, leading to more eradication of the
cysts in the brain. Furthermore, as T. gondii parasites are capable of infecting large areas of the brain tissue, a
Lévy RW search allows CD8+ T cells to scan large distances, which results in a complete detection of infected
cells and hence all or nearly all infected cells are eliminated from the brain tissue. However, with the Brownian
motion assumption, infected cells located further away from the source could be out of reach of CD8+ T cells.

We here note that Harris et al. [30] have also shown the efficiency of effector CD8+ T cells for Lévy RW
versus Brownian RW. In their model, the efficiency has been defined based on the sum of T cells displacements
at the moment when the first T cell reaches a target at the origin of a sphere. They showed that in the case of
a Lévy RW, the sum of the displacements to reach a target is less than a Brownian motion, and hence a Lévy
RW search is more efficient. However, our model provides a much more realistic picture of the efficient role of
the Lévy search strategy on the protective mechanism of CD8+ T cells.

It is noteworthy to point out that the model could be further improved by considering some issues that
have been ignored. One of them is the effect of the anti-parasitic mechanism of effector CD8+ T cells by IFN-γ
on controlling the rapid division of tachyzoites. In [84], the two protective mechanisms of CD8+ T cells by
perforin and IFN-γ are referred to as the lytic and nonlytic responses of the immune system against pathogens,
respectively. This model may therefore be improved by considering both the lytic and non-lytic immune responses
using the same approach that Wodarz et al. [84] applied to develop viral infection models.
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Another issue is the study of non-Markovian property in anomalous dispersions. According to observations
of Harris et al. [30], when CD8+ T cells make a displacement, the probability distribution function for the
waiting or pausing times exhibits a power-law asymptotic behaviour as ∼ τ−(γ+1) with γ = 0.7. In that case,
the anomalous diffusion of CD8+ T cells has a non-Markovian effect. By considering a large number of CD8+

T cells, for the T cell density in the brain, a time fractional-order diffusion equation with order 0 < γ < 1
is obtained. However, for a Brownian motion, the time derivative order is equal to 1 and the diffusion has
a Markovian property. For solving space-time fractional-order equations, there are some efficient numerical
methods based on Chebyshev pseudospectral method. For instance, see [26, 28].

Appendix A. Fractional Neumann boundary conditions

One of the delicate issues in the field of modelling using fractional diffusion equations is to apply appropriate
boundary conditions to the models on bounded domains. One of the boundary conditions is Neumann (no-flux),
which contains the first-order derivatives with respect to space on the boundaries of the domain. They are also
known as classical Neumann boundary conditions. In this study, since our goal is to perform a comparison
between the results of Lévy and Brownian RWs, the total number of CD8+ T cells entering the domain at time
t should be the same in both cases. In other words, the issue of mass conservation should be guaranteed. In the
case of Brownian RW, it can be done by using classical Neumann boundary conditions. However, they do not
guarantee mass conservation for diffusion equations related to a Lévy RW, i.e., space-fractional-order diffusion
equations. Thus, we have used the following fractional Neumann boundary conditions proposed by Kelly et al.
[37]:

1− β
2

c
0D

α−1
x E(x, t) =

1 + β

2
c
xD

α−1
L E(x, t),

for all t ≥ 0 at positions x = 0 and x = L and the fractional derivatives of order α − 1 are in the Caputo
sense defined in equations (2.7) and (2.8). In the numerical examples, the following boundary conditions in the
symmetric case, i.e., when β = 0 have been considered:

c
0D

α−1
x E(x, t) = c

xD
α−1
L E(x, t),

for all t ≥ 0 at positions x = 0 and x = L.

Appendix B. Numerical discretization of the model

In this section, we shall illustrate the discretization of the model equations by the finite-element scheme. To
do this, we approximate the exact solutions of the model equations by the following expansions in terms of basis
functions φj(x):

S(x, t) ≈ S̃(x, t) =

N∑
j=1

sj(t)φj(x), I1(x, t) ≈ Ĩ1(x, t) =

N∑
j=1

aj(t)φj(x),

I2(x, t) ≈ Ĩ2(x, t) =

N∑
j=1

cj(t)φj(x), E(x, t) ≈ Ẽ(x, t) =

N∑
j=1

ej(t)φj(x),

where sj , aj , cj and ej are unknown nodal values. With the same method in Section 4, the resulting discrete
equations (2.9)–(2.11) then read:

Mijs
′
j(t) = −θRijksj(t)ak(t),

Mija
′
j(t) = θRijkhj(t)ak(t)− (β + d1)Mijaj(t),
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Mijc
′
j(t) = βMijaj(t)− pRijkcj(t)ek(t)− d2Mijcj(t),

where

Mij =

∫ L

0

φiφjdx, Rijk =

∫ L

0

φiφjφkdx,

for i, j, k = 1, . . . , N . Here, our aim is to find possible values of the coefficients Rijk. First, We consider a
fixed index i ∈ {2, . . . , N − 1}. So, there are only the three possible values of j : i− 1, i and i+ 1. Because for
j = i− 1, i, i+ 1, there are intervals Ji−1 = (xi−1, xi), Ji = (xi−1, xi+1) and Ji+1 = (xi, xi+1) such that for any
x ∈ Jj , we have φi(x)φj(x) 6= 0. Now, for these values of j, we determine the possible values of index k such that
φi(x)φj(x)φk(x) 6= 0 for any x ∈ Jj . Here, we have three cases. (1) for j = i− 1, by considering the two possible
values of index k = i− 1, i, we have φi(x)φj(x)φk(x) 6= 0 for any x ∈ Ji−1. (2) for j = i, by considering the three
possible values of index k = i − 1, i, i + 1, we have φi(x)φj(x)φk(x) 6= 0 for any x ∈ Ji, and (3) for j = i + 1,
the only possible values of index k are i and i + 1 such that for any x ∈ Ji+1, we get φi(x)φj(x)φk(x) 6= 0.
Therefore, we get the following nonzero values of the coefficients Rijk:

Ri,i−1,i−1, Ri,i−1,i, Ri,i,i−1, Ri,i,i, Ri,i,i+1, Ri,i+1,i, Ri,i+1,i+1.

For i = 1, the coefficients R1,1,1, R1,1,2, R1,2,1 and R1,2,2, and finally for i = N , the coefficients
RN,N−1,N−1, RN,N−1,N , RN,N,N−1 and RN,N,N have nonzero values. After some calculation, we can express
the nonzero values Rijk in terms of Mij as follows:

R1,1,1 =
3

4
M1,1, R1,1,2 = R1,2,1 = R1,2,2 =

1

2
M1,2,

for i = 2, . . . , N − 1,

Ri,i,i =
3

4
Mi,i, Ri,i−1,i−1 = Ri,i−1,i = Ri,i,i−1 =

1

2
Mi,i−1,

Ri,i,i+1 = Ri,i+1,i = Ri,i+1,i+1 =
1

2
Mi,i+1,

and finally,

RN,N,N =
3

4
MN,N , RN,N−1,N−1 = RN,N−1,N = RN,N,N−1 =

1

2
MN,N−1.
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