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Abstract

We define the notions of Azumaya category and Brauer group in cat-
egory theory enriched over some very general base category V. We prove
the equivalence of various definitions, in particular in terms of separable
categories or progenerating bimodules. When V is the category of modules
over a commutative ring R with unit, we recapture the classical notions
of Azumaya algebra and Brauer group and provide an alternative, purely
categorical treatment of those theories. But our theory applies as well to
the cases of topological, metric or Banach modules, to the sheaves of such
structures or graded such structures, and many other examples.

Introduction

Convention. In this paper, all rings and algebras have a unit, but are not nec-
essarily commutative. Except otherwise stated, all modules are right modules.

If R is a commutative ring, two R-algebras A and B are Morita equivalent
when there exist an A-B-bimodule M and a B-A-bimodule N such that the
isomorphisms M⊗B N ∼= A and N⊗AM ∼= B hold. The tensor product induces
the structure of a monoid on the Morita-equivalence classes of R-algebras, with
the class of R as unit. An R-algebra A is Azumaya when its Morita equivalence
class is invertible for the tensor product; the inverse of A is then the class of the
dual algebra A∗. The invertible Morita equivalence classes of R-algebras, with
the tensor product as multiplication, constitute thus an abelian group, called
the Brauer group of the ring R.

We replace first the category ModR by an arbitrary complete and cocomplete
symmetric monoidal closed category V . That is, V is a category provided with
an associative, commutative tensor product with unit, and an internal Hom-
functor

⊗:V × V qqq
qq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq V , [−,−]:V∗ × V qqq
qq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq V
which yield natural isomorphisms[

A⊗B, C
] ∼= [

A, [B, C]
]
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for all A, B, C ∈ V . Examples of such V are numerous: ModR of course, with
[M, N ] = LinR(M, N), but also all categories of sheaves or presheaves on a
topological space (with the cartesian product as tensor product), the category
of topological spaces itself (where [A, B] is the set of continuous functions with
the topology of pointwise convergence), and so on. But in the spirit of this
paper, we are mainly interested in examples like the categories of locally convex,
metric or Banach spaces, the categories of topological, metric or Banach modules
and more generally, the categories of sheaves of such structures or graded such
structures, and so on. All these examples enter the context of this paper and
yield a theory of Azumaya categories and a corresponding Brauer group.

In this general context, the R-algebras are replaced by small V-categories,
that is, categories A with an arbitrary set of objects and whose sets A(A, B) of
arrows are canonically provided with the structure of an object A(A, B) ∈ V .
Algebras correspond to the case where the V-category A has a single object. If
A, B are two such V-categories, an A-B-bimodule is a V-functor

ϕ:B∗ ⊗A qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V ,

and this generalizes at once the classical notion of bimodule over rings or alge-
bras. Just like bimodules over algebras compose, so do our V-bimodules, yielding
a corresponding notion of Morita equivalence for V-categories. The tensor prod-
uct induces the structure of a monoid on the Morita equivalence classes of small
V-categories, and a small V-category is Azumaya when its Morita equivalence
class is invertible. Those invertible classes constitute the categorical Brauer
group of V .

We generalize to the case of Azumaya categories the well-known equivalent
definitions of Azumaya algebra, in terms of separability, centrality, projectivity
and generators and develop a corresponding theory of the Brauer group. Of
course, due to the great generality of the context in which we are working, the
classical sophisticated techniques of ring and module theory cannot be used
to achieve this. It is amazing to notice that classical arguments on adjunctions
suffice to overcome the difficulty: this provides in particular a purely categorical
treatment of the theory of Azumaya algebras over a ring, proving in some sense
that this nice piece of mathematics is what some people would call “a special
instance of general abstract nonsense”.

Without any further assumption on V , the categorical Brauer group needs
not be a set, but just a class. Nevertheless, when the category V is locally
presentable – an assumption which is satisfied in many cases of interest – the
categorical Brauer group is actually a set. We also exhibit a condition on V ,
in terms of categorical Cauchy completion, which forces the categorical Brauer
group to be isomorphic to the one constructed using only algebras. As a conse-
quence, our construction recaptures the classical Brauer group of the ring R in
the very special case V = ModR.

Starting from the seventies, several categorical approaches to Azumaya alge-
bras and the Brauer group have been proposed (see the bibliography in [23] for
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some references). Almost all these approaches deal with Azumaya monoids in a
monoidal category V . If one confines one’s attention to monoids (i.e. one-object
V-categories), the basic results needed to develop the Azumaya-Brauer theory
are quite simple: they reduce essentially to Morita theory in monoidal cate-
gories. Consequently, the conditions on V can be weaker than those assumed in
our paper. For example, in the classical paper by Pareigis [20], the closedness
of V is weakened, and in some recent papers by Van Oystaeyen and Zhang (see
[22]) and by Alonso Alvarez et al. (see [1]), V is braided but not necessarily sym-
metric; however, some completeness and biclosedness requirements are needed
on V .

If one works with arbitrarily small V-categories, and not only with V-mon-
oids, the basic ingredients of enriched category theory which are needed are
much deeper, and they are presently available in the literature only when the
base category V is symmetric and closed. For this reason, and as all the examples
we have in mind fit into this context, we work in this first paper with such a
good base V . Anyway, let us observe that our construction of the categorical
Brauer group of V as well as the equivalence of conditions (1) and (2) in theorem
3.4 certainly hold when V is only braided, because they depend only on the
existence and the formal properties of the monoidal bicategory of V-categories
and V-distributors (see also [8]). The direct ancestor of our paper and, at
our knowledge, the only other paper in which V-categories are used to develop
an Azumaya-Brauer theory, is the memoir by Mitchell (see [18]), where the
classical case V = ModR is studied. Even in Mitchell’s paper, general techniques
of enriched category theory are neglected, and the main theorems are proved
using ring and module-theoretical arguments.

The point of our paper is exactly that an extensive use of enriched category
theory allows us to extend the theory to arbitrary small categories over a rather
general base category V and to simplify proofs a lot.

1 Azumaya algebras and the Brauer group

This section is a crash course for category theorists, on the classical theory of
Azumaya algebras and the Brauer group of a ring. The reader should consult
the references [3], [10], [16], [19] of this paper for further details.

When A is a ring or a field, its center is the set of those elements a ∈ A such
that ab = ba for every b ∈ A. An algebra A on the ring R is central when the
morphism

R qqq
qq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq A, r 7→ r · 1
induces an isomorphism between R and the center of A. Writing A∗ for the
dual algebra (A with the reversed multiplication), we shall use frequently the
fact that A is a right A⊗R A∗-module for the multiplication c(a⊗ b) = bca.

A finite dimensional field extension K ⊆ L is separable when the roots of the
characteristic polynomial of every element l ∈ L are all simple. Observe that
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L is obviously a K-algebra. The separability property extends in the following
way to algebras over a ring.

Proposition 1.1 Let R be a commutative ring. For a R-algebra A, the follow-
ing conditions are equivalent and define what is called a separable R-algebra.

(1) A is projective as a A⊗R A∗-module.

(2) A is finitely generated projective as a A⊗R A∗-module.

(3) The multiplication

A⊗R A∗
qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq A, a⊗ b 7→ ba

has a A⊗R A∗-linear section.

Proof (1)⇒(3) by (A ⊗R A∗)-linearity and surjectivity of the multiplication;
the other implications are obvious.

Consider now a field K. We are interested in the finite dimensional, central,
separable skew field extensions of K, which for short, we call just “extensions”.
Given two such extensions, say K ⊆ L and K ⊆ M , their tensor product
L ⊗K L is no longer a field, but via the Wedderburn theorem (see [19]), is a
matrix algebra Mn(N) on a uniquely determined extension K ⊆ N . Putting
N = L ? M yields the structure of an abelian group on the isomorphism classes
of extensions, with the dual field L∗ as inverse of L. This is the Brauer group of
K. The various matrix algebras Mn(N) for the various extensions K ⊆ N are
the Azumaya K-algebras; they are exactly the central separable algebras over
K.

Fix now a commutative ring R. Given two R-algebras A and B, their Morita
equivalence as described in the introduction is equivalent to the categorical R-
linear equivalence of the corresponding categories of modules. The following
result is classical and generalizes the previous situation to the case of rings.

Theorem 1.2 Let R be a commutative ring. For an R-algebra A, the following
conditions are equivalent and define the notion of Azumaya algebra over the
ring R.

(1) There exists an R-algebra B such that B ⊗R A is Morita equivalent to R.

(2) A∗ ⊗R A is Morita equivalent to R.

(3) A is a central, separable R-algebra.

(4) A is a finitely generated projective generator in the category of R-modules,
and the canonical morphism

σ: A∗ ⊗R A qqq
qq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq EndR(A), σ(a⊗ b)(c) = acb

is a R-linear isomorphism.
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Moreover, in those conditions, A is a generator in the category of A ⊗R A∗-
modules. The Morita equivalence classes of Azumaya algebras constitute an
abelian group with multiplication the tensor product over R; this is the Brauer
group of R.

2 Generalized algebras and bimodules

This section is a crash course for ring theorists, on the basic notions of enriched
category theory. See [6] and [14] for more details.

In this paper, we shall replace the category ModR of modules on a ring R
by an arbitray category V admitting all projective and inductive limits and
provided with two functors

−⊗−:V ⊗ V qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V , [−,−]:V∗ ⊗ V qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V ,

where V∗ indicates the dual category of V (all arrows are put in the reversed
direction). The tensor product (up to canonical isomorphisms) is requested to
be associative, commutaive and with unit I. Moreover the natural isomorphisms[

A⊗B, C
] ∼= [

A, [B, C]
]

must hold for all objects A, B, C in V . In the case V = ModR, the tensor
product is the usual one over the ring R and [B, C] = LinR(C, D) is the module
of R-linear mappings. For the sake of brevity, we shall refer to such a category
as our “base” category V .

Convention. We fix a base category V with the properties we have just men-
tioned, that is, V is complete, cocomplete and symmetric monoidal closed.

Numerous examples of such “base categories” can be found in [6] and [14],
but in this paper we are mostly interested in examples like Banach spaces,
locally convex spaces, modules on a commutative ring, topological modules
on a commutative locally convex algebra, Banach modules on a commutative
Banach algebra, sheaves of such things or graded such things, and so on. All
these constitute good “base categories” for which we can generalize the theory
of Azumaya algebras and construct a corresponding Brauer group.

Given a base category V , a V-category consists in a class |A| of objects,
together with an object A(A, B) ∈ V “of arrows from A to B” for every pair of
objects. A composition law in V

γABC :A(A, B)⊗A(B, C) qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq A(A, C)

is given for every triple of objects, and traditional axioms of associativity and
existence of units I qqq

qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq A(A, A) are imposed. A V-category is small when it
has a set of objects. A V-category with a single object ∗ is also called a V-
algebra; in the case V = ModR, this reduces exactly to giving a R-algebra
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A = A(∗, ∗). Observe that the base category V becomes itself a V-category by
putting V(V, W ) = [V, W ]. The dual V-category A∗ has the same objects as A,
but A∗(A, B) = A(B, A), with corresponding twisted composition law. Given
two V-categories A, B, one construct easily a new V-category A ⊗ B whose
objects are the pairs (A, B) of objects in A and B, while

(A⊗ B)
(
(A, B), (A′, B′)

)
= A(A, A′)⊗ B(B, B′).

This definition extends the classical notion of tensor product of algebras over a
commutative ring.

A V-functor F :A qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq B between V-categories consists in a function mapping
every object A ∈ A on an object F (A) ∈ B, while the action of F on arrows is
expressed by morphisms of V

FA,A′ :A(A, A′) qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq B(
F (A), F (A′)

)
satisfying the traditional functoriality axioms. V-functors are also called co-
variant V-funtors. A contravariant V-functor F :A qqq

qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq B is just a covariant
V-functor F :A∗

qqq
qqq
qqqq
qqq
qqq
qq

qqqqqqqqqqqqqqqqqq B. A V-functor between V-algebras is also called a mor-
phism of V-algebras, extending so the classical situation for rings. The V-functor
F :A qqq

qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq B is called full and faithful when all morphisms FA,A′ are isomor-
phisms.

A V-natural transformation α: F =⇒ G between V-functors F, G:A qqq
qqq
qqq
qqq
qqqq
qq

qqqqqqqqqqqqqqqqqq

qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq B
is a family of morphisms αA: I qqq

qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq B(
F (A), G(A)

)
for all A ∈ A, with the

traditional naturality condition. When A is small, the V-functors and V-natural
transformations from A to B constitute a V-category which we denote simply
by [A,B]. Given two V-functors F , G from A to B, we use also the notation
[F, G] to indicate the object of V-natural transformations from F to G. Given
V-categories A, B, C with A, B small, one gets an isomorphism of V-categories[A⊗ B, C] ∼= [A, [B, C]

]
.

Up to isomorphisms, the tensor product of V-categories is associative and com-
mutative and admits for unit the “unit” V-category I with a single object ∗ and
I(∗, ∗) = I as object of morphisms. Observe that I = I∗.

For a small A, the category [A∗,V ] is called the category of (right) modules
on A and is simply written ModA; the corresponding notion of left module is
obtained using functors on A instead of A∗. When V = ModR and A is a
R-algebra, we recapture the usual notions of right and left A-module. In this
special case, given two R-algebras A and B, an A-B-bimodule is just a right
module on B∗⊗A. In our general setting, for two small categories A and B, we
define the category BimodA-B of A-B-bimodules as the category of (B∗ ⊗ A)-
modules. An A-B-bimodule M is thus a V-functor

M :B∗ ⊗A qqq
qq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq V
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which, via the isomorphism indicated above, yields corresponding V-functors

A qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq [B∗,V ] = ModB, and B∗ qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq [A,V ].

Observe also that the unit category I is a commutative V-algebra, since I = I∗,
and the category of I-modules is just V itself. Since I is a unit for the tensor
product of V-categories, given a small V-category A, every right A-module is a
I-A-bimodule and every left A-module is a A-I-bimodule.

Next, we extend the ordinary tensor product of bimodules over rings to our
more general setting. Given small V-categories A, B, C, an A-B-bimodule M
and a B-C-bimodule N ,

M :B∗ ⊗A qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V , N : C∗ ⊗ B qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V ,

we define their composite by the formula

N �M : C∗ ⊗A qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V , (N �M)(C, A) = colimB N(C, B)⊗M(B, A).

Up to canonical isomorphisms, this composition is associative and admits as
units the B-B-bimodules, still written B,

B:B∗ ⊗ B qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V , (B, B′) 7→ B(B, B′).

This yields at once the notion of Morita equivalence.

Proposition 2.1 Given small V-categories A and B, the following conditions
are equivalent and define the V-Morita equivalence of A and B.

(1) The categories ModA and ModB are equivalent as V-categories.

(2) There exist an A-B-bimodule M and a B-A-bimodule N , yielding isomor-
phisms M �N ∼= A and N �M ∼= B.

It remains to recall the notion of adjoint bimodules.

Definition 2.2 Given small V-categories A and B, a B-A-bimodule N is right
adjoint to the A-B-bimodule M when there exist V-natural transformations

ε: M �N =⇒ B, η:A =⇒ N �M

making commutative the following triangles of V-natural transformations

M qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq

idM � η
M �N �M N qqq

qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq

η � idN
N �M �N

@
@
@
@
@
@

@
@
@
@
@
@ qqq

qqq
qq
qqq
qqqq
qqq

qqq
qqq
qqq
qqq
qqq
qqq

ε� idM

@
@
@
@
@
@

@
@
@
@
@
@ qqq

qqq
qq
qqq
qqqq
qqq

qqq
qqq
qqq
qqq
qqq
qqq

idN � ε

M N
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The importance of the notion of adjoint bimodules is attested by the follow-
ing proposition.

Proposition 2.3 Let R be a commutative ring, A, B two R-algebras and M an
A-B-bimodule. We consider the base category V = ModR, view A and B as one-
object V-categories A, B and M as a A-B-bimodule. The following conditions
are equivalent:

(1) M is a finitely generated projective B-module;

(2) as an A-B-bimodule, M has a right adjoint;

This proposition suggests the corresponding notion of “small projective”
bimodule over V .

Definition 2.4 Let A, B be small V-categories. An A-B-bimodule M is small
projective when it admits a right adjoint. A B-module is small projective when
it is so as a I-B-bimodule.

3 Azumaya V-categories and V-Brauer group

We want now to generalize theorem 1.2, replacing ModR by our base category V .
First, we must translate in this general context the various notions appearing
in the statement of 1.2.

It is well-known that the center of an algebra A over a commutative ring
R can equivalently be defined as the algebra of A⊗R A∗-linear endomorphisms
of A. Viewed as a R-(A ⊗R A∗)-bimodule, the algebra A corresponds to a
ModR-functor

HA: I qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq ModA⊗RA∗ , ∗ 7→ A

and the full and failthfulness of this functor means precisely that the canonical
morphism

R = I(∗, ∗) qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq LinA⊗RA∗
(
HA(∗), HA(∗)) = LinA⊗RA∗(A, A)

is an isomorphisms, that is, the centrality of A.
Given a small V-category A, we shall refer to the functor

A:A∗ ⊗A qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V , (A, B) 7→ A(A, B)

as the “canonical functor A”. It is covariant on A∗ ⊗A and thus contravariant
– i.e. a module – on A⊗A∗.

Definition 3.1 A small V-category A is central when the corresponding V-
functor

HA: I qqq
qq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq ModA⊗A∗ , ∗ 7→ A
is full and faithful.
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Next we generalize the notion of generator. Consider two algebras A and B
on a commutative ring R. In the category ModB of modules over B, there are
many equivalent ways to express the fact that a module M is a generator (see
[5]). We choose the following characterization: M ∈ ModB is a generator when,
for every morphism f : X qqq

qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq Y in ModB, f is an isomorphism iff

LinB(M, f): LinB(M, X) qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq LinB(M, Y ), g 7→ g ◦ f

is bijective. When M turns out to be an A-B-bimodule, the left-A-module struc-
ture of M induces corresponding structures of right-A-modules on LinB(M, X)
and LinB(M, Y ); moreover, LinB(M, f) is A-linear for those structures. There-
fore the A-B-bimodule M is a generator in ModB when, for every f : X qqq

qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq Y
in ModB,(

LinB(M, f) is an A-isomorphism
) ⇒ (

f is a B-isomorphism
)
.

Definition 3.2 Let A, B be small V-categories. An A-B-bimodule M is called
a strong generator when the V-functor

[M,−]: ModB qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq ModA, [M, F ](A) = ModB
(
M(−, A), F

)
=

[
M(−, A), F

]
reflects isomorphisms. A B-module M is a strong generator when it is so as an
I-B-bimodule.

It remains to generalize definition 1.1, but this is easy in view of definition
2.4.

Definition 3.3 A small V-category A is separable when the canonical functor
A, viewed as a A⊗A∗-module, is small projective.

We are now ready to state the main theorem of this paper:

Theorem 3.4 For a small V-category A, the following conditions are equivalent
and define the notion of Azumaya V-category.

(1) There exists a V-category B such that B ⊗A is Morita equivalent to I.

(2) A∗ ⊗A is Morita equivalent to I.

(3) A is a central, separable V-category and the canonical functor A, viewed
as a (A⊗A∗)-module, is a strong generator.

(4) the canonical functor A is full and faithful and, viewed as a (A∗ ⊗A)-I-
bimodule, is a small projective strong generator.

In those conditions, the category B in condition (1) is itself Morita equivalent to
A∗. The Morita equivalence classes of Azumaya categories constitute a (possibly
large) abelian group with multiplication induced by the tensor product of V-
categories; this is the V-Brauer group. The inverse of the class of A is the class
of A∗.
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This theorem will be proved in the next section, but some comments are
necessary right now.

In the case where V = ModR and A is an R-algebra A, the functor A is
given by

A:A∗ ⊗A qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V , (∗, ∗) 7→ A(∗, ∗) = A.

Its full and faithfulness means that the following mapping is an isomorphism:

A∗ ⊗R A =
(A∗ ⊗A)(

(∗, ∗), (∗, ∗)) qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V(A(∗, ∗),A(∗, ∗)) = LinR(A, A).

This is precisely one of the requirements in condition 4 of theorem 3.4.
In the classical case of Azumaya algebras over a ring, a central separable

algebra A is necessarily a generator in the category of A⊗A∗-modules : this is
the well-known Auslander –Goldman theorem (see for example [10], [16], [19]).
The problem remains open to decide if this property generalizes to the context
of theorem 3.4.

4 Proof of theorem 3.4

In this section, we refer freely to the classical techniques and notions of category
theory. We write BimodV for the bicategory of small V-categories, V-bimodules
and V-natural transformations between them. For the sake of brevity, we shall
omit the prefix V- when no confusion can occur. We shall also frequently use the
classical terminology for 2-categories in the context of the bicategory BimodV ,
where everything must clearly be understood “up to isomorphism”. For ex-
ample, mutually inverse arrows in BimodV is another way of saying “Morita
equivalence”. Such an attitude can be justified by the fact that every bicat-
egory is bi-equivalent to the 2-category obtained by choosing as arrows the
2-isomorphism classes of 1-arrows.

We recall first some results which are part of the “folklore”.

Lemma 4.1 In a 2-category A, suppose an arrow f : A qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq B has an inverse
g: B qqq

qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq A, that is, there are isomorphisms f ◦ g ∼= 1B and g ◦ f ∼= 1A. In those
conditions, the canonical 2-cells of every adjunction involving f are necessarily
isomorphisms.

Proof The problem occurs entirely in the full sub-2-category generated by A
and B, so there is no restriction in assuming A to be small. Viewing A as
a category enriched in the category Cat of small categories, we consider the
corresponding Cat-Yoneda embedding

Y :A qqq
qq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq [A∗, Cat].

which reduces the question to proving the theorem in the 2-category [A∗, Cat].
This reduces further the problem to proving the theorem pointwise in Cat, where
it is a well-known fact about equivalences (see [5], section 3.4).
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Proposition 4.2 The bicategory BimodV is compact. This means that it is
monoidal, as a bicategory, and every object of BimodV has an adjoint, when
these objects are considered as the arrows of a tricategory with a single formal
object, the composition of arrows in the tricategory being the tensor product of
objects in BimodV . The adjoint of A is A∗ and the 2-cells of the adjunction are
the two bimodules corresponding to the canonical functor A.

Proof We refer to [7], [11] and [15] for the notions of compact bicategory or
tricategory. The tensor product of V-categories extends in a straightforward
way to bimodules, that is, given an A-B-bimodule M and a C-D-bimodule N ,
one gets at once an (A⊗C)-(B⊗D)-bimodule M⊗N . This makes the bicategory
BimodV a monoidal one (see [8]).

The identity arrow on the unique object of the tricategoy is the unit category
I. The canonical functor A:A∗ ⊗ A qqq

qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V can be seen both as a (A∗ ⊗ A)-
I-bimodule and a I-(A ⊗ A∗)-bimodule. For those bimodules, seen as 2-cells
in the tricategory, the triangular identities for adjunction both reduce – up to
permutation of the factors – to the identity

A(A, A′) ∼=
∫ A1,A2,A3

A(A, A1)⊗A(A1, A2)⊗A(A2, A3)⊗A(A3, A
′),

which holds for every V-category A (see [14]).

Corollary 4.3 Conditions (1) and (2) in theorem 3.4 are equivalent.

Proof (2)⇒(1) is obvious. Conversely, it is a classical argument to verify that
given a Morita equivalence in BimodV , the natural isomorphisms can be modified
to get an adjoint equivalence in BimodV (the proof of 4.1 yields this conclusion
as well). Applying 4.2 and the “uniqueness” of the adjoint, we conclude that in
BimodV , B is equivalent to A∗.

The reader should be well aware that equivalence in BimodV reduces to
Morita equivalence as V-categories, not at all to an equivalence as V-categories.

Now, let us make even more precise condition (2) of theorem 3.4.

Proposition 4.4 For a V-category A, the following conditions are equivalent.

(1) A∗ ⊗A is Morita equivalent to the unit category I.

(2) The I-(A⊗A∗)-bimodule induced by the canonical functor A is invertible
in BimodV .

(3) The (A∗⊗A)-I-bimodule induced by the canonical functor A is invertible
in BimodV .
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Proof Proposition 4.2 implies at once the existence of a functorial involution

BimodV qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq BimodV , A → A∗, (ϕ:A → B) 7→ (ϕ∗:B∗ → A∗)

where ϕ∗ is the bimodule defined as follows:

B∗ ∼= B∗ ⊗ I 1⊗A
qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq B∗ ⊗A⊗A∗1⊗ ϕ⊗ 1
qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq B∗ ⊗ B ⊗A∗ B ⊗ 1
qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq I ⊗ A∗ ∼= A∗.

This involution interchanges the bimodules in conditions (2) and (3), from which
the equivalence of those conditions.

Conditions (2) or (3) imply at once condition (1). Conversely, going back to
the adjunction described in 4.2, condition (1) means that the adjoint arrows A,
A∗ of the tricategory are such that there exist isomorphisms A∗ ⊗A ∼= id and
A ⊗A∗ ∼= id. By 4.1, the natural 2-cells of the canonical adjunction described
in 4.2 are invertible; this means precisely conditions (2) and (3).

The conclusion of the proof of theorem 3.4 will follow from two applications
of the next proposition.

Proposition 4.5 Consider two small V-categories A, B and a A-B-bimodule
ϕ. The following conditions are equivalent.

(1) The bimodule ϕ is invertible in BimodV .

(2) When ϕ is viewed as a functor ϕ:A qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq [B∗,V ], its left Kan extension
LanY ϕ along the Yoneda embedding is an equivalence of categories.

A qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq

Y [A∗,V ]

@
@
@
@
@
@qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

ϕ

qqq
qqq
qqq
qqq
qqq
qqq

qqq
qqq
qqq
qqq
qqq
qqq

LanY ϕ

[B∗,V ]

(3) a. The bimodule ϕ is a strong generator;
b. the bimodule ϕ has a right adjoint;
c. the functor ϕ:A qqq

qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq [B∗,V ] is full and faithful.

Proof It is well known (see [14]) that the composition of bimodules corresponds
to the ordinary composition of the corresponding Kan extensions LanY ϕ, from
which the equivalence of (1) and (2).

The functor LanY ϕ admits as a right adjoint the functor

[ϕ,−]: [B∗,V ] qqq
qqq
qqq
qq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq [A∗,V ], [ϕ, F ](A) =
[
ϕ(−, A), F

]
12



as follows from the pointwise definition of Kan extensions and the definition of
weighted colimits (see [14]):[

(LanY ϕ)(G), F
] ∼= [

G ∗ ϕ, F
] ∼= [

G, [ϕ, F ]
]
.

Observe that this functor [ϕ,−] is precisely that appearing in definition 3.2.
When LanY ϕ is an equivalence, so is its adjoint [ϕ,−], from which condition

(3).a follows at once. Moreover LanY ϕ is an equivalence precisely when the
bimodule ϕ is an equivalence in the bicategory BimodV , from which condition
(3).b. Next since Y is full and faithful, the triangle in the statement commutes,
and when LanY ϕ is itself full and faithful as an equivalence of categories, it
follows that the composite ϕ is full and faithful, yielding condition (3).c.

Now assume condition (3). By condition (3).c we can identify A with a
full subcategory of [B∗,V ]. By conditions (3).b, the objects of this subcategory
are small projective in [B∗,V ] and by condition (3).a, they constitute a strong
generator. Applying 5.26 in [14], we conclude that the functor [ϕ,−] is an
equivalence of categories, thus also its left adjoint LanY ϕ.

Corollary 4.6 Conditions (2) and (3) in theorem 3.4 are equivalent.

Proof It suffices to consider condition (2) in 4.4 and apply proposition 4.5 to
the canonical functor A viewed as a I-(A ⊗ A∗)-bimodule. Condition (3).b is
the separability of A and condition (3).c, the centrality of A.

Corollary 4.7 Conditions (2) and (4) in theorem 3.4 are equivalent.

Proof It suffices to consider condition (3) in 4.4 and apply proposition 4.5 to
the canonical functor A viewed as a (A∗ ⊗A)-I-bimodule.

5 The V-Brauer groups

Since the bicategory BimodV is monoidal (see 4.2), the tensor product induces
the structure of an abelian monoid on the Morita equivalence classes of small
V-categories. The invertible elements of this monoid constitute thus an abelian
group. There is no reason a priori for the elements of this Brauer group to
constitute a set, but this will nevertheless be true in a special case of interest
(see proposition 5.2 and its corollary).

Definition 5.1 Let V be a complete and cocomplete symmetric monoidal closed
category. The V-Brauer group is the – possibly large – abelian group of invertible
Morita equivalence classes of small V-categories, for the multiplication induced
by the tensor product of V-categories.

Proposition 5.2 When the Cauchy completion of the unit V-category I is
small (up to equivalence), the V-Brauer group is a set.

13



Proof By condition (4) in theorem 3.4, the canonical functor

A:A∗ ⊗A qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V
is full and faithful. But by the same condition, the corresponding (A∗ ⊗ A)-
I-bimodule has a right adjoint; thus each object A(A, B) lies in the Cauchy
completion I of I (see [14]). Therefore A∗⊗A is equivalent – via the canonical
functor A – to a full subcategory of I, thus to a small category, by assumption.

Without any restriction, we suppose I to be small. Let us choose a regular
cardinal α stricly bigger than the number of arrows in I. By what has just been
proved, we can choose an α-family of objects (A, B) in A∗ ⊗ A representative
of all its isomorphism classes. The full subcategory B of A generated by all
these objects A, B has still less than α objects and B∗⊗A contains a fortiori a
representative of each isomorphism class in A∗⊗A, thus is equivalent to A∗⊗A.
Therefore B∗ ⊗A is equivalent to A∗ ⊗A, thus Morita equivalent to I, and by
theorem 3.4, B∗ is Morita equivalent to A∗ and is in particular an Azumaya
category. Thus A is Morita equivalent to B, which is an Azumaya category
with less than α objects.

The conclusion follows at once. Each Azumaya category is Morita equivalent
to an Azumaya category B with less than α objects. Moreover each object of
arrows B(A, B) lies in I by condition (4) in theorem 3.4. Finally since I is stable
under tensor product and contains the unit I, the structure of a V-category on
B (composition, units) is given by arrows in I. By the choice of α, it follows at
once that the number on non equivalent such categories B is less than α. The
corresponding number of Morita equivalence classes is a even smaller, proving
that the V-Brauer group is a set with cardinality less than α.

Corollary 5.3 When the base category V is locally presentable, the V-Brauer
group is small.

Proof By [12] and proposition 5.2.
We recall that a V-algebra is a one-object V-category. We call it an Azumaya

V-algebra when it is Azumaya, as a V-category. Since the dual of a one-object
category and the tensor product of one-object categories are again one-object
categories, it follows at once that the classes of Azumaya V-algebras constitute
a subgroup of the V-Brauer group. We conclude this paper with a result and
various examples showing that in many cases of interest, this subgroup coincides
with the whole V-Brauer group.

Proposition 5.4 Let V be a complete and cocomplete symmetric monoidal
closed category. Suppose the following assumption holds.

If A, B are Cauchy complete V-categories
Then every object in the Cauchy completion of A⊗B is a retract of
an object in A⊗ B.

14



In these conditions, every separable V-category is Morita equivalent to a sep-
arable V-algebra. In particular, every Azumaya V-category is equivalent to an
Azumaya V-algebra.

Proof Let A be a separable V-category. This category A is Morita equivalent
to its (possibly large) Cauchy completion; therefore we shall assume at once that
A is Cauchy complete separable, but not necessarily small. Observe that this
makes perfect sense, since the category of modules on the Cauchy completion of
a small category is always legitimate, as equivalent to the category of modules
on the original category. We refer to [14] for the theory of Cauchy completion
and adjoint bimodules.

By condition (3) in theorem 3.4, the canonical functor A viewed as a I-
(A⊗A∗)-bimodule has a right adjoint, thus the functorA belongs to the Cauchy
completion of A ⊗ A∗. Since A is Cauchy complete, so is A∗ and by the as-
sumption in the statement, this implies that the canonical functor A is a re-
tract of a representable functor on A∗ ⊗A. In other words, there are an object
(U, V ) ∈ A∗ ⊗A and natural retractions

A(A, B)
ϕAB

qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqq
qqq
qqq
qqq
qqq
qqq

εAB
A(A, U)⊗A(V, B), ϕAB ◦ εAB = id.

We shall prove that A is Morita equivalent to the full subcategory 〈V 〉 ⊆ A
generated by the single object V , the Morita equivalence being constituted of
the two canonical bimodules induced by the inclusion functor 〈V 〉 ⊆ A.

• the 〈V 〉-A-bimodule α given by α(A, V ) = A(A, V );

• the A-〈V 〉-bimodule β given by β(V, A) = A(V, A).

The relation β ⊗ α ∼= id is easily checked:

(β ⊗ α)(V, V ) =
∫ A∈A

β(V, A) ⊗ α(A, V )

=
∫ A∈A

A(V, A) ⊗A(A, V )

= A(V, V ).

The converse implication consists in proving that

(α⊗ β)(A, B) =
∫ V ∈〈V 〉

α(A, V )⊗ β(V, B)

=
∫ V ∈〈V 〉

A(A, V )⊗A(V, B)

is isomorphic to A(A, B). The coend we have to compute is given by the fol-
lowing coequalizer diagram

A(A, V )⊗A(V, V )⊗A(V, B)
γAV V ⊗ id

qqq
qqq
qqq
qq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qq
qqq
qqq
qq

qqqqqqqqqqqqqqqqqq

id⊗ γV V B

A(A, V )⊗A(V, B) qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq

qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq

∫ V ∈〈V 〉
A(A, V )⊗A(V, B)
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where the γXY Z are the “composition” morphisms of A.
The composite

I ∼= I ⊗ I
hU ⊗ hV

qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq A(U, U)⊗A(V, V ) ϕUV
qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq A(U, V ),

where hU , hV are the unit arrows, defines a morphism f : U qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq V in A. Long
but routine computation shows that the following diagram is an absolute co-
equalizer:

A(A, U)⊗A(V, V )⊗A(V, B) A(A, U)⊗A(V, B)

A(1, f)⊗ id⊗ id

qqq
qqq
qqq
qqq
qqq
qqq

qqq
qqq
qqq
qqq
qqq
qqq

@
@
@
@
@
@
@@

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

εAV ⊗ id

qqq
qqq
qqq
qqq
qqq
qqq

qqq
qqq
qqq
qqq
qqq
qqq

A(1, f)⊗ id

@
@
@
@
@
@
@@

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

εAB

A(A, V )⊗A(V, V )⊗A(V, B)
qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq

qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq

γAV V ⊗ id

id⊗ γV V B

A(A, V )⊗A(V, B) qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqqγAV B
A(A, B)

One concludes the proof by comparing the two coequalizers.
Let us conclude this paper with some examples indicating that the assump-

tion in proposition 5.4 is widely satisfied.

Example 5.5 A complete and cocomplete cartesian closed category V satisfies
the assumption in proposition 5.4

Proof The tensor product of two V-categories A, B is their cartesian product
A×B. It is proved in [21] that a V-category is Cauchy complete iff it admits all
absolute weighted colimits. If A and B are such, then A×B admits all absolute
weighted colimits, since these are computed componentwise. Therefore, A⊗ B
is at once Cauchy complete and the assumption in proposition 5.4 becomes
redundant.

Example 5.6 The category V of modules on a commutative ring R with unit
satisfies the assumption in proposition 5.4

Proof Let A, B be Cauchy complete V-categories. We know (see for example
[12]) that an object in the Cauchy completion A⊗ B of A ⊗ B is a retract of
a finite biproduct of objects in A ⊗ B. So it suffices to prove that every finite
biproduct in A⊗ B of objects lying in A⊗B is a retract of an object in A⊗B.

Consider ⊕n
i=1(Ai, Bi) ∈ A⊗ B, with (Ai, Bi) ∈ A ⊗ B for each index i.

By Cauchy completeness of A and B, (⊕n
i=1Ai,⊕n

i=1Bi) ∈ A⊗ B. In A⊗ B, it
remains to consider the diagram
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⊕n
i=1(Ai, Bi)

qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqq
qqq
qqq
qqq
qqq
qqq

α

β
(⊕n

i=1Ai,⊕n
i=1Bi)

@
@
@
@
@
@qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

@
@
@
@

@
@
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

σi

πi

�
�
�
�
�
�qqqqqqqqqqqqqqqqqqqq
qq
qq
qq
qq
qq
qq
qq
qq
�
�
�
�
�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

si ⊗ si

pi ⊗ pi

(Ai, Bi)

where pi, si, πi, σi are the canonical morphisms of the biproducts and α, β are
the corresponding factorizations. An obvious diagram chasing yields α ◦β = id,
which concludes the proof.

Corollary 5.7 Let V be the category of modules on a commutative ring R with
unit. The V-Brauer group is isomorphic to the Brauer group of R.

Proof By 5.6 and 5.4.

Example 5.8 The category V of
∨

-lattices satisfies the assumption of proposi-
tion 5.4.

Proof The proof is analogous to that of example 5.6, working with infinite
biproducts (see [13] and [12]).

Example 5.9 If G is a commutative monoid, the category of G-sets provided
with the tensor product

A⊗B = A×B/ ∼, where (ag, b) ∼ (a, bg)

for all a ∈ A, b ∈ B, g ∈ G, satisfies the conditions of proposition 5.4.

Proof Since in the category of G-sets, colimits are computed as in the category
of sets, the explicit formula given in section 2 for the composite of a A-B-
bimodule M and a B-C-bimodule N becomes

(N �M)(C, A) ∼=
∐

B N(C, B)⊗M(B, A)
≈

for A in A, B in B and C in C, with ≈ generated by

y ⊗M(f ⊗ 1A)(x) ≈ N(1C ⊗ f)(y)⊗ x

for
y ⊗ f ⊗ x ∈ N(C, B′′)⊗ B(B′′, B′)⊗M(B′, A)

and B′, B′′ varying in B.
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Starting from this, one can prove that a I-A-bimodule M has a right adjoint
if and only if, seen as a functor A∗

qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq G-Set, it is a retract of a representable
functor. The proof runs, up to straightforward modifications, as in the Set-based
case (see [5]) and we omit it. This implies at once that the tensor product of
two Cauchy complete V-categories is Cauchy complete, which makes redundant
the assumption in proposition 5.4.

Example 5.10 Let V be the poset [0,∞] of extended positive reals, viewed as
a category where r ≥ s induces an arrow r qqq

qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq s. This category V is complete
and cocomplete and is symmetric monoidal closed when defining

a⊗ b = a + b, [b, c] = max{b− a, 0}
(see [17]). This category satisfies the assumption in propositin 5.4.

Proof In this case a small V-category is a set X provided with a “distance”

d: X ×X qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq [0,∞]

satisfying the axioms

d(x, y) + d(y, z) ≥ d(x, z), 0 = d(x, x).

A sequence (an)n∈IN in (X, d) is a Cauchy sequence when

∀ε > 0 ∃n ∈ IN ∀k, l > n d(xk, xl) < ε

and it converges to x ∈ X when

∀ε > 0 ∃n ∈ IN ∀k > n d(x, xn) < ε and d(xn, x) < ε.

A V-category is categorically Cauchy complete precisely when every Cauchy
sequence converges uniquely (see [17] and [9]).

The tensor product of two V-categories is

(A, d′)⊗ (B, d′′) = (A×B, d), d
(
(a, b), (a′, b′)

)
= d′(a, a′) + d′′(b, b′).

It is now routine to verify that the tensor product of two Cauchy complete
categories is still Cauchy complete, which makes redundant the assumption in
proposition 5.4.

Notice moreover that the unit (I, d) of the tensor product of V-categories is
the singleton {∗} with the obvious distance d(∗, ∗) = 0; this (I, d) is obviously
Cauchy complete. By condition (4) in theorem 3.4, every Azumaya category
(A, d′) is such that d′ takes values in the Cauchy completion of (I, d), proving
that d′(a, a′) = 0 for all a, a′ ∈ A; moreover (A, d′) cannot be empty, due to its
generating properties. Therefore every Azumaya category is Morita equivalent
to the singleton and the Brauer group is reduced to the zero group.

To conclude this paper, let us mention that presently, we do not know any
example where the assumption in proposition 5.4 is not satisfied. This will be
investigated further in forthcoming papers, together with the applications of the
present theory in contexts like Banach, metric or locally convex modules.

18



References

[1] J.N. Alonso Alvarez, J.M. Fernandez Vilaboa, M.P. Lopez Lopez,
E. Villanueva Novoa, R. Gonzalez Rodriguez, A Picard-Brauer five
term exact sequence for braided categories, in Rings, Hopf algebras and
Brauer groups, Lect. Notes Pure Appl. Math. 197, Marcel Dekker (1998).

[2] M. Auslander and O. Goldman, The Brauer group of a commutative
ring, Trans. of the Amer. Math. Soc. 97 (1960), 367–409

[3] H. Bass, Algebraic K-theory, Benjamin, 1968

[4] J. Bénabou, Introduction to bicategories, Lect. Notes in Math. 47 (1967),
Springer, 1–77

[5] F. Borceux, Handbook of categorical algebra I: Basic category theory,
Cambridge Univ. Press, 1994

[6] F. Borceux, Handbook of categorical algebra II: Categories and structures,
Cambridge Univ. Press, 1994

[7] B. Day, Note on compact closed categories, J. of the Australian Math. Soc.
24-A (1977) 309–311

[8] B. Day and R. Street, Monoidal bicategories and Hopf algebroids, Adv.
Math. 129 (1997) 99-157.

[9] F. Borceux and D. Dejean, Cauchy completion in category theory,
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