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J. Rosický ∗ E.M. Vitale

October 1, 2001

Abstract. When the exact completion of a category with weak
finite limits is a Mal’cev category, it is possible to combine the uni-
versal property of the exact completion and the universal property
of the coequalizer completion. We use this fact to explain Freyd’s
representation theorems in abelian and Frobenius categories.
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Introduction

In the first of his contributions to the La Jolla proceedings [7], P. Freyd shows
that a small abelian category with enough projectives is the reflection of any
of its projective covers (which are preadditive categories) in the 2-category of
small abelian categories. Moreover, Freyd characterizes those small preadditive
categories which occur as projective covers of small abelian categories.

There is a strong analogy between Freyd’s results and the properties of the
exact completion established in [6]. The aim of this note is to make precise this
analogy : we show that Freyd’s results follow using at the same time the exact
completion of a category with weak finite limits and the reflexive coequalizer
completion of a category [13, 3]. It is remarkable that the basic ingredient to
combine the two completions is that abelian categories are Mal’cev categories :
if the exact completion is a Mal’cev category, then it coincides with the reflexive
coequalizer completion.

To complete our analysis, in the last section we consider the fact, proved
in [8], that an additive functor from a projective-injective cover of a Frobenius
category admits three different extensions to the whole category. This leads
us to compare the exact completion with a third kind of completion, the pre-
regular completion. We establish a necessary and sufficient condition on the
base category for its exact and pre-regular completions to be equivalent. In
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the additive case, this condition is equivalent to be a projective-injective cover
of a Frobenius category, and the universal property of a Frobenius category
follows from the equivalence of the three quoted completions. Another corollary
of our analysis is that the pre-regular completion of a triangulated category T

is the universal homological functor on T. This fact, first proved in [8] when
T is the stable homotopy category of spaces, has been generalized to arbitrary
triangulated categories by M. Grandis [9] and A. Neeman [11].

A warning : the composition of two arrows X
f

// Y
g

// Z is written
f · g .

Aknowledgment : We warmly thank the editor and the referee for their help
about the correct formulation and proof of Lemma 8.

1 Review on free completions

In this section we recall construction and universal property of the various com-
pletions we need.

Recall that a regular category is a category with finite limits and (regular
epi, mono) factorizations, in which regular epis are pullback stable. A category
is exact if it is regular and moreover equivalence relations are effective (i.e., they
have a coequalizer and they are the kernel pairs of their coequalizer) [1, 2]. A
functor between regular or exact categories is exact if it preserves finite limits
and regular epis. Recall also that a weak limit is defined as a limit, but deleting
the uniqueness of the factorization. A functor F : C → B, with C having weak
finite limits and B exact, is left covering if for each finite diagram D in C and
for each weak limit W of D, the comparison between F (W ) and the limit of
F (D) is a regular epi.

In [6] the following results have been proved.

Proposition 1 Let C be a category with weak finite limits. Then

1) there exists an exact category Cex and a full and faithful functor

Γ: C → Cex

(the “exact completion” of C) such that, for each exact category B, the
composition with Γ induces an equivalence between the category of exact
functors from Cex to B and the category of left covering functors from C

to B

Γ · − : Ex[Cex, B] → Lco[C, B] ;

2) Γ(C) is a projective cover of Cex, i.e. each object of Γ(C) is regular pro-
jective, and each object of Cex is a regular quotient of an object of Γ(C);

3) if A is an exact category and P is a projective cover of A then P has weak
finite limits, the full inclusion P → A is a left covering functor and its
exact extension Pex → A is an equivalence.
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The exact category Cex can be described in the following way :

• an object of Cex is a pseudo-equivalence X1

x0 //
x1

// X0 in C (that is, as an

equivalence relation, but without requiring that the pair is jointly monic);

• a premorphism in Cex is a pair (f, f) of arrows in C as in the following
diagram

X1
f

//

x0

��
x1

��

Y1

y0

��
y1

��
X0

f

// Y0

such that x0 · f = f · y0 and x1 · f = f · y1 ;

• a morphism in Cex is an equivalence class [f, f ] of premorphisms : we
identify two pairs (f, f) and (g, g) of premorphisms if there exists l : X0 →
Y1 such that l · y0 = f and l · y1 = g ;

• composition and identities in Cex, and the full embedding Γ, are the ob-
vious ones.

Let us now recall from [13, 3] the reflexive coequalizer completion of a cate-
gory (a reflexive coequalizer is the coequalizer of a reflexive graph).

Proposition 2 Let C be any category. Then

1) there exists a category Crc with reflexive coequalizers and a full and faithful
functor

Λ: C → Crc

such that, for each category B with reflexive coequalizers, the composition
with Λ induces an equivalence between the category of reflexive coequalizer
preserving functors from Crc to B and the category of functors from C to
B

Λ · − : RC[Crc, B] → [C, B] ;

2) if moreover C has finite sums, then Crc has finite colimits and, for each
category B with finite colimits, the composition with Λ induces an equiv-
alence between the category of right exact (= finite colimits preserving)
functors from Crc to B and the category of finite sums preserving functors
from C to B

Λ · − : Right[Crc, B] → FS[C, B] .

The category Crc can be described as follows :

• an object in Crc is a reflexive graph X1

x0 //
x1

// X0 in C
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• consider the following diagram in C, with Y1

y0 //
y1

// Y0 a reflexive graph

Y1

y0

��
y1

��
V

g
//

f
//
Y0

we say that f is preequivalent to g if there exists h : V → Y1 such that
h ·y0 = f and h ·y1 = g ; this is a reflexive relation in the hom-set C(V, Y0).
We write f ' g if f and g are in the equivalence relation generated by the
above reflexive relation ;

• a premorphism in Crc is an arrow f of C as in the diagram

X1

x0

��
x1

��

Y1

y0

��
y1

��
X0

f
// Y0

such that x0 · f ' x1 · f ;

• a morphism in Crc is an equivalence class [f ] of premorphisms : we identify
two premorphisms f and g if f ' g ;

• composition and identities in Crc, and the full embedding Λ, are the ob-
vious ones.

Recall that a factorization system (E ,M) on a category B (see [2] for the
notion of factorization system) is proper if each E-arrow is an epi and each
M-arrow is a mono ; it is stable if E is stable under pullbacks. A pre-regular
category is a pair B = (B, (E ,M)) with B a category and (E ,M) a proper
and stable factorization system on B. Observe that any regular category is pre-
regular in a canonical way : take as E regular epis and as M monos. The
pre-regular completion of a category has been introduced, in the special case
of the stable homotopy category, by Freyd in [8]. It has been studied in all its
generality in [9] (see also [10]). We recall from [9] the following facts.

Proposition 3 Let C be a category. Then

1) there exists a pre-regular category Cpreg and a full and faithful functor

Ψ: C → Cpreg

such that, for each pre-regular category B, the composition with Ψ induces
an equivalence between the category of functors from Cpreg to B preserving
the factorization system and the category of functors from C to B

Ψ · − : fs[Cpreg, B] → [C, B] ;
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2) for each object C of C, Ψ(C) is E-projective and M-injective in Cpreg.

Moreover, for each object X of Cpreg, there are objects X0, X
′ in C and

arrows x0 : Ψ(X0) → X , x′ : X → Ψ(X ′) with x0 in E and x′ in M. As
a consequence, in Cpreg E-projectives coincide with M-injectives and they
are exactly the retracts of the objects Ψ(C), for C ∈ C.

The pre-regular category Cpreg can be described in the following way :

• an object of Cpreg is a morphism x : X0 → X ′ in C ;

• a premorphism in Cpreg is a pair (f0, f
′) of arrows in C making commu-

tative the following diagram

X0
f0 //

x

��

Y0

y

��
X ′

f ′

// Y ′

• a morphism in Cpreg is an equivalence class [f0, f
′] of premorphisms : we

identify two pairs (f0, f
′) and (g0, g

′) of premorphisms if x · f ′ = x · g′

(equivalently, if f0 · y = g0 · y) ;

• composition and identities in Cpreg, and the full embedding Ψ, are the
obvious ones.

2 Representations in abelian categories

Since many of the interesting examples are given by locally small, but not small,
categories, in this section we give elementary proofs, i.e. without using embed-
ding in presheaf categories; all the facts quoted in the first section can be proved
in this way. This allows us to remove size conditions from Freyd’s results.

The second of the Freyd’s results quoted in the introduction immediately
follows from Proposition 1. (For the notions of preadditive, additive and abelian
category we follow [2]. In particular, we will use that a category is abelian iff it
is exact and (pre)additive.)

Proposition 4 [7] A category C is equivalent to a projective cover of an abelian
category if and only if it is preadditive and it has weak finite products and weak
kernels.

Proof: If C is a projective cover of an abelian category A, then C is pread-
ditive because A is preadditive. Moreover, given a finite diagram in C, any
C-cover of the corresponding limit in A is a weak limit in C.

Conversely, if C has weak kernels, then it has weak equalizers and then, if it
has also weak finite products, it has all weak finite limits [6]. Now consider
its exact comletion Cex : since C is preadditive, also Cex is preadditive (define
[f, f ] + [g, g] = [f + g, f + g]) and then it is abelian. By point 2 of Proposition
1, the proof is complete. �
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To go further in our analysis of Freyd’s results, we now compare the exact
completion and the reflexive coequalizer completion. The next lemma general-
izes a result in [12] by deleting assumptions on sums.

Lemma 5 Let C be a category with weak finite limits. Then Cex is equivalent
to a full subcategory of Crc.

Proof: Consider the functor L : Cex → Crc

X1
f

//

x0

��
x1

��

Y1

y0

��
y1

��
X0

f
// Y0

7→ X1

x0

��
x1

��

Y1

y0

��
y1

��
X0

f
// Y0

It is well-defined, in fact the arrow f gives that f is a premorphism in Crc;
moreover, if [f, f ] = [g, g] in Cex, then the arrow l : X0 → Y1 gives that f and g

are preequivalent, and then [f ] = [g] in Crc.

Now observe that if Y1

y0 //
y1

// Y0 is a pseudo-equivalence in C, then for each

object V the relation to be preequivalent in C(V, Y0) is already an equivalence
relation, so that we can avoid the passage to the generated equivalence relation.
This implies that [f, f ] = [g, g] in Cex if and only if [f ] = [g] in Crc, so that the
functor L is faithful. It is also full because, given a premorphism in Crc

X1

x0

��
x1

��

Y1

y0

��
y1

��
X0

f

// Y0

with (y0, y1) a pseudo-equivalence, x0 · f ' x1 · f means that they are preequiv-
alent, so that there exists f : X1 → Y1 such that (f, f) is a premorphism in Cex.

�

Recall that a category with finite limits is a Mal’cev category if any reflexive
relation is an equivalence relation [4, 5]. Now we a little bit adapt this definition
to the case of categories with weak finite limits, where it is more appropriate to
work with graphs instead of relations.

Definition 6 Let C be a category with weak finite limits. We say that C is a
G-Mal’cev category (G stays for graph) if any reflexive graph can be equipped
with a structure of pseudo-equivalence.

Remark : Observe that, for a category C with weak finite limits, to be G-
Mal’cev is equivalent to the fact that any representable functor C(C,−) sends
reflexive graphs to pseudo-equivalences ; this is also equivalent to the fact that
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for each object C and for each reflexive graph X1
//
// X0 , the jointly monic

part of its (epi, jointly mono) factorization in SET is an equivalence relation

C(C, X1)
//
//

## ##H
HHHHHHHH

C(C, X0)

I

;;vvvvvvvvv

;;vvvvvvvvv

Observe also that any G-Mal’cev category having finite limits is Mal’cev.

Lemma 7 Let C be a G-Mal’cev category with weak finite limits. Then Cex

and Crc are equivalent.

Proof: If C is G-Mal’cev, then the functor L : Cex → Crc is surjective on
objects and then, by Lemma 5, it is an equivalence. �

Lemma 8 Let C be a projective cover of a regular category A. Then A is Mal’cev
if and only if C is G-Mal’cev. In particular, a category C with weak finite limits
is G-Mal’cev if and only if its exact completion Cex is Mal’cev.

Proof: (only if) : Consider a reflexive graph X1

x0 //
x1

// X0 in C and its

(regular epi, jointly mono) factorization in A

X1

x0 //
x1

//

p
    @

@@
@@

@@
@

X0

I

i0

>>~~~~~~~~ i1

>>~~~~~~~~

The relation (i0, i1) is reflexive so that, by assumption, it is an equivalence
relation.
• Consider the symmetry s : I → I of (i0, i1); since X1 is regular projective and
p : X1 → I is a regular epi, there exists a morphism σ : X1 → X1 such that
σ · p = p · s; one checks that σ is a symmetry for the graph (x0, x1).
• Consider the following pullbacks in A

P
x1 //

x0

��

X1

p

��
L

i1 //

i0

��

I

i0

��
X1 p

// I
i1

// X0

together with the unique factorization π : P → L ; consider now a regular epi
q : X2 → P with X2 in C. Then

X1 X2
q·x0oo q·x1 // X1
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is a weak pullback of x0 and x1 in C. Let t : L → I be given by the transitivity
of (i0, i1) ; since X2 is regular projective and p : X1 → I is a regular epi, there
exists a morphism τ : X2 → X1 such that τ ·p = q ·π · t ; one checks that τ yields
transitivity of (x0, x1).

(if) : Consider a reflexive relation R
r0 //
r1

// X in A, with δ : X → R the common

section of r0 and r1, an object X in C and a regular epi x : X → X. Consider
also the following pullback

B
〈b0,b1〉 //

a

��

X × X

x×x

��
R

〈r0,r1〉
// X × X

and cover B with a regular epi β : P → B from an object P of C. Since x · δ ·
〈r0, r1〉 = ∆ · (x × x), where ∆: X → X × X is the diagonal, there is a unique
α : X → B such that α · a = x · δ and α · 〈b0, b1〉 = ∆. Since β is a regular epi
and X is regular projective, there exists γ : X → P such that γ · β = α. Now

γ · β is a reflection for the graph P
β·b0 //
β·b1

// X in C. By assumption, this graph

has a structure of pseudo-equivalence. Let σ : P → P be a symmetry. Then

σ is a symmetry also for the graph P
β·b0·x //
β·b1·x

// X and then R
r0 //
r1

// X , being

the jointly monic part of its factorization, is a symmetric relation. Since A is
regular, this is enough to prove that it is a Mal’cev category. �

Recall from [2] that a preadditive category is additive iff it has finite sums,
and that a functor between additive categories is additive iff it preserves finite
sums. Moreover, for a functor between abelian categories, to be right exact or
exact in the sense of abelian categories is the same as to be right exact or exact
in the sense used in section 1.

Proposition 9 Let C be a preadditive category with weak finite products and
weak kernels. Then there exists an abelian category Cab and a full and faithful
functor

Σ: C → Cab

such that, for each abelian category B, the composition with Σ induces an equiva-
lence between the category of right exact functors from Cab to B and the category
of additive functors from C to B

Σ · − : Right[Cab, B] → Add[C, B]

Proof: We already know that such a category C has weak finite limits. More-
over, up to replacing C by its Cauchy-completion C, which is nothing else but
the full subcategory of all the regular projective objects of the abelian category
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Cex, we can assume that C has finite sums. (In fact C is still preadditive, and a
functor C → B is additive iff its unique extension C → B is additive.) Now we
can take as Cab the exact completion Cex. It is abelian and then it is a Mal’cev
category [4, 5]. By Lemma 7 and Lemma 8, it follows that L : Cex → Crc is an
equivalence. Now take as Σ: C → Cab the functor Λ · L−1 : C → Crc → Cex ;
point 2 of Proposition 2 gives us exactly the requested universal property. �

Bearing in mind point 3 of Proposition 1, we have the following corollary,
which is the first of Freyd’s results quoted in the introduction.

Corollary 10 [7] Let A be an abelian category and P a projective cover of A.

Then, for each abelian category B, the composition with the full inclusion P → A

induces an equivalence of categories Right[A, B] → Add[P, B] .

3 Frobenius categories

To explain the universal property of a Frobenius category (Theorem 3.1 in [8]), in
this section we compare the exact and the pre-regular completion of a category.

Let C be a category with weak finite limits. There is a canonical (pseudo)
functor K : Cpreg → Cex induced by the universal property of Cpreg. Explicitely,
K is defined in the following way

X0
f0 //

x

��

Y0

y

��
X ′

f ′

// Y ′

7→ N(x)
f

//

x0

��
x1

��

N(y)

y0

��
y1

��
X0

f0

// Y0

where (x0, x1) is a weak kernel pair of x and f is induced by the fact that (y0, y1)
is a weak kernel pair of y. The functor K is well defined because two weak kernel
pairs of the same arrow are objects canonically isomorphic in Cex. Moreover, K

is faithful.

Lemma 11 Let C be a category with weak finite limits. The functor K : Cpreg →
Cex is an equivalence if and only if the following conditions hold in C :

i - each arrow is a weak coequalizer ;

ii - each pseudo-equivalence is a weak kernel pair.

Proof: (if) : Consider two objects x : X0 → X ′ and y : Y0 → Y ′ in Cpreg and
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an arrow [f0, f ] : K(x) → K(y) in Cex

N(x)
f

//

x0

��
x1

��

N(y)

y0

��
y1

��
X0

f0

//

x

��

Y0

y

��
X ′

f ′

// Y ′

Since x is, by condition (i), a weak coequalizer, it is a weak coequalizer of
(x0, x1). Then there exists f ′ such that x · f ′ = f0 · y, so that K is full.

Now consider an object C1

r0 //
r1

// C0 in Cex. By condition (ii), (r0, r1) is a weak

kernel pair of some q : C0 → Q and then (r0, r1) and K(q) are isomorphic.
(only if) : Consider the following diagram

N(y)

y0

��
y1

��
N(x)

f
;;

x1

//
x0 //

X0
x //

y

��

X ′

f ′

||
Y ′

where x is an arrow in C, (x0, x1) is a weak kernel pair of x, y coequalizes x0

and x1 and (y0, y1) is a weak kernel pair of y. The condition x0 · y = x1 · y

implies that there exists f such that f · y0 = x0 and f · y1 = x1. Now [1X′ , f ] is
an arrow in Cex between K(x) and K(y). Since K is full, there is an arrow f ′

such that x · f ′ = y. This means that x is a weak coequalizer of (x0, x1).
To prove condition (ii), we identify C with a full subcategory of Cex. Let

C1

r0 //
r1

// C0 be a pseudo-equivalence in C, and consider the following diagram

in Cex

B

l

ww
h

~~
f

��
g

��
C1 p

// X
i0 //
i1

// C0
q

// Q
m // E

where (p, (i0, i1)) is the regular epi-jointly monic factorization of (r0, r1) and
q is the coequalizer of (i0, i1), which exists by Theorem 26 in [6]. Moreover,
since K is an equivalence, there is an object E in C and a mono m : Q → E.

Now we prove that (r0, r1) is a weak kernel pair in C of q · m. Assume that
f · q · m = g · q · m. Since m is a mono and (i0, i1) is the kernel pair of q, there
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exists a unique h such that h · i0 = f and h · i1 = g. Since B is regular projective
and p is a regular epi, there is l such that l · p = h. Finally, l · r0 = f and
l · r1 = g. �

Remark : The previous lemma can be made more precise. The functor
K : Cpreg → Cex factors through Creg, the regular completion of C [6], and
one can prove that

i - Cpreg → Creg is full iff in C any arrow is a weak coequalizer ;

ii - Creg → Cex is an equivalence iff for any pseudo-equivalence C1

r0 //
r1

// C0

in C there exists a finite family of arrows (qi : C0 → Qi)I such that (r0, r1)
is weak universal w.r.t. the condition r0 · qi = r1 · qi for all i in I.

Recall that a Frobenius category is an abelian category with enough pro-
jectives and injectives, and in which projectives and injectives coincide. In the
additive case, the conditions of the previous lemma are equivalent to the fact
that C is a projective-injective cover of a Frobenius category. In fact, we have
the following lemma (compare with Theorem 1.7 in [7]).

Lemma 12 Let C be an additive category with weak kernels, and assume that
in C each arrow is a weak cokernel. The following conditions are equivalent :

1) each arrow has a weak cokernel, each arrow is a weak kernel ;

2) each pseudo-equivalence is a weak kernel pair.

Proof: 1) ⇒ 2) : Let C1

r0 //
r1

// C0 be a pseudo-equivalence in C and consider

a weak cokernel q : C0 → Q of r0 − r1. Now we prove that

(

q

−q

)

: C0 ⊕C0 →

Q is a weak cokernel of 〈r0, r1〉 : C1 → C0 ⊕ C0. For this, consider an arrow
(

h1

h2

)

: C0 ⊕ C0 → Z such that 〈r0, r1〉 ·

(

h1

h2

)

= 0 and let i : C0 → C1 be

such that i ·r0 = 1C0
= i ·r1. We have 0 = i ·0 = i · (r0 ·h1 + r1 ·h2) = i ·r0 ·h1 +

i ·r1 ·h2 = h1 +h2, so that h2 = −h1 and then 0 = r0 ·h1 +r1 ·h2 = (r0−r1) ·h1.

But q is a weak cokernel of r0 − r1, so that there exists z : Q → Z such that

q · z = h1. This implies that

(

q

−q

)

· z =

(

h1

h2

)

, that is

(

q

−q

)

is a weak

cokernel of 〈r0, r1〉. By assumption, 〈r0, r1〉 is a weak kernel, and then it is a

weak kernel of its weak cokernel

(

q

−q

)

. This implies that C1

r0 //
r1

// C0 is a

weak kernel pair of q. In fact, if T
x //
y

// C0 are such that x · q = y · q, then

〈x, y〉 ·

(

q

−q

)

= 0 and then there is t : T → C1 such that t · 〈r0, r1〉 = 〈x, y〉.

This means t · r0 = x and t · r1 = y.
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2) ⇒ 1) : Let f : X → Y be an arrow in C (which we identify with a full
subcategory of the abelian category Cex). Consider the (regular epi, mono)
factorization of f in Cex and the cokernel q of its monic part i

T

t′′

��

t′

��
t

��/
/
/
/
/
/
/
/
/
/
/
/
/
/

I

i
��?

??
??

??
?

X

e

??��������

f
// Y

q
// Q

m // E

and embed Q in an object E of C (this is possible because C has weak finite limits
and satisfies the conditions of the previous lemma, so that K : Cpreg → Cex is
an equivalence). Let us show that f is a weak kernel of q ·m in C. Let t : T → Y

be an arrow in C such that t · q · m = 0. Since m is a mono, then t · q = 0. But
i is a mono, so that it is the kernel of its cokernel q, and then there exists a
unique t′ such that t′ · i = t. Since T is regular projective and e is a regular epi,
there is t′′ such that t′′ · e = t′. Finally, t′′ · f = t, so that f is a weak kernel of
q · m. Moreover, by assumption, q · m is a weak cokernel, so that it is a weak
cokernel of its weak kernel f. �

Corollary 13 [8] Let C be an additive category such that each arrow has a weak
kernel and a weak cokernel, and it is a weak kernel and a weak cokernel. Then
Cpreg is a Frobenius category. Moreover, for any abelian category B and for any
additive functor F : C → B, there are three functors Fi : Cpreg → B (i = 1, 2, 3)
such that :

1) The following diagram commutes, up to isomorphism, for i = 1, 2, 3

C
Ψ //

F
��>

>>
>>

>>
>

Cpreg

Fi

}}zz
zz

zz
zz

B

2) F1 is right exact, F2 is left exact and F3 preserves images ;

3) Each Fi is essentially unique within these properties.

Proof: By Lemmas 7, 8, 11 and 12, we have two equivalences

K : Cpreg → Cex L : Cex → Crc

Since C is additive, Cex ' Cpreg is abelian. It is Frobenius by point 2 of
Proposition 3. Now, the existence of F3 follows from the universal property of
Cpreg because, under the equivalence Cpreg ' Cex, the factorization system in
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Cpreg becomes the (regular epi, mono) factorization. As far as F1 is concerned,
we simply apply Proposition 9 using the equivalence Cpreg ' Crc. Finally, since
Cpreg is abelian, its dual category is exact. Moreover, by point 2 of Proposition
3, Cop is a projective cover of (Cpreg)

op. We obtain now F2 applying Proposition
9 to the dual categories. �

To end this paper, we consider the case of triangulated categories. For
definitions and basic facts, the reader can consult [11, 14]. The following lemma
shows that the notion of homological functor on a triangulated category, which
is defined in terms of the triangulated structure, is in fact an intrinsic notion.

Lemma 14 Let T be a triangulated category and B an abelian category. An
additive functor H : T → B is a homological functor if and only if it is left
covering.

Proof: Since H is additive, we have to prove that H is left covering w.r.t.
weak kernels iff it sends triangles on exact sequences. This is the case because
any arrow v : Y → Z fits into an triangle of the form (u, v, w) and, in any
triangle

X
u // Y

v // Z
w // ΣX ,

u : X → Y is a weak kernel of v. Now the exactness of

H(X)
H(u)

// H(Y )
H(v)

// H(Z)

means that the comparison between H(u) and the kernel of H(v) is a (regular)
epi, i.e. that H is left covering w.r.t. weak kernels. �

Corollary 15 Let T be a triangulated category. Then Γ: T → Tex is the uni-
versal homological functor on T.

Proof: Since T is additive, Tex is abelian. The statement follows now from
Lemma 14 and point 1 of Proposition 1. �

Since any triangulated category satisfies the conditions of Lemma 12, in
the previous corollary we can replace the exact completion by the pre-regular
completion. We get in this way the theorem proved in [8] for the stable homotopy
category, and in [9, 11] for an arbitrary triangulated category.
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Jǐŕi Rosický
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