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ABSTRACT. The bicategory of fractions of the 2-category of internal groupoids and
internal functors in groups with respect to weak equivalences (i.e., functors which are
internally full, faithful and essentially surjective) has an easy description: one has just to
replace internal functors by monoidal functors. In the present paper, we generalize this
result from groups to any monadic category over a regular category C, assuming that the
axiom of choice holds in C. For T a monad on C, the bicategory of fractions of Grpd(CT)
with respect to weak equivalences is now obtained replacing internal functors by what
we call T-monoidal functors. The notion of T-monoidal functor is strictly related to the
notion of pseudo-morphism between strict algebras for a pseudo-monad on a 2-category.
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UF:UA — UB between the underlying groupoids in Set. If F'is a weak equivalence
(that is, it is full, faithful, and essentially surjective), then UF also is a weak equivalence
and therefore (admitting the axiom of choice in Set) it is an equivalence of groupoids.
Moreover, the quasi-inverses (UF)*: UB — UA of UF are monoidal functors, but in
general they fail to be internal functors in Gp (precisely because in Gp the axiom of
choice does not hold). This simple fact has been formalized by the second author in [14],
where it is shown that the inclusion

Grpd(Gp) — MON

where MON is the 2-category of internal groupoids in Gp and monoidal functors, is the
bicategory of fractions of Grpd(Gp) with respect to weak equivalences. In [14] it is also
shown that a similar result holds when the category of groups is replaced by the category
Liey of Lie algebras over a field k£, and monoidal functors are replaced by homomorphisms
of strict Lie-2-algebras.

Both categories Gp and Lie, are monadic over regular categories where the axiom
of choice holds (Set and Vecty, respectively). The idea of the present paper is, there-
fore, to generalize the results established in [14] to groupoids internal to CT, where
T = (T,n,pu): C — C is a monad and the axiom of choice holds in the regular cate-
gory C. We look for a simple description of the bicategory of fractions of Grpd(CT) with
respect to weak equivalences. Of course, the problem is to find a convenient notion of
“T-monoidal functor’ between internal groupoids in CT in order to describe the desired
bicategory of fractions as the (not full) embedding

Grpd(CT) «— T-MON

Good news: in some sense, such a notion already appears in the literature: T-MON is
the 2-category of strict algebras and pseudo-morphisms for a pseudo-monad 7 on the
2-category Grpd(C). Bad news: in general, such a pseudo-monad 7 does not exist!

More precisely, if the functor part 7': C — C of the monad T preserves pullbacks, then
T induces a pseudo-monad 7 on Grpd(C) whose 2-category Alg(7T) of strict algebras and
strict morphisms is isomorphic to Grpd(CT). Moreover, as for any pseudo-monad, we can
consider also the 2-category Ps-Alg(7) of pseudo-algebras and pseudo-morphisms and,
as an intermediate situation, the 2-category 7-MON of pseudo-morphisms between strict
algebras

Alg(T) < T-MON —— Ps-Alg(T)

Now, when T': C — C does not preserve pullbacks, the pseudo-monad 7 on Grpd(C) does
not exist because T' destroys the internal composition of an internal groupoid A, so that
T(A) is a reflexive graph but not an internal groupoid. Nevertheless, we can still define
pseudo-morphisms since, for doing that, only 2-cells of the form
T(A) o B
—
are needed, and to express the naturality of o one uses the internal composition in B, not
in 7(A). With this idea in mind, we can define the 2-category T-MON for every monad
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T on C and, assuming the axiom of choice in the regular category C, we can prove that
the embedding

Grpd(CT) «— T-MON

is the bicategory of fractions of Grpd(CT) with respect to weak equivalences.

The layout of this paper is as follows. In Section 2 we recall from [6] the notion of weak
equivalence between internal groupoids. In Section 3 we introduce the 2-category T-MON
constructed from any monad T on a category C with pullbacks. Section 4 is devoted to
the proof that Grpd(CT) — T-MON is the bicategory of fractions with respect to weak
equivalences. The case of groups and the case of Lie-algebras are briefly discussed in
Sections 5 and 6. Observe that, since the categories of groups and of Lie algebras are
semi-abelian, the bicategories of fractions of Grpd(Gp) and of Grpd(Liey) with respect
to weak equivalences can also be described using ‘butterflies’; see [11] and [1]. Finally, in
Section 7 we recall the notions of pseudo-monad and pseudo-morphisms between (strict
or pseudo-) algebras which form the background to understand the definitions given in
Section 3. We also show that, under suitable conditions on a 2-category B and on a
pseudo-monad 7 on B, the not full inclusion Alg(7) < 7-MON is the bicategory of
fractions with trespect to those arrows in Alg(7) which are equivalences in B. The needed
conditions on B and T are satisfied when B = Grpd(C) and 7T is induced by a pullback-
preserving monad T on C. Nevertheless, the main result of Section 4 is not a special case
of the result in this final section, because in Section 4 we do not assume that T preserves
pullbacks.

Throughout this paper, we use the terminology of Chapter 7 of [4] for 2-categories.

2. Weak equivalences

We recall in this section the definition of weak equivalences in the 2-category of internal
groupoids. Let us first fix notations. If C is a category with pullbacks, an internal groupoid
A in C is represented by

d -
Al Xc,d A1 e A1 40> AO Al s Al

e’
€

where

b
Al Xc,d Al S Al

g - ld

Ay Ao

[

is a pullback.



An internal functor F': A — B in C is represented by

AlgBl

el

Ao Bo

and an internal natural transformation a : F' = G : A — B is represented by a : Ay — Bj.

We denote by Grpd(C) the 2-category of internal groupoids, internal functors and
internal natural transformations in C. Now, it is worthy to remark that, if D has pullbacks
and if U : D — C preserves them, it induces a 2-functor (also denoted U by abuse of

notations)

U: Grpd(D) —
A —
F —
@ —

Grpd(C)

UA = (UAy,UAy,Ud, Ue, Ue, Um, Ui)
UF = (UFy, UF))

Ua.

The definition of weak equivalences has been introduced by M. Bunge and R. Paré in

[6]-

Definition 2.1 (Bunge-Paré) Let ' : A — B be an internal functor between internal

groupoids in C.

o We say that F is full and faithful if

Ay

[l
NN

15 a limit diagram.

o [ is said to be essentially surjective if

to c
Ay Xpya B —= B —— By

15 a reqular epimorphism, where to is given by the pullback

[2)
Ao Xpya B1 —= By

3 i |

Ap By

Fo



o [ is a weak equivalence if it is full and faithful and essentially surjective.

We notice that if C = Set, this corresponds to the usual notion of fully faithful and
essentially surjective functor.
We can immediately deduce the following lemma.

Lemma 2.2 Let U : D — C be a functor where D has and U preserves finite limits and
let F': A — B be an internal functor between internal groupoids in D. Then,

o [f U reflects finite limits, F is full and faithful if and only if UF is.

o [f U preserves and reflects reqular epimorphisms, F is essentially surjective if and
only if UF is.

Proof. The ‘only if parts’ follow from the preserving hypothesis while the ‘if parts’ follow
from the reflecting hypothesis. [

We conclude this section by a well-known lemma. A proof can be found in [14].

Lemma 2.3 An internal functor ' : A — B between internal groupoids in C is an
equivalence if and only if it is full and faithful and

Ao X py.a Bi 2. B~ A
18 a split epimorphism.

We know from this lemma that in a category where the axiom of choice holds (every
regular epimorphism splits), weak equivalences coincide with equivalences.

3. T-monoidal functors

Monoidal functors F' : A — B between small strict cat-groups (i.e., internal groupoids
in the category Gp of groups) can be seen as ‘quasi-internal functors’. Indeed, since for
all X,Y € A we have an isomorphism F(X)+ F(Y) = F(X +Y), F is not an internal
functor in Gp, but it is only an ‘internal functor up to isomorphisms’. The aim of this
section is to generalize this notion of ‘quasi-internal functor’ in any monadic category.

So, we are given a monad T = (7,7, 1) on a finitely complete category C. We thus
have a forgetful functor from the Eilenberg-Moore category

U. Cc"—>¢
(A,a) — A
= r
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which preserves, reflects and creates finite limits (see [5], proposition 4.3.1). It induces
a 2-functor U : Grpd(C") — Grpd(C). If A is a groupoid in CT and if we denote the
groupoid UA in C by

UA = A1$Ao,m,i ,

e’
e

then A is of the form

d .
A= (Abal)?(AO;aO) y 1My T

where a; : TA;, — Ay and ag : TAg — Ag are T-algebras and d, ¢, e, m,i are T-algebra
homomorphisms.
We are now able to define T-monoidal functors.

Definition 3.1 Let T = (T, n, 1) be a monad on a finitely complete category C. We define
the 2-category T-MON as follows:

e Objects are internal groupoids in CT.

o I-cells are T-monoidal functors (F,¢) : A — B. These are the data of a functor
F:UA — UB in C and an arrow ¢ : T'Ay — By such that

TAy—2~B, TA—2~B, 74, OR) w a By
Tpoi ld i l Wd,plal)l im
TBy —— By AOTO>BO By X.4g By ——— B,
A T Ay and T2 Ay —2 T Ay
EJ/ lw (bchp,LpTao)l lw
Ay — B By Xea By —7> By

commute.

® 1A = (1A,ea0).

e The composition of AMB@C is (GF,m(TFy,, G1p)).

o 2-cells are T-monoidal natural transformations o : (F,p) = (F',¢') : A — B.
These are natural transformations o : F = F'" in C such that

T A, (o) By Xcq By

(blToc,go’)i lm

B, Xed B, B

m



commutes.
o [dentities and vertical and horizontal compositions of 2-cells are as in Grpd(C).

It is easy to check that the data of definition 3.1 give rise to a 2-category. Note that
every 2-cell in T-MON is invertible since if o : (F, ) = (F”,¢’) is T-monoidal, then so is
-1
a
Diagrams involved in definition 3.1 might be thought as unintuitive at a first glance.
An explanation where these axioms come from can be found in Section 7.

We have two 2-functors

I:Grpd(C") — T-MON  and  J:T-MON — Grpd(C)

Ar— A Ar— UA
F— (UF,ebyTF) (F,p) — F
a— Ua o — Q.

Thus, by abuse of notation, we say that a T-monoidal functor (F, ¢) : A — B is internal in
CT when ¢ = ebyTF,. We will often identify an internal functor F in CT with (UF, ebyT Fy).

It is a well-know fact that if a monoidal functor between monoidal categories has
a pseudo-inverse, then, this pseudo-inverse can be equipped with a monoidal structure.
Next lemma asserts that the same fact occurs for T-monoidal functors.

Lemma 3.2 A T-monoidal functor (F, ) : A — B is a T-monoidal equivalence (i.e., an
equivalence in T-MON) if and only if F': UA — UB is an equivalence in Grpd(C).

Proof. The ‘only if part’ is clear. Let us prove the ‘if part’. Suppose we have a functor
G : B — A and natural isomorphisms o : GF = 1, and § : FG = 1y in C. Without
loss of generality, we can assume that S x 1p = lp xa and 1g % 8 = a x 1. Since F is
full and faithful, there exists a unique ¢ : TBy — A; such that di = agT' Gy, cip = Gobg
and F1v = m(ipTGo, m(b1T3,i8by)). This makes (G,1) and § T-monoidal. Moreover,
since o and [ satisfy the triangular identities, « is also T-monoidal. Therefore, (F, ) is
a T-monoidal equivalence. [

Remark 3.3 We can notice here that, even if ¢ = ebyT'Fy, this does not imply that
Y = eayTGy. So, an internal functor in CT can be an equivalence in T-MON, without
being an equivalence in Grpd(C").

4. T-MON as bicategory of fractions

In [12], D. Pronk defined bicategories of fractions as the 2-dimensional analogous to the
categories of fractions introduced by P. Gabriel and M. Zisman in [7]. In this section, we
first recall this notion. Afterwards, we prove that the bicategory of fractions of Grpd(CT)
with respect to weak equivalences is T-MON.

We use the term ‘pseudo-functor’ for ‘homomorphism’ of bicategories. An introduction
to bicategories can be found in [3].



8

Definition 4.1 (Pronk) Let B be a bicategory and ¥ a class of 1-cells in B. The bicat-
egory of fractions of B with respect to 3 is a pseudo-functor

Ps B — B[Eil]
which sends elements of ¥ to equivalences and which is universal with this property, i.e.
— o Py : PsFunct(B[X7'], A) — PsFuncts (B, A)

is a biequivalence for every bicategory A where PsFunct(B[Y71], A) is the bicategory of
pseudo-functors B[X7'] — A and PsFuncts(B, A) is the bicategory of pseudo-functors
B — A which send elements of ¥ to equivalences.

Similarly, admitting a right calculus of fractions for a class of 1-cells in a bicategory
is the 2-dimensional version of the 1-dimensional case. We refer the reader to [12] for
definitions. The results we will use in this section are the following two.

Proposition 4.2 (Pronk) Let B be a bicategory and 3 a class of 1-cells in B which has a
right calculus of fractions. Consider a pseudo-functor I : B — A which sends elements of
¥ to equivalences and let F : B[X7'] — A its extension. Suppose the following conditions
hold.

EF1. F s essentially surjective on objects.
EF2. F s full and faithful on 2-cells.

EF3. For each 1-cell f : F(A) — F(B) in A, there ezist 1-cells g : C' — B andw : C — A
in B such that w € ¥ and F(g) = f o F(w).

Then, F is a biequivalence and F : B — A is the bicategory of fractions of B with respect
to 2.

A proof of this proposition can be found in [12], while the next one is proved in [14].

Proposition 4.3 Let C be a reqular category and X be the class of weak equivalences in
Grpd(C). Then ¥ has a right calculus of fractions.

In order to use this proposition for weak equivalences in Grpd(CT), we need the fol-
lowing lemma, stated without proof in [13].

Lemma 4.4 Let C be a regular category and T = (T,n, ) a monad on C. Then,
1. T preserves reqular epimorphisms if and only if U : CT — C does;

2. if T preserves reqular epimorphisms, U reflects them. In this case, C* is reqular.
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Proof. 1. Firstly, suppose U preserves regular epimorphisms. Since 17" = UF where
F : C — C" is the left adjoint to U, T preserves regular epimorphisms since U and F
do. Conversely, suppose T' preserves regular epimorphisms. Let f: (A, a) — (B, ) be a
regular epimorphism in C'. Then, f factors as

N

in C, with p a regular epimorphism and m a monomorphism. So, Tp is a regular epimor-
phism and there exists a unique ¢ making the following diagram commute.

A

B

TA— 2T

pal /m lmm

I B

Since m is a monomorphism and (B, ) a T-algebra, (/,4) is also a T-algebra and p and
m are T-algebra homomorphisms. Therefore, since f is the coequalizer of two parallel
arrows in CT, p is also their coequalizer in C*. Thus, m is an isomorphism and f a regular
epimorphism in C.

2. Since U creates finite limits, C*T has them. Now, let f : (A,a) — (B,f) be a
T-algebra homomorphism such that f : A — B is a regular epimorphism in C. Denote

f
by R[f] ?;1 (A, ) the kernel pair of f in CT. Since U preserves limits, it is also its
2

kernel pair in C. So, f coequalizes the pair (fi, f2) in C. Using this and the epimorphism
Tf in C, one proves that f coequalizes them also in CT. Therefore, U reflects regular
epimorphisms. Moreover, since U preserves and reflects regular epimorphisms and since
they are stable under pullbacks in C, they are also in CT. Eventually, the construction
done in point 1 shows that CT inherits the factorisation system (regular epi - mono) from
C, since U reflects monomorphisms and regular epimorphisms. n

As in [14], the key lemma (4.5) in proving that T-MON is the bicategory of fractions
of Grpd(CT) with respect to weak equivalences is the fact that the bipullback of two T-
monoidal functors exists and the legs can be chosen to be in Grpd(C"). Firstly, from [14],
we know that if C has finite limits, then Grpd(C) has bipullbacks, constructed as follows:
Given

C

|o
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in Grpd(C), we construct the pullback in C

él B, Xed B,
_
mll lm
Bl Xed Bl B1

and define Fy and P; to be the limits

\/\/ \ /

It turns out that P has a groupoid structure in C and that
w; = ((wd, G1 FY), (F1GY, wc)).

Finally, the bipullback of F' and G is given by

P-L>C
G’l / a
A T> B
As far as its universal property is concerned, if
X —=C
H % G
A T> B

is another square, the triple (L : X - P,a: G'L = H,[ : F'L = K) defined by G'L = H,
F'L=K,wLy=0,w Ly = ((0d,G1 K1), (F1Hy,0c)), « = 1z and = 1k is a fill-in. Thus,
if(L/:X—>P,o:GL = H, [ :FL = K) is another fill-in, the unique A : L' = L such
that 1g:*A = o and 1+ A = ' occurs to be the unique A : Xy — P such that G{\ = «/,
wiA = ((wLi, G1f"), (Fid/,0)) and FI\ = .

Now, we can prove that T-MON has bipullbacks.

Lemma 4.5 Let T = (T,n, 1) be a monad on a finitely complete category C. Then, the
2-category T-MON has bipullbacks. Moreover, given T-monoidal functors (F,¢): A — B
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and (G,1) : C — B, it is possible to choose a bipullback of (F,¢) and (G, )

in such a way that F' and G' are internal functors in C*.

Proof. Let

A?B

be the bipullback in Grpd(C) described above. We now turn PP into an internal groupoid
in CT in the following way. P, being a limit, there exists a unique py : TPy — P, such
that Gipy = agT'Gj, wpy = m(ieTGl, m(byTw,yTF))) and Fjpy = coTF;. Moreover,
Py being also a limit, there exists a unique p; : TP, — P; such that G\p; = a1TGY,
mimiwipr = wpel'd, momiwipr = G101TF1/, T1MaWip1 = FlalFG/p ToMmowip1 = wpol'c
and F|/p, = ¢;TF]. This makes PP an internal groupoid in C*, F’ and G’ internal functors
in C* and w a T-monoidal natural transformation.

If

X 2>
w, A e
AT)B

in Grpd(C) can be turned in a fill-in in T-MON. Indeed, it suffices to set [ : T Xy — P, as
the unique arrow such that Gl = h, mymywil = wpeT Ly, momywil = G1k, mymowil = Fih,
momaowql = wlozg and F{l = k.

Eventually, if

(L)X = Po/ : G o(L,I)= (H,h),B : Fo(ll) = (K,k))

is another fill-in, the unique A : L' = L such that 1 x A = o’ and 1 x A = ' is a
T-monoidal natural transformation (L',1") = (L, 1). n
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We are now able to prove our main result.

Proposition 4.6 Let C be a regular category where the axiom of choice holds and let
T = (T,n,1) be a monad on C. Then, the inclusion 2-functor

I: Grpd(C") ——T-MON
is the bicategory of fractions of Grpd(CT) with respect to the class of weak equivalences.

Proof. Let ¥ be the class of weak equivalences in Grpd(C"). Since regular epimorphisms
are split, T preserves them. By lemma 4.4, the forgetful functor U : C* — C preserves
and reflects regular epimorphisms and C” is regular. Then, we know from proposition 4.3
that ¥ has a right calculus of fractions.

Now, let F' € ¥. By lemma 2.2, we know that UF € Grpd(C) is a weak equivalence.
Since C has the axiom of choice, UF is actually an equivalence. Thus, by lemma 3.2, I(F')
is an equivalence and I sends elements of ¥ to equivalences.

Therefore, it remains to prove that I satisfies conditions EF1, EF2 and EF3 of propo-
sition 4.2. EF1 is obvious and EF2 is the fact that, between internal functors in CT,
T-monoidal natural transformations are exactly internal natural transformations in C*.

Let us prove EF3. Given (F,¢) : A — B in T-MON, consider the bipullback

P-S-B

w % I
—

A B

(Fy)

given by lemma 4.5, in such a way that G and W are internal functors in C*. Thus,
G = (F,p) o W. Since bipullbacks preserve equivalences, W is an equivalence in T-MON
and thus in Grpd(C). By lemma 2.2 again, this implies that W € X. n

Corollary 4.7 LetC be a regular category where the aziom of choice holds and G : D — C
be a monadic functor. Denote by T = (T,n, ) the monad induced by the adjunction F 4 G
on C and K : D — C" the comparison functor. Then, the composite

Grpd(D) £~ Grpd(CT) —L> T-MON
is the bicategory of fractions of Grpd(D) with respect to weak equivalences.

Proof. Since G is monadic, K : D — C” is an equivalence and K : Grpd(D) — Grpd(C")
is a biequivalence of 2-categories. In addition, by lemma 2.2, W € Grpd(D) is a weak
equivalence if and only if K(W) € Grpd(C") is. Thus, I K satisfies conditions EF1, EF2
and EF3 of proposition 4.2 since I does. [
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5. The case of groups

We study in this section the particular case of the monadic forgetful functor U : Gp — Set.
Set is a regular category with the axiom of choice. Therefore, T-MON is the bicategory
of fractions of Grpd(Gp) with respect to 3, the class of weak equivalences. In [14], it is
shown that this bicategory of fractions is MON, the 2-category of groupoids in Gp (i.e.
small strict cat-groups), monoidal functors and monoidal natural transformations. Thus,
MON and T-MON are biequivalent. This biequivalence K : MON — T-MON makes the
diagram

Grpd(Gp) © MON Grpd(Set)
Grpd(Gp) — > Grpd(Set" )~ T-MON Grpd(Set)

commutative. Moreover, it can be described by

K: MON — T-MON

A — KA
E,F, F,
A% ey ra " ep
[0 — [0

where F5 is the monoidal structure of F', T'Ay is the free group on the set of objects of A
and ¢ : TAy — By is defined on the word ai! - --ai» (a € Ag and i € {—1,1}) to be the
arrow part of the sum

(F(a), 1pya1)" + - + (Fan), 1p, )"

This sum is calculated in the group of triples (b € By, f : b — F(a),a € Ap) and defined
by

(b, f.a) + (0, f,a') = (”b’ bty L F<a>+F<a'>F2%F<a+a’>,a+“/)'

6. The case of Lie algebras

The aim of this section is to make the link between a result in [14] and our corollary 4.7
for the particular monadic adjunction U : Liey — Vecty, where Lie, and Vect, are the
categories of Lie algebras and vector spaces respectively (for a fixed field k). Vecty is a
regular category with the axiom of choice since every vector space is free (admits a basis).
Thus, we can apply our corollary 4.7 to deduce that T-MON is the bicategory of fractions
of Grpd(Lie;) with respect to weak equivalences.
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Besides, it is shown in [14], that this bicategory of fractions is LIEy, the 2-category of
internal groupoids in Lieg, homomorphisms and 2-homomorphisms (see [2]). Therefore,

T-MON and Lie; are biequivalent. As for groups, this biequivalence K : LIE;, — T-MON
makes the diagram

Grpd(Liey) ¢ LIEy Grpd(Vecty,)
Grpd(Lieg) % Grpd(Vectg)(—I> T-MON Grpd(Vecty,)

commute. Moreover, it can be described by

K: LIE, —» T-MON

A — KA
F.F. F,
A2 ey AP kg
(@) — (e}

where ¢ : T Ay — B is defined as follows. T'Ay is the free Lie algebra of the underlying
vector space of Ag. It is actually the Lie subalgebra generated by Ag of the tensor algebra

To each element v € T Ay, we associated a triple p(v) = (b € By, f : b — F(a),a € Ap)
by induction:

o if a € Ay, p(a) = (Fl(a),lpw),a);

o if k€ K and v € TAy, ¢(kv) = (kb,kf, ka) where (b, f,a) = ¢(v);

o if vj,v0 € K, §(v1 +v2) = (by + ba, f1 + fa,a1 + az) where (b;, fi,a;) = ¢(v;) for
i€ {1,2};

o i.f 1)1{71@2? K, @([v1,v2]) = ([b1, ba], F3 [ f1, fo], [a1, as]) where (b;, f;, a;) = $(v;) for
ie{1,2}.

Let us recall that Fy" : [F(a1), F(a2)] = F([a1, as]) is the isomorphism making (F, F5)
an homomorphism of groupoids in Lie; (also called small strict Lie 2-algebras in [2]).
Then, p(v) = f is the arrow part of this triple ¢(v) = (b, f, a).

7. Pseudo-algebras

The aim of this section is to give an intuition where the axioms of definition 3.1 of T-
monoidal functors come from. We will see that these axioms are actually particular cases
of coherence axioms defining pseudo-morphisms between strict algebras for a pseudo-
monad. We adopt the following definitions from [10] and [9].
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Definition 7.1 Let B be a 2-category. A pseudo-monad T on B is the data of
e a 2-functor T : B — B,
e two pseudo-natural transformations n : 1g — T and p: T?* — T,

e three isomodifications (modifications which are isomorphisms) m, | and r

st r ey
| A W
T°—0—=T T
such that the two diagrams
Ml “m mxd 7y,

p per T wTpTor  and i e 8 1 g Ty 0 Ty Tpar

mxly, o 1xTm
1pu*rp 1,xT1
)

n T o o T = p T T

commute, where we denoted by Tj’f the isomorphism 2-cell Tf pa — up T*f given by the
pseudo-naturality of p for all arrows f: A — B (and similarly for the pseudo-naturality

of ).

Definition 7.2 Let B be a 2-category and T a pseudo-monad on it. We define the 2-
category Ps-Alg(T) as follows:

o The objects are the pseudo-algebras of T, i.e. quadruples (A, a,ay,as) where A is
an object of B, a: TA — A is an arrow and a, and as are two invertible 2-cells

A TA T2A——TA
1a . \La Tal % la
A TA —a A

such that

a2*1T'flA
apa Tna alalna
a
and
az*lT

apa /LTA*>(I pa Tpa —="aTa Ty
ag*lHTAi \Lla*Tag

aTa ——a 4 T?q — 2
UT A " na s, O Ta T=a

commute.
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o Arrows (A, a,a., as) — (B,b, by, by) are pseudo-morphisms of pseudo-algebras, i.e.
pairs (f, ) where f: A — B is an arrow and ¢ a 2-cell isomorphism

Tf
TA——TB

| A |

A== B

such that
1b*T?
bTfna—=bng f

go*l,,A\L lb**lf

f a 77A lf*a* f

and
1f*a2

Pxlpy
bTf pa—fapa JaTa

lbﬂ—}.‘i Tgo*lTa

2 2
b/lBT beTT;bebT fﬁ;beTa

commute.
o 2-cellsa: (f,0) = (g,0) are 2-cells a : f = g such that

1b*Ta

bTf——=0bTyg

‘| lw
fa———ga

axlg

commautes.

We are now going to see how pseudo-morphisms are linked with T-monoidal functors.

Firstly, if 7 is a pseudo-monad, we define 7-MON to be the full sub-2-category of Ps-
Alg(T) whose objects are the strict algebras, i.e. the ones with a, and as being identities.
Moreover, we denote by Alg(7) the sub-2-category of T-MON in which we only consider
strict morphisms of strict algebras, i.e. the ones where ¢ is the identity.

Alg(T) — T-MON — Ps-Alg(T)

Now, suppose T is a (1-dimensional) monad on a finitely complete category C. If
T:C — C preserves pullbacks, then T induces a pseudo-monad 7 on the 2-category
Grpd(C). Moreover, T is such that n and p are 2-natural transformations, given by
s = (NBy,NB,) and ug = (Up,, pp,) for all B € Grpd(C). For this pseudo-monad, we
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know that the modifications m, [ and r are identities and that the two coherence axioms
become trivial. Moreover, we have an isomorphism of 2-categories

Grpd(CT) — Alg(T)
Avr— (UA,a = (ag,a1))
F+— UF
ar— Ua

where U : CT — C is the forgetful functor and a,; : TA; — A; are the T-algebra structures
for i € {0,1}. Note that a = (ag,a;) is an internal functor since d, ¢, e, m and i are T-
algebra homomorphisms. Notice also that the fact that U« satisfies the coherence axiom
for the definition of 2-cells in Ps-Alg(7") corresponds to the fact that « is a T-algebra
homomorphism.

With this particular pseudo-monad on Grpd(C), we remark that, if we extend this
isomorphism, 7-MON becomes the following 2-category:

e Objects are internal groupoids in CT.

o A l-cell (F,p): A — B is the data of a functor F : UA — UB in C together with
an internal natural isomorphism

TUA 5 TUB
| A b
UA?U]B
in C such that ¢ x 1,,,, = 1p and @ * 1, = (@ * L) (1 * Tp).
*1,
bTF nyy=—=bnyg I bTFMUAu;FCLMUAiFaTa
el J/ Tw*lTa
Fanyy=———F bupg T°F =—=bTbT*F —>bTF Ta

1b*T<p

o A2cella: (F,¢) = (G,v): A — Bis an internal natural transformation a: F' = G

in C such that
1b*T0¢

bTF —=bTG

‘| |+

Fa——Ga
axlg

commutes.

Now, we notice that these are exactly the axioms of the definition 3.1 of T-MON.
Indeed, the first three axioms defining a T-monoidal functor are the fact that the 2-cell
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@: bTF = Fa is an internal natural transformation in C while the last two are the
above ones. In other words, if 7 is the pseudo-monad on Grpd(C) induced by a pullback
preserving monad T on C, the 2-categories T-MON and T-MON coincide. What makes
possible to define T-MON even if the monad T does not preserve pullbacks is the fact that,
to express the naturality of ¢ : 0T'F = Fa : TUA — UB, one needs only the composition
in the codomain category UB and not in the domain TUA.

Analogously to proposition 4.6, we are going to prove that, under some hypothesis,

Alg(T) < T-MON
is the bicategory of fractions of Alg(7) with respect to a certain class of 1-cells 3.

Definition 7.3 Let B be a 2-category where every 2-cell is invertible. We say that the

diagram
p-res
Ml /
o
A f

s a strong homotopy-pullback of f and g if

Q

(1)

B —
Q

Sy

1. for all diagrams
X C

i

A 4f> B
there exists a unique 1-cell | : X — P such that mal = h, ol =k and px1; = w;

2. for all 1-cells I,I' : X — P and for all 2-cells o : wal = 74l and B : 7ol = 7ol
such that (1, % B)(u*1;) = (p*1y)(1f * ), there exists a unique 2-cell v : [ = I’
such that 1., xv = a and 1., xv = .

(When only condition 1 is satisfied, P is usually called homotopy-pullback, compare for
example with [8].)

Remark 7.4 Here is another way to understand definition 7.3. If we have a diagram as
(1) in such a 2-category B, we can construct, for all objects X € B, the following diagram
in Grpd(Set)

B(X, P)

TCOo—
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where Py is the bipullback of groupoids and [x the factorisation as constructed in re-
mark 3.3 in [14]. Then, we have a characterisation of bipullbacks and strong homotopy-
pullbacks:

1. The diagram (1) is a bipullback if and only if Ix: B(X, P) — Px is an equivalence
of categories for all objects X € B.

2. The diagram (1) is a strong homotopy-pullback if and only if Ix: B(X, P) — Py is
an isomorphism of categories for all objects X € B.

The following lemma is analogous to lemma 4.5.

Lemma 7.5 Let B be a 2-category where every 2-cell is invertible and T a pseudo-monad
on B such that n and p are 2-natural transformations. If B has strong homotopy-pullbacks,
so has T-MON. Moreover, given pseudo-morphisms of strict algebras (f,¢) : (A,a) —
(B,b) and (g,v) : (C,c) — (B,b), it is possible to choose a strong homotopy-pullback of
(f, ) and (g,7)

(re,1)

(P,p) —=(C,¢)

(mvl)l / i(wp)

(A7 a) m) (Ba b)

in such a way that (wa,1) and (¢, 1) are strict morphisms.

Proof. Consider the strong homotopy-pullback

TC

P—C

AT)B

in B. There exists a unique p : TP — P such that map = aT7m4, m7ep = I'me and
(e * 1) (@ * 1prr,) = (¥ * Llpg. ) (1 * T'). Is is routine to check that this makes (P,p) a
strict algebra and that we have constructed the announced strong homotopy-pullback. =

As for proposition 4.6, this lemma is the key point to prove next proposition.

Proposition 7.6 Let B be a 2-category where every 2-cell is invertible and which has
strong homotopy-pullbacks. Let also T be a pseudo-monad on B such that n and p are
2-natural transformations. If 3 is the class of 1-cells (f,1) of Alg(T) such that f is an
equivalence in B, then,

Alg(T) — T-MON

is the bicategory of fractions of Alg(T) with respect to X.
Proof. We know that X has a right calculus of fractions since it is a bipullback congruence

(see definition 5.1 and proposition 5.2 in [14]). The rest of the proof is similar to the one
of proposition 4.6 using lemma 7.5. ]
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