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RÉSUMÉ. Dans cet article, nous développons un argument
simple sur les bicatégories de fractions qui montre que, si Σ est
la classe des équivalences faibles entre groupoides internes à une
catégorie régulière A qui admet suffisamment d’objets projectifs
réguliers, alors la description de Grpd(A)[Σ−1] peut être con-
sidérablement simplifiée.

RÉSUMÉ. The aim of this note is to develop a simple ar-
gument on bicategories of fractions showing that, if Σ is the
class of weak equivalences between groupoids internal to a regu-
lar category A with enough regular projective objects, then the
description of Grpd(A)[Σ−1] can be considerably simplified.

1. Introduction

Bicategories of fractions, the 2-dimensional analogue of Gabriel and Zis-
man’s categories of fractions [9], have been introduced by D. Pronk [14]
and used mainly to study fractions of 2-categories of internal functors
between various kinds of internal structures (internal categories, inter-
nal groupoids, internal crossed modules, etc.), see for example [16] for
recent applications. Recently, general results on bicategories of frac-
tions of internal functors with respect to internal weak equivalences
have been obtained in [1, 10, 15]. In particular, in [1] the bicategory of
fractions of crossed modules internal to a semi-abelian category A has
been described in terms of “butterflies”. This description generalizes
the case where the base category A is the category of groups, which
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is the case studied by B. Noohi in [11, 12] (see also [2]). It is inter-
esting to notice that bicategories of fractions do not appear explicitly
in [11, 12], where the main result is stated in terms of an equivalence
between hom-categories

B(A,B) ' C(X,B)

where C is the 2-category of crossed modules of groups, B is the bicate-
gory of butterflies in groups, and X is a cofibrant replacement of A. In
[1, Proposition 8.1], we explain that this equivalence of hom-categories
easily follows from the fact that B is indeed the bicategory of fractions
of C and the fact that the category of groups has enough regular projec-
tive objects. Moreover, a general argument on bicategories of fractions,
subsuming the previous equivalence, is announced [1, Remark 8.2].

The aim of this note is to fully develop such an argument: we will
show that, if the class Σ of arrows to be inverted has a “faithful calculus
of fractions”, a condition stronger than Pronk’s right calculus of frac-
tions, and if C has enough Σ-projective objects, then the description of
the bicategory of fractions C[Σ−1] can be drastically simplified and the
equivalence

C[Σ−1](A,B) ' C(X,B)

becomes almost tautological. The surprise is that, despite the fact that
the condition of having a faithful calculus of fractions is a very strong
condition (so strong that its 1-dimensional version for categories of frac-
tions is probably totally uninteresting), it is satisfied by the prominent
example where C is the 2-category of groupoids and functors internal
to a regular category, and Σ is the class of weak equivalences. More-
over, the fact that C has enough Σ-projective objects holds if the base
category has enough regular projective objects. This covers the case of
groups and of Lie algebras studied in [11, 12, 2, 17].

Notation: the composite of f : A→ B and g : B → C is written f ·g.

2. Calculus of fractions

The reader can consult [4] or [6, Chapter 7] for an introduction to
Bénabou’s notion of bicategory. In this paper, bicategory means bi-
category with invertible 2-cells. Moreover, for the sake of readability,



we write diagrams and equations as in a 2-category. Let us start with
a point of standard terminology

Definition 2.1 Let f : X → Y be a 1-cell in a bicategory C. We say
that f is

1. full (faithful) if, for every object C ∈ C, the functor

C(C, f) : C(C,X)→ C(C, Y )

is full (faithful); in other words, for every 2-cell β : h · f ⇒ k · f,
there exists at least (at most) a 2-cell α : h⇒ k such that α·f = β;

2. an equivalence if, for every object C ∈ C, the functor

C(C, f) : C(C,X)→ C(C, Y )

is an equivalence of categories; in other words, there exist a 1-cell
f ∗ : Y → X and two 2-cells εf : f ∗ · f ⇒ 1Y and ηf : 1X ⇒ f · f ∗.

Remark 2.2

1. If f is full and faithful and there exists εf : f ∗ · f ⇒ 1Y , then f is
an equivalence.

2. If f is an equivalence, it is always possible to choose ηf and εf so
that the usual triangular identities are satisfied:

f · f ∗ · f
f ·εf

##G
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GG
GG

GG
G

f

ηf ·f
;;wwwwwwwwww
f

// f

f ∗ · f · f ∗
εf ·f∗
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f ∗

f∗·ηf
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f∗
// f ∗

3. If f, g : X → Y are equivalences, β : f ⇒ g is a 2-cell, and
(f ∗, ηf , εf ) and (g∗, ηg, εg) satisfy the triangular identities, then
there exists a unique β∗ : f ∗ ⇒ g∗ making commutative the fol-
lowing diagrams:

1X
ηf

||xxxxxxxx
ηg
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E

f · f ∗
β·β∗

// g · g∗

1Y

f ∗ · f

εf
<<xxxxxxxx

β∗·β
// g∗ · g

εg
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4. If f is an equivalence, for every object C the functor

C(f, C) : C(Y,C)→ C(X,C)

is an equivalence of categories (use the triangular identities to
check that it is full).

5. If f : X → Y and g : Y → Z are full (faithful) (equivalences), then
so is the composite f · g : X → Z.

Now we recall from [14] the general definition of bicategory of frac-
tions and we introduce the notion of faithful calculus of fractions.

Definition 2.3 (Pronk) Let Σ be a class of 1-cells in a bicategory C.
The bicategory of fractions of C with respect to Σ is a homomorphism
of bicategories

PΣ : C → C[Σ−1]

universal among all homomorphisms F : C → A such that F(s) is an
equivalence for all s ∈ Σ. In other words, for every bicategory A,

PΣ · − : Hom(C[Σ−1],A)→ HomΣ(C,A)

is a biequivalence of bicategories, where HomΣ(C,A) is the bicategory of
those homomorphisms F such that F(s) is an equivalence for all s ∈ Σ.

Definition 2.4 Let Σ be a class of 1-cells in a bicategory C. The class
Σ has a faithful calculus of fractions if the following conditions hold:

FF1. Σ contains all equivalences;

FF2. Given 1-cells f : X → Y and g : Y → Z with g ∈ Σ, then f ·g ∈ Σ
iff f ∈ Σ;

FF3. For every C

g∈Σ

��
A

f
// B

there exists P
f ′ //

g′∈Σ
��

C

g

��
A

⇒

f
// B

FF4. If there exists a 2-cell f ⇒ g, then f ∈ Σ iff g ∈ Σ;



FF5. Σ is contained in the class of full and faithful 1-cells.

Remark 2.5 In (FF3), if f ∈ Σ, then f ′ ∈ Σ. Indeed, g′, f ∈ Σ, so
that, by (FF2), g′ · f ∈ Σ and then, by (FF4), f ′ · g ∈ Σ. Since g ∈ Σ,
(FF2) implies now f ′ ∈ Σ.

It is easy to compare the conditions defining a faithful calculus of
fractions with those defining a right calculus of fractions in the sense of
[14].

Proposition 2.6 Let Σ be a class of 1-cells in a bicategory C. If Σ has
a faithful calculus of fractions, then it has a right calculus of fractions.

Proof. We have to check the following condition:

RF. For every α : f · w ⇒ g · w with w ∈ Σ, there exist v ∈ Σ and
β : v · f ⇒ v · g such that v · α = β · w, and for any other v′ ∈ Σ
and β′ : v′ · f ⇒ v′ · g such that v′ ·α = β′ ·w, there exist u, u′ and
ε : u · v ⇒ u′ · v′ such that u · v ∈ Σ and

u · v · f u·β //

ε·f
��

u · v · g
ε·g
��

u′ · v′ · f
u′·β′

// u′ · v′ · g

commutes.

As far as the existence of (v, β) is concerned, we can take v = 1X ∈ Σ
and, since w is full, there exists β : f ⇒ g such that β · w = α.
Let now (v, β) and (v′, β′) be as in condition (RF); by (FF3), there
exists ε : u · v ⇒ u′ · v′ with u ∈ Σ and then u · v ∈ Σ. It remains to
show that the diagram in condition (RF) commutes. Since w is faithful,
it is enough to check the commutativity of the diagram obtained by
composing with w

u · v · f · w u·β·w //

ε·f ·w
��

u · v · g · w
ε·g·w
��

u′ · v′ · f · w
u′·β′·w

// u′ · v′ · g · w

and this is obvious because we can replace u ·β ·w by u ·v ·α and u′ ·β′ ·w
by u′ · v′ · α.



3. Σ-projective objects and Σ-covers

Definition 3.1 Let Σ be a class of 1-cells in a bicategory C.

1. An object X is Σ-projective if, for every 1-cell s : A → B in Σ,
the functor

C(X, s) : C(X,A)→ C(X,B)

is essentially surjective; in other words, for every

X

f
��

A
s∈Σ

// B

there exists

X
f ′

⇒
~~~~

~~
~~

~
f

��
A s

// B

2. A Σ-cover of an object A is a 1-cell a : X → A in Σ with X a
Σ-projective object.

3. We say that C has enough Σ-projective objects if each object has
a Σ-cover.

Remark 3.2 Assume that Σ is contained in the class of full and faithful
1-cells.

1. If s : A → X is in Σ and X is a Σ-projective object, then s is an
equivalence. Indeed, use condition 3.1.1 with f = 1X to get s∗

and εs, and conclude by Remark 2.2.1.

2. If a Σ-cover of an object exists, then it is unique up to an essen-
tially unique equivalence.

In Example 3.5, we will state that the class of weak equivalences
between groupoids internal to a regular category has a faithful calculus
of fractions. The reader can consult [7, Chapter 2] for an introduction



to regular categories (in the sense of M. Barr [3]), and [6, Chapter 8] for
basic facts about internal category theory. If A is a category with finite
limits, we denote by Grpd(A) the 2-category of groupoids, functors
and natural transformations internal to A. The notions of essentially
surjective and of weak equivalence for internal functors come from [8].

Definition 3.3 (Bunge-Paré) Let A be a regular category and let

A1
F1 //

d
��
c

��

B1

d
��
c

��
A0 F0

// B0

be a functor between groupoids in A. The functor (F1, F0) is:

1. essentially surjective (on objects) if

A0 ×F0,d B1
t2 // B1

c // B0

is a regular epimorphism, where t2 is defined by the following
pullback

A0 ×F0,d B1
t2 //

t1
��

B1

d
��

A0 F0

// B0

2. a weak equivalence if it is full and faithful and essentially surjec-
tive.

Remark 3.4 With the notation of Definition 3.3. A functor (F1, F0)
is:

1. full and faithful iff the following diagram is a limit diagram

A1

d

vvnnnnnnnnnnnnnnn

F1

��

c

((PPPPPPPPPPPPPPP

A0

F0   B
BB

BB
BB

B B1

d~~||
||

||
||

c
  B

BB
BB

BB
B A0

F0~~||
||

||
||

B0 B0



2. an equivalence iff it is full and faithful and

A0 ×F0,d B1
t2 // B1

c // B0

is a split epimorphism.

Example 3.5 Let A be a regular category and Σ the class of weak
equivalences in the 2-category Grpd(A).

1. Σ has a faithful calculus of fractions.
The proof can be reconstructed by examining the proofs of Propo-
sition 4.5 and Proposition 5.5 in [17]. For the reader’s convenience
we reproduce here some points; we refer to [17] for more details.
- Condition (FF1) immediately follows from Remark 3.4.2.
- Condition (FF2): consider two internal functors F : A→ B and
G : B→ C

A1
F1 //

d
��
c

��

B1

d
��
c

��

G1 // C1

d
��
c

��
A0 F0

// B0 G0

// C0

• If F and G are essentially surjective, so is the composite F ·G :
consider the following pullbacks

A0 ×F0,d B1
t2 //

t1
��

B1

d
��

A0 F0

// B0

B0 ×G0,d C1
t2 //

t1
��

C1

d
��

B0 G0

// C0

A0 ×F0·G0,d C1
τ2 //

τ1

��

C1

d
��

A0 F0·G0

// C0

and the commutative diagram (where m is the internal composi-
tion in C)



A0 ×F0,d B1 ×G1·c,d C1
t2×1 //

1×G1×1
��

B1 ×G1·c,d C1
c×1 // B0 ×G0,d C1

t2
��

A0 ×F0·G0,d C1 ×c,d C1

1×m
��

C1

c

��
A0 ×F0·G0,d C1 τ2

// C1 c
// C0

In a regular category, regular epimorphisms are closed under com-
position and finite products; moreover, if a composite is a regular
epimorphism then the last component is a regular epimorphism.
Therefore, from the previous diagram we deduce that τ2 · c is a
regular epimorphism, as needed.
• If F · G is essentially surjective and G is full and faithful, then
F is essentially surjective: consider one more pullback

Q
λ2 //

λ1
��

B0

G0

��
A0 ×F0·G0,d C1 τ2

// C1 c
// C0

We have that λ2 is a regular epimorphism because, by assumption,
τ2 · c is a regular epimorphism and regular epimorphisms are pull-
back stable in any regular category. Since G is full and faithful,
by Remark 3.4.1 we get λ : Q → B1 such that λ · d = λ1 · τ1 · F0,
λ · G1 = λ1 · τ2 and λ · c = λ2. From the first equation on λ, we
get µ : Q → A0 ×F0,d B1 such that µ · t1 = λ1 · τ1 and µ · t2 = λ.
Finally, µ · t2 ·c = λ ·c = λ2, so that t2 ·c is a regular epimorphism,
as needed.
- The stability of regular epimorphisms under pullbacks gives also
that Σ is stable under bipullbacks (in the sense of bilimits intro-
duced in [5]). This immediately implies condition (FF3).
- Condition (FF4) is a simple exercise and condition (FF5) is ob-
vious by definition of weak equivalence.

Recall that an object X0 of the base category A is regular projective if
the functor A(X0,−) : A → Set preserves regular epimorphisms. The



category A has enough regular projective objects if for every object
A0 ∈ A there exists a regular epimorphism X0 → A0 with X0 regular
projective. Examples of regular categories with enough regular projec-
tive objects abound: monadic categories over a power of Set and their
regular epireflective subcategories are of this kind. In particular, alge-
braic categories, varieties and quasi-varieties of universal algebras are
of this kind (see for example [13]), as well as presheaf categories and
categories of separated presheaves.

2. If A has enough regular projective objects, then Grpd(A) has
enough Σ-projective objects.
For this, start with an internal groupoid and a regular epimor-
phism S0

A1

d
��
c

��
X0 S0

// A0

with X0 a regular projective object. Consider the limit diagram

X1

d

vvnnnnnnnnnnnnnnn

S1

��

c

((PPPPPPPPPPPPPPP

X0

S0   B
BB

BB
BB

B A1

d~~||
||

||
||

c
  B

BB
BB

BB
B X0

S0~~||
||

||
||

A0 A0

The graph d, c : X1 ⇒ X0 inherits a structure of groupoid from
that of d, c : A1 ⇒ A0, and the functor (F1, F0) is a weak equiv-
alence. Indeed, it is full and faithful by construction, and it is
essentially surjective because in

X0 ×S0,d A1
t2 // A1

c // A0

t2 is a regular epimorphism (because S0 is a regular epimorphism)
and c is a split epimorphism. Finally, since X0 is regular pro-
jective, by Remark 3.4.2 every weak equivalence with codomain



X1 ⇒ X0 is an equivalence. Since weak equivalences are stable
under bipullbacks, this is enough to ensure the Σ-projectivity of
X1 ⇒ X0.

4. The bicategory of fractions

4.1 Let C be a bicategory and Σ any class of 1-cells in C. We can
construct a new bicategory

C[Σ∗]

having Σ-covers as objects and, as hom-categories,

C[Σ∗](a : X → A, b : Y → B) = C(X, Y )

with identities and horizontal and vertical compositions given by those
of C.

Remark 4.2

1. If C is a 2-category, then C[Σ∗] is a 2-category as well.

2. If b : Y → B is full and faithful, then the functor C(X, b) is full and
faithful, and it is essentially surjective because X is Σ-projective,
so that it induces an equivalence of categories

C[Σ∗](a : X → A, b : Y → B) ' C(X,B)

4.3 Under the assumption that the class Σ has a right calculus of
fractions, the bicategory of fractions C[Σ−1] has been described in [14]:
objects are those of C, 1-cells and pre-2-cells

A

(w,f)

**

(v,g)

44⇓ (u1,u2,α1,α2) B



are depicted in the following diagram

C
w

��~~
~~

~~
~ f

  @
@@

@@
@@

A α1⇓ E

u1

OO

u2
��

B⇓α2

D

v

``@@@@@@@ g

>>~~~~~~~

with w, v, u1 · w ' u2 · v ∈ Σ. Given another pre-2-cell

A

(w,f)

**

(v,g)

44⇓ (s1,s2,β1,β2) B

then the pre-2-cells (u1, u2, α1, α2) and (s1, s2, β1, β2) are equivalent if
there exists (r1, r2, γ1, γ2) as in

E
u1

~~}}
}}

}}
}} u2

  A
AA

AA
AA

A

C γ1⇑ F

r1

OO

r2
��

D⇓γ2

E ′
s1

``AAAAAAA s2

>>}}}}}}}}

such that r1 ·u1 ·w ' r2 ·s1 ·w ∈ Σ and such that the following diagrams
commute

r1 · u1 · w
r1·α1

��
(i)

r2 · s1 · wγ1·woo

r2·β1
��

r1 · u2 · v γ2·v
// r2 · s2 · v

r1 · u1 · f
r1·α2

��
(ii)

r2 · s1 · f
γ1·foo

r2·β2
��

r1 · u2 · g γ2·g
// r2 · s2 · g

Clearly, there is a homomorphism of bicategories E : C[Σ∗] → C[Σ−1]



defined by

X

a

��

f

''

g

77α⇓ Y

b
��

A B

7→ X
a

~~~~
~~

~~
~ f ·b

  A
AA

AA
AA

A a⇓ X

1

OO

1
��

B⇓α·b

X

a

``@@@@@@@ g·b

>>}}}}}}}

Proposition 4.4 Let Σ be a class of 1-cells in a bicategory C. If Σ has
a faithful calculus of fractions and C has enough Σ-projective objects,
then E : C[Σ∗]→ C[Σ−1] is a biequivalence.

More precisely, we are going to prove the following statements:

1. If Σ has a faithful calculus of fractions, then E is locally an equiv-
alence.

2. If C has enough Σ-projective objects, then E is surjective on ob-
jects.

Proof. 1. E is locally faithful: let

X

a

��

f

''

g

77α⇓ ⇓β Y

b
��

A B

be 2-cells in C[Σ∗] and let

X
1

~~}}
}}

}}
}} 1

  A
AA

AA
AA

A

X γ1⇑ F

r1

OO

r2
��

X⇓γ2

X

1

``AAAAAAAA 1

>>}}}}}}}}



be the datum attesting that E(α) = E(β) in C[Σ−1]. Since a, r2 · a ∈ Σ,
then by (FF2) r2 ∈ Σ, and then it is an equivalence because X is Σ-
projective. The first condition on (r1, r2, γ1, γ2) implies that γ1 = γ−1

2 ,
the second condition gives then r2 · α · b = r2 · β · b. Since r2 is an
equivalence and b is faithful, we have α = β.
E is locally full: consider two 1-cells f, g in C[Σ∗] and a 2-cell E(f) ⇒
E(g) as follows

X

a

��

f

''

g

77 Y

b
��

A B

X
a

~~~~
~~

~~
~ f ·b

  A
AA

AA
AA

A α1⇓ E

u1

OO

u2
��

B⇓α2

X

a

``@@@@@@@ g·b

>>}}}}}}}

Since a is full and faithful, there exists a unique β : u1 ⇒ u2 such that
β ·a = α1. Moreover, a, u1 ·a ∈ Σ, so that u1 ∈ Σ by (FF2), and then u1

is an equivalence because X is Σ-projective (the same argument holds
for u2). Since b also is full and faithful, there exists a unique α : f ⇒ g
such that

u1 · f · b
α2 //

u1·α·b &&MMMMMMMMMM
u2 · g · b

u1 · g · b

β·g·b

OO

commutes. To check that E(α) = [u1, u2, α1, α2] we use the following
datum, where β∗ : u∗1 ⇒ u∗2 corresponds to β : u1 ⇒ u2 as in Remark
2.2.3:

E
u1

~~}}
}}

}}
}}

u2

��
⇓β∗·u2

X ε−1
1 ⇑ X

u∗1

OO

1
��

u∗2·u2 //

⇓ε2

X

X

1

``AAAAAAAA
1

CC

Condition (i) easily follows from the definition of β and Remark 2.2.3.
As far as condition (ii) is concerned, since u1 is an equivalence, by



Remark 2.2.4 it is enough to check it precomposing with u1. Using the
definition of α, condition (ii) reduces now to the commutativity of

u1 · u∗1 · u1 · f · b
β·β∗·u1·f ·b

��

u1·ε1·f ·b // u1 · f · b
α2

��
u2 · u∗2 · u1 · f · b

u2·u∗2·α2

// u2 · u∗2 · u2 · g · b
u2·ε2·g·b

// u2 · g · b

To check this last equation, past on the left side the commutative tri-
angle

u1 · f · b
η1·u1·f ·b //

η2·u1·f ·b **TTTTTTTTTTTTTTTT
u1 · u∗1 · u1 · f · b

β·β∗·u1·f ·b
��

u2 · u∗2 · u1 · f · b
and use the first triangular identity on η1, ε1 and on η2, ε2, so that both
paths reduce to α2 : u1 · f · b⇒ u2 · g · g.
E is locally essentially surjective: consider two objects a : X → A and
b : Y → B in C[Σ∗] and a 1-cell

A C
woo f // B

in C[Σ−1]. Using twice that X is Σ-projective, we get

X
h

~~~~
~~

~~
~
ϕ⇒

a

  @
@@

@@
@@

C w
// A

X
k

~~~~
~~

~~
~~
ψ⇒

h·f

  A
AA

AA
AA

Y
b

// B

This gives a 1-cell in C[Σ∗] and a 2-cell in C[Σ−1]

X

a

��

k // Y

b
��

A B

X
a

~~~~
~~

~~
~

k·b

  A
AA

AA
AA

A ϕ−1⇓ X

1

OO

h
��

B⇓ψ

C

w

``@@@@@@@ f

>>}}}}}}}

attesting that E is locally essentially surjective.
2. Obvious, just choose a Σ-cover a : X → A for every object A of C.



Remark 4.5 Putting together Remark 4.2.2 and Proposition 4.4.1, we
get an equivalence of hom-categories

C[Σ−1](A,B) ' C[Σ∗](a : X → A, b : Y → B) ' C(X,B),

as announced in the Introduction.

5. Extensions as fractions

In order to illustrate the difference between C[Σ−1] and C[Σ∗], we discuss
a special case of Example 3.5. We consider the bicategory Grpd(A) and
we assume that A is semi-abelian, has split extension classifiers, and
satisfies the “Huq = Smith” condition as in [1]. The typical examples of
such an A are the category of groups (where the split extension classifier
of a group H is the group of automorphisms of H) and the category of
Lie algebras (where the split extension classifier of an algebra H is the
Lie algebra of derivations of H).

Fix two objects G and H in A. From [1, Section 7], we know that the
groupoid of extensions EXT(G,H) is isomorphic to the hom-groupoid
B(A)(D(G), [[H]]), where B(A) is the bicategory of internal butterflies
in A (since A is semi-abelian, we do not take care of the difference
between internal groupoids and internal crossed modules), D(G) is the
discrete internal groupoid on G, and [[H]] is the action groupoid, that is,
the internal groupoid having the split extension classifier [H] as object
of objects and the holomorph H o [H] as object of arrows. Since B(A)
is biequivalent to the bicategory of fractions of Grpd(A) with respect
to weak equivalences [1, Theorem 5.6], we have an equivalence

EXT(G,H) ' Grpd(A)[Σ−1](D(G), [[H]])

and, by Remark 4.5, we also have an equivalence

EXT(G,H) ' Grpd(A)(X, [[H]])

Accordingly, we can describe an extension

H
ι // E

σ // G



as a span of internal functors (with the left leg being a weak equivalence)
or as a single internal functor. In the first case, we get the span

G

1

��
1

��

R[σ]
σi·σoo

σ1

��
σ2

��

' // H o E
1oI // H o [H]

d
��
c

��
G Eσ
oo

I
// [H]

where σ1, σ2 : R[σ] ⇒ E is the kernel relation of σ, and I : E → [H]
is the action induced by the fact that ι : H → E is normal. This is a
“discrete fraction”, in the sense that the right leg is a discrete fibration.
To transform this span into a single internal functor, we fix a regular
projective cover s : X0 → G of G together with an extension σ0 of s
along σ as in the following commutative diagram

X0

σ0

~~}}
}}

}}
}}

s

��
E σ

// G

Composing with the discrete fibration above, we get the internal functor

R[s]

s1

��
s2

��

σ // R[σ] //

σ1

��
σ2

��

H o [H]

d
��
c

��
X0 σ0

// E I
// [H]

where s1, s2 : R[s] ⇒ X0 is the kernel relation of s, and σ is the canonical
factorization of R[s] through R[σ].
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