
ON THE SECOND COHOMOLOGY CATEGORICAL GROUP AND A
HOCHSCHILD-SERRE 2-EXACT SEQUENCE

A.R. GARZON AND E.M. VITALE

ABSTRACT. We introduce the second cohomology categorical group of a categorical
group G with coefficients in a symmetric G-categorical group and we show that it clas-
sifies extensions of G with symmetric kernel and a functorial section. Moreover, from an
essentially surjective homomorphism of categorical groups we get 2-exact sequences à la
Hochschild-Serre connecting the categorical groups of derivations and the first and the
second cohomology categorical groups.
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1. Introduction

Let E → G be a surjective homomorphism of groups with kernel N, and let A be a
G-module. In [22], Hochschild and Serre obtained a 5-term exact sequence involving the

Financial support from MCI of Spain (Project: MTM2011-22554) and Consejeŕıa de Innovación de
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group of derivations and the second cohomology group of E and G with coefficients in A

0→ Der(G,A) // Der(E,A) // HomG(Nab, A) // H2(G,A) // H2(E,A)

where the middle point HomG(Nab, A) is the group of G-module homomorphisms from
the abelianization of N to A. The Hochschild-Serre sequence can also be modified to get
a 5-term exact sequence involving the first and the second cohomology group

0→ H1(G,A) // H1(E,A) // HomG(Nab, A) // H2(G,A) // H2(E,A)

(These sequences are indeed part of long exact sequences, see [28, 3, 21, 23, 27, 1].) In the
present paper, our first aim is to give a 2-dimensional version of these exact sequences,
replacing groups with categorical groups.

In order to construct cohomology categorical groups, a first step has been done by Ulbrich
in [33] (see also [32, 14]) : if G is a group, [G]0 is the discrete categorical group associated
with it and A is a symmetric [G]0-categorical group (a [G]0-module in the terminology
of [33]), Ulbrich defined cohomology groups Hn(G,A) by considering the cocomplex of
symmetric categorical groups C(G,A) that, in dimension n, consists of functors from
Gn to A, where Gn = G × ... × G is seen as a discrete category, and ∂ is obtained by
taking alternating sums (i.e., tensor) of the homomorphisms di : Cn(G,A)→ Cn+1(G,A),
i = 0, ..., n+ 1 defined, for all x1, ..., xn ∈ G and F ∈ Cn(G,A), by
- d0(F )(x1, ..., xn+1) = x1F (x2, ..., xn+1),
- di(F )(x1, ..., xn+1) = F (x1, ..., xixi+1, ..., xn+1), 1 ≤ i ≤ n, and
- dn+1(F )(x1, ..., xn+1) = F (x1, ..., xn).
This process can be generalized replacing the group G by any categorical group G and
using a corresponding cocomplex of symmetric categorical groups C(G,A). Moreover, ins-
tead of cohomology groups, using relative kernels and relative cokernels we can construct
from C(G,A) all the cohomology categorical groups Hn(G,A) as explained in [15]. What
we do in this paper is to give an explicit description in terms of cobords and factor sets of
the first and the second cohomology categorical groups (and of the categorical group of
derivations), that is, those categorical groups entering in the Hochschild-Serre sequences.

Since we dispose of an explicit description of the second cohomology categorical group, it
is natural to look at what kind of extensions this categorical group classifies. This leads us
to revisit categorical crossed modules (in the sense of [13]) and finally to a classification of
extensions with symmetric kernel and functorial section which generalizes the classification
obtained in [6] for extensions of symmetric categorical groups.

More in detail, the layout of this paper is as follows : in Section 2 we revisit the case of
groups and we give a proof of the Hochschild-Serre exact sequence slightly different from
the one available in the literature (see for instance [21]) and more convenient to prepare
our 2-dimensional version. In particular, we separe the construction of the sequence, which
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is a special case of the Kernel-Cokernel Lemma and could be obtained even if the group
homomorphism E → G is not surjective (see [35]), from the interpretation of the middle
point of the sequence, which definitely depends on the fact that the homomorphism is
surjective. Section 3 is a reminder on categorical groups. We fix notation and we recall
convenient versions for categorical groups of actions, derivations, kernel and cokernel,
and exactness. In Section 4 we discuss cobords and factor sets of a categorical group G
with coefficients in a symmetric G-categorical group A, and define the cohomology cate-
gorical group H2(G,A, ϕ). Specializing in different ways G and A and taking the group
π0(H2(G,A, ϕ)) of connected components, we recover Eilenberg-Mac Lane and Ulbrich co-
homology groups. Section 5 is devoted to the construction of two Hochschild-Serre exact
sequences of categorical groups from an essentially surjective homomorphism of categori-
cal groups E → G and a symmetric G-categorical group A. In Section 6 we concentrate
on an interpretation of the middle point of the Hochschild-Serre exact sequences similar
to the one establised in the group case. In order to introduce extensions with a symmetric
kernel, in Section 7 we discuss categorical crossed modules, a notion introduced in [13]
(see also [10]). The reason why we need categorical crossed modules deserves an explica-
tion : in the case of groups, an extension can be presented as a surjective homomorphism
together with its kernel or, equivalently, as a normal subgroup together with the corres-
ponding quotient group. Even for categorical groups the two approaches are equivalent ;
this is due to some general results on categorical crossed modules established in [13] and
summarized in the present paper as Proposition 7.9. Having this fact in mind, in Section 8
we define an extension as a normal sub-categorical group together with the corresponding
quotient categorical group. The advantage with this definition is that, when the normal
sub-categorical group is symmetric, it is easy to construct an action of the quotient on the
kernel, much more easy than to do the same if one defines an extension as an essentially
surjective homomorphism with a symmetric kernel. The price to pay is that (contrarily to
what happens with groups) to be a normal sub-categorical group is a structure, and not a
property, and the only reasonable way to handle such a structure is to see it as a special
case of the general structure of categorical crossed module. Finally, Section 9 is devoted
to the cohomological classification of extensions with symmetric kernel. We give only the
constructive part of the proof and we omit the long diagrammatic arguments needed to
check that the various constructions fulfill the requested coherence conditions.

Remark 1.1 The cohomology categorical group H2(G,A, ϕ) introduced in Section 4 is
one of two possible variants. In order to understand this point, let us look at the simpler
case where the action ϕ is trivial, and let us start with the classical case of groups. For
a group G and an abelian group A, to construct the cohomology groups Hn(G,A) one
can start considering the chain cocomplex of maps (in any dimension) from the simplicial
set K(G, 1) (the Grothendieck’s nerve of G seen as a category with only one object) to
A, with differentials given by alternating sums of the induced cofaces. The same process
can be carried out for a categorical group G and a symmetric categorical group A. What
changes in the case of categorical groups is that at the beginning of the story two different
choices are possible, and these different choices lead to different cohomology categorical
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groups. Indeed, one can consider as starting point either Ner(G), the simplicial set of
a categorical group G (see [9]), or the pseudo-simplicial category that G defines by the
familiar bar construction, where face and degeneracy functors are defined in a standard
way and where simplicial identities hold up to isomorphism (see [8, 11] and the references
therein). When the action ϕ is trivial, our cohomology categorical group H2(G,A, ϕ) is
the one coming from this pseudo-simplicial nerve. The Ner(G) version is studied in a
separate paper [20] and is related to singular extensions of categorical groups.

2. The group case revisited

Let G be a group and A = (A,ϕ) an abelian group together with a G-module structure
ϕ : G × A → A. We write ϕ(x, a) = xa. The starting point to construct the Hochschild-
Serre sequence and the H1-H2 sequence is described by the following commutative diagram
of abelian groups and homomorphisms

A
dG // Der(G,A)

iG //

πG
��

C1(G,A)

πG
��

δG // Z2(G,A)
qG //

q
G &&MMMMMMMMMM

H2(G,A)

sG
��

H1(G,A)
iG

// C1(G,A)

δG

88qqqqqqqqqq

H2(G,A)

where

- C1(G,A) is the group of 1-cochains, i.e. maps g : G→ A such that g(1) = 0;

- Z2(G,A) is the group of 2-cocycles, i.e. maps f : G×G→ A such that

f(x, 1) = 0 = f(1, y) , xf(y, z) + f(x, yz) = f(x, y) + f(xy, z)

- δG : C1(G,A)→ Z2(G,A) is defined by δG(g)(x, y) = xg(y)− g(xy) + g(x);

- Der(G,A) and H2(G,A) are, respectively, the kernel and the cokernel of δG (the
element of Der(G,A) are called derivations) ;

- dG : A→ Der(G,A) is defined by the inner derivation dG(a)(x) = xa− a;

- H1(G,A) is the cokernel of dG, and C1(G,A) is the cokernel of iG · dG;

- iG and δG are induced by the universal properties of H1(G,A) and C1(G,A);

- H2(G,A) is the cokernel of δG;

- sG is induced by the universal property of H2(G,A).

Lemma 2.1 In the previous diagram

1. iG : H1(G,A)→ C1(G,A) is the kernel of δG : C1(G,A)→ Z2(G,A);

2. sG : H2(G,A)→ H2(G,A) is an isomorphism.
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Proof. Apply the Kernel-Cokernel Lemma to the diagram

A
iG·dG //

!

��

C1(G,A)

δG
��

πG // C1(G,A)

δG
��

0
!
// Z2(G,A)

id
// Z2(G,A)

In the resulting exact sequence

A
dG // Der(G,A) // Ker(δG) // 0 // H2(G,A)

sG // H2(G,A) // 0

the exactness in Der(G,A) and in Ker(δG) gives that H1(G,A) ' Ker(δG), and the exact-
ness in H2(G,A) and in H2(G,A) gives that sG is an isomorphism.

Consider now an epimorphism of groups p : E → G and the induced E-module structure
E × A→ G× A→ A on A. Composition with p : E → G induces also a monomorphism
p1 : C1(G,A) → C1(E,A), and composition with p × p : E × E → G × G induces a
monomorphism p2 : Z2(G,A) → Z2(E,A). We have all the ingredients to construct the
following commutative diagram of abelian groups and homomorphisms

A

dG
��

id // A

dE
��

Der(G,A)

iG

��

πG

&&NNNNNNNNNNN
a // Der(E,A)

iE

��

πE

&&NNNNNNNNNNN
b // Ker(δp)

ip

��

πp

&&NNNNNNNNNNN

H1(G,A)

iG

��

a // H1(E,A)

iE

��

b // Ker(δp)

ip

��

C1(G,A)

δG

��

πG

&&NNNNNNNNNN

p1 // C1(E,A)

δE

��

πE

&&NNNNNNNNNN

q1 // C1(p,A)

δp

��

πp

&&NNNNNNNNNNN

C1(G,A)
δG

xxpppppppppp

p
1 // C1(E,A)

δE

xxpppppppppp

q
1 // C1(p,A)

δpxxppppppppppp

Z2(G,A)

qG

��

q
G

&&NNNNNNNNNNN

p2 // Z2(E,A)

qE

��

q
E

&&NNNNNNNNNNN

q2 // Z2(p,A)

qp

��

q
p

&&NNNNNNNNNNN

H2(G,A)
c // H2(E,A)

d // Coker(δp)

H2(G,A) c
//

sG
88qqqqqqqqqqq

H2(E,A)
d

//

sE
88ppppppppppp

Coker(δp)

sp

88ppppppppppp

where
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- p
1
: C1(G,A)→ C1(E,A) is induced by the universal property of C1(G,A);

- C1(p,A) is the cokernel of p1, C1(p,A) is the cokernel of p
1
, and Z2(p,A) is the

cokernel of p2;

- δp and δp are induced by the universal properties of C1(p,A) and C1(p,A), πp and πp
are induced by the universal properties of Ker(δp) and C1(p,A), and sp is induced
by the universal property of Coker(δp).

Lemma 2.2 In the previous diagram

1. p
1
: C1(G,A)→ C1(E,A) is a monomorphism ;

2. πp : C1(p,A)→ C1(p,A) is an isomorphism and, therefore,

3. πp and sp are isomorphisms.

Proof. Consider

A

id

��

qG ##FFFFFFFFFF
iG·dG // C1(G,A)

p1

��

πG // C1(G,A)

p
1

��

Ker(πG)

88qqqqqqqqqq

h

��

A

qE ##FFFFFFFFFF
iE ·dE // C1(E,A) πE

// C1(E,A)

Ker(πE)

88qqqqqqqqqq

Observe that h is an epimorphism because qE is an epimorphism. Now apply the Kernel-
Cokernel Lemma to the diagram

Ker(πG)

h
��

// C1(G,A)
πG //

p1

��

C1(G,A)

p
1

��
Ker(πE) // C1(E,A) πE

// C1(E,A)

The resulting exact sequence

0 // Ker(h) // 0 // Ker(p
1
) // 0 // C1(p,A)

πp // C1(p,A) // 0

gives that Ker(p
1
) = 0, so that p

1
is a monomorphism, and that πp is an isomorphism.
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Corollary 2.3 Consider an epimorphism of groups p : E → G and a G-module A. There
are two exact sequences of abelian groups connected by a morphism of complexes

0→ Der(G,A)

πG
��

a // Der(E,A)

πE
��

b // Ker(δp)

πp

��

∆ // H2(G,A)

sG
��

c // H2(E,A)

sE
��

d // Coker(δp)→ 0

sp

��
0→ H1(G,A) a

// H1(E,A)
b
// Ker(δp) ∆

// H2(G,A) c
// H2(E,A)

d
// Coker(δp)→ 0

Moreover, πG and πE are epimorphisms, and πp, sG, sE and sp are isomorphisms.

Proof. Apply the Kernel-Cokernel Lemma to the diagrams

C1(G,A)

δG
��

p1 // C1(E,A)

δE
��

q1 // C1(p,A)

δp
��

Z2(G,A) p2
// Z2(E,A) q2

// Z2(p,A)

C1(G,A)

δG
��

p
1 // C1(E,A)

δE
��

q
1 // C1(p,A)

δp
��

Z2(G,A) p2
// Z2(E,A) q2

// Z2(p,A)

and use Lemma 2.1 and Lemma 2.2.

We look now for a different description of the group Ker(δp). Let N be the kernel of
p : E → G and Nab = N/[N,N ] its abelianization. Since p is surjective, Nab has a G-
module structure induced by conjugation in E :

xn = ene−1 for n ∈ N, x ∈ G and p(e) = x

In the next result, we denote by HomG(Nab, A) the abelian group of G-module homo-
morphisms Nab → A, and by Hom(N,A) the abelian group of equivariant homomor-
phisms, that is, group homomorphisms h : N → A such that h(ene−1) = p(e)h(n) for all
e ∈ E, n ∈ N.

Proposition 2.4 Let p : E → G be a group epimorphism with kernel N. The abelian
groups HomG(Nab, A),Hom(N,A) and Ker(δp) are isomorphic.

Proof. 1) The isomorphism Hom(N,A) ' HomG(Nab, A) is just the restriction of the
natural isomorphism Grp(N,A) ' Ab(Nab, A) given by the universal property of Nab.
2) Consider now the kernel of δp : C1(p,A)→ Z2(p,A). Explicitly

Ker(δp) = {[g : E → A] | ∃f : G×G→ A : δE(g) = p2(f)}

with [g] = [g′] if there exists u : G→ A such that g = p1(u) + g′, and with δE(g) = p2(f)
meaning that p(e1)g(e2)− g(e1e2) + g(e1) = f(p(e1), p(e2)) for all e1, e2 ∈ E. We put

Σ: Ker(δp)→ Hom(N,A) [g] 7→ (g · i : N → E → A)
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where i : N → G is the inclusion.
- Σ is well-defined : if [g] = [g′], then condition g = p1(u) + g′ gives for all n ∈ N

g(n) = u(p(n)) + g′(n) = u(1) + g′(n) = g′(n)

- Σ[g] : N → A is a group homomorphism : condition δE(g) = p2(f) gives for all n ∈ N
and e ∈ E

g(ne) = p(n)g(e) + g(n)− f(p(n), p(e)) = 1g(e) + g(n)− f(1, p(e)) = g(e) + g(n) (1)

- Σ[g] ∈ Hom(N,A) : using condition δE(g) = p2(f) once again we have for all e ∈ E

p(e)g(e−1) = g(ee−1)− g(e) + f(p(e), p(e−1)) = −g(e) + f(p(e), p(e−1)) (2)

Now if n ∈ N and e ∈ E, from (2) and δE(g) = p2(f) it follows that

p(e)g(ne−1) = g(ene−1)− g(e) + f(p(e), p(ne−1)) = g(ene−1) + p(e)g(e−1)

and therefore using (1) we get

g(ene−1) = p(e)g(ne−1)− p(e)g(e−1) = p(e)(g(n) + g(e−1))− p(e)g(e−1) =

= p(e)g(n) + p(e)g(e−1)− p(e)g(e−1) = p(e)g(n)

- Σ is surjective : let h : N → A be in Hom(N,A) and choose a set-theoretical section
s : G→ E of p such that s(1) = 1. We can construct gs ∈ C1(E,A) and fs ∈ Z2(G,A) as
follows

gs : E → A : gs(e) = h(es(p(e))−1) , fs : G×G→ A : fs(x, y) = h(s(xy)s(y)−1s(x)−1)

To check that δE(gs) = p2(fs) is long but easy, so let us check that Σ[gs] = h : for all
n ∈ N we have gs(n) = h(ns(p(n))−1) = h(ns(1)−1) = h(n).
- Σ is injective : let [g] ∈ Ker(δp) such that the restriction of g to N is 0. Fix once again
a set-theoretical section s of p such that s(1) = 1 and put us = g · s : G→ A. We have to
show that g = us · p, so that [g] = 0. For this, observe that from δE(g) = p2(f) we deduce

0 = g(1) = g(s(x)s(x)−1) = g(s(x)) + xg(s(x)−1)− f(x, x−1) (3)

for all x ∈ G. Finally, since es(p(e))−1 ∈ N for all e ∈ E, using condition δE(g) = p2(f)
one more time and putting x = p(e) in (3) we have

0 = g(es(p(e))−1) = g(e) + p(e)g(s(p(e))−1)− f(p(e), p(e)−1) =

= g(e)− g(s(p(e))) = g(e)− us(p(e))
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Putting together Corollary 2.3 and Proposition 2.4, we get the exact sequences originally
due to Hochschild and Serre [22].

Corollary 2.5 Consider an epimorphism of groups p : E → G with kernel N and a G-
module A. There are exact sequences of abelian groups

0→ Der(G,A)→ Der(E,A)→ HomG(Nab, A)→ H2(G,A)→ H2(E,A)

0→ H1(G,A)→ H1(E,A)→ HomG(Nab, A)→ H2(G,A)→ H2(E,A)

3. A reminder on categorical groups

In this section we collect some basic facts on categorical groups and on the corresponding
notions of action, derivation, kernel, cokernel, and exactness.
Starting from the works of Deligne [16], Frohlich and Wall [17] and Sinh [31], categorical
groups have been studied extensively in the literature (they already appear in the work of
Whitehead [36] in their strict form of crossed modules of groups). We refer to [5] and [29]
for an introduction to monoidal categories, and to [2] and [34] for basic facts on categorical
groups.
Actions of a categorical group on a (symmetric) categorical group have been introduced
in [7] and [12]. The corresponding notion of derivation has been introduced in [18] and
[19].
Convenient notions of kernel, cokernel and exactness for homomorphisms of (symmetric)
categorical groups have been studied in [26] and [34].

3.1 Categorical groups. A categorical group (sometimes called gr-category or 2-group
in the literature) is a monoidal groupoid G = (G,⊗, I, a, l, r) such that every object X is
invertible, that is, the functor

X ⊗ (−) : G→ G , Y 7→ X ⊗ Y

is an equivalence. It is then possible to choose, for each X ∈ G, an object X∗ ∈ G (called
an inverse of X) and arrows ηX : I → X ⊗X∗ and εX : X∗ ⊗X → I such that the usual
triangular identities are satisfied. The choice of a system of inverses (X∗, ηX , εX), X ∈ G,
induces a monoidal equivalence

(−)∗ : G→ G f : X → Y 7→ f ∗ : X∗ → Y ∗

where f ∗ is defined as follows

X∗ ' X∗ ⊗ I id⊗ηY // X∗ ⊗ Y ⊗ Y ∗ id⊗f−1⊗id // X∗ ⊗X ⊗ Y ∗ εX⊗id// I ⊗ Y ∗ ' Y ∗

The following simple lemma is quite useful, it will be tacitly used in several calculations
all along the paper.
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Lemma 3.2 Let f : X → Y be an arrow in a categorical group. The following diagrams
commute

X∗ ⊗X f∗⊗f //

εX
##HHHHHHHHHH Y ∗ ⊗ Y

εY
{{wwwwwwwww

X ⊗X∗ f⊗f∗ // Y ⊗ Y ∗

I I

ηX

ccHHHHHHHHHH
ηY

;;wwwwwwwww

In fact, the commutativity of these diagrams characterizes f ∗ : X∗ → Y ∗ once f is given.

(Note that, if in the definition of f ∗ we use f instead of f−1, then the monoidal equivalence
(−)∗ : G → G is contravariant and the previous lemma holds in any monoidal category
with duals.)
A categorical group G is said to be symmetric if it is symmetric as a monoidal cate-
gory, the symmetry being usually denoted by c

X,Y
: X ⊗ Y → Y ⊗ X. We will denote

by CG (respectively SCG) the 2-category whose objects are categorical groups (respecti-
vely, symmetric categorical groups). The 1-arrows, called homomorphisms, are monoidal
functors T = (T, T2) : G → H (respectively, symmetric monoidal functors), and the 2-
arrows, called morphisms, are monoidal natural transformations. Note that a canonical
arrow T0 : I → TI can be constructed from the natural and coherent family of arrows
TX,Y2 : TX⊗TY → T (X⊗Y ). Note also that in CG and SCG, the 2-arrows are invertible.

If F : G → H is any functor between categorical groups, we denote by F ∗ : G → H the
composite functor

G F // H
(−)∗ // H

that is, F ∗(X) = (FX)∗ and F ∗(f) = (Ff)∗. In the same way, from a natural transfor-
mation α : F ⇒ G we get a natural tranformation α∗ : F ∗ ⇒ G∗ defined by α∗X = (αX)∗.
When F is monoidal, we can assume that F ∗(X) = F (X∗) and F ∗(f) = F (f ∗). Finally,
if α : F ⇒ G is monoidal, then α∗X = αX∗ (to check this last fact, use Lemma 3.2).

If G ∈ CG, then the set π0(G) of its connected components is a group (abelian if G is
symmetric) with operation induced by tensor product. We denote by π1(G) the abelian
group AutG(I) of automorphisms of the object I (to check that π1(G) is abelian, use
the Eckmann-Hilton argument : in π1(G) composition coincide, up to the canonical iso-
morphism I ' I ⊗ I, with tensor product). Finally, for a group G we denote by [G]0
the discrete categorical group on G; if G is abelian, we denote by [G]1 the symmetric
categorical group with one object and such that π1([G]1) = G.

Remark 3.3 Throughout the paper we will use several variants of the following simple
fact. If G and H are categorical groups with H symmetric, then CG(G,H) is a symmetric
categorical group with structure induced pointwise from that of H. Moreover,

π1(CG(G,H)) ' Grp(π0(G), π1(H))
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Indeed, let 0 : G→ H be the constant homomorphism sending each arrow on the identity
arrow on I, and let α : 0⇒ 0 be a morphism. By naturality, we have that αX = αY : I → I
if [X] = [Y ] in π0(G), so that α induces a map π0(G)→ π1(H). By monoidality, we have
that αX⊗Y = αX ⊗ αY , so that such a map π0(G)→ π1(H) is a group homomorphism.

Notation 3.4 When no confusion arises, in order to simplify notation we will

- omit the associativity isomorphism aX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) and the
right and left unit isomorphisms rX : X → X ⊗ I and lX : X → I ⊗X

- omit indexes, writing for example c : X ⊗ Y → Y ⊗X instead of cX,Y

- denote canonical arrows as “can” or even as unlabelled arrows ; for example, we
write can: X → Y ⊗X ⊗ Y ∗ or X → Y ⊗X ⊗ Y ∗ or just X ' Y ⊗X ⊗ Y ∗ instead
of

X
rX // X ⊗ I id⊗ηY // X ⊗ Y ⊗ Y ∗

cX,Y ⊗id
// Y ⊗X ⊗ Y ∗

or of

X
lX // I ⊗X ηY ⊗id// Y ⊗ Y ∗ ⊗X

id⊗cY ∗,X // Y ⊗X ⊗ Y ∗

3.5 Actions. If G and A are categorical groups, an action of G on A is a homomorphism
of categorical groups ϕ : G → Eq(A), where Eq(A) is the categorical group of monoidal
autoequivalences of A. When such a G-action is given, we will say that A = (A, ϕ) is a
G-categorical group. To give a G-categorical group structure on A is equivalent to giving
a functor

ϕ : G× A→ A , (X,A)
(f,u) // (Y,B) 7→ ϕ(X)(A) = XA

ϕ(f)(u)= fu // ϕ(Y )(B) = YB

(when f = idX or u = idA, we write respectively Xu and fA instead of fu) together with
natural families of arrows

ϕX,A,B2 : XA⊗ XB → X(A⊗B) , ϕX,Y,A1 : X( YA)→ X⊗YA , ϕA0 : A→ IA

satisfying the following coherence conditions (see Definition 2.1 in [12]) 1 :

(act1) ϕX,A,B⊗C2 · (id⊗ ϕX,B,C2 ) · a = Xa · ϕX,A⊗B,C2 · (ϕX,A,B2 ⊗ id)

(act2) ϕX,Y⊗Z,A1 · XϕY,Z,A1 = aA · ϕX⊗Y,Z,A1 · ϕX,Y,
ZA

1

(act3) ϕI,Y,A1 · ϕ YA
0 = lA , ϕX,I,A1 · XϕA0 = rA

(act4) ϕX,Y,A⊗B1 · XϕY,A,B2 · ϕX,
YA, YB

2 = ϕX⊗Y,A,B2 · (ϕX,Y,A1 ⊗ ϕX,Y,B1 )

(act5) ϕI,A,B2 · (ϕA0 ⊗ ϕB0 ) = ϕA⊗B0

1. All along the paper, we will consider several coherence conditions. When they are already available
in the literature, we give a precise reference and express the condition as an equation. This is the case in
Subsections 3.5 and 3.11 (categorical actions and derivations) and in Subsections 7.2 and 7.3 (categorical
precrossed and crossed modules). Otherwise, we express the condition in the more readable form of a
commutative diagram.
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One can construct a unique natural family of arrows ϕX• : I → XI such that

ϕX,I,B2 ·(ϕX• ⊗ id) · l = Xl , ϕX,A,I2 ·(id⊗ϕX• ) ·r = Xr , ϕX,Y,I1 · XϕY• ·ϕX• = ϕX⊗Y• , ϕI0 = ϕI•

We say that an action ϕ : G→ Eq(A) is symmetric (or that A is a symmetric G-categorical
group) if A is symmetric and ϕ factorizes through ϕ : G → Eqs(A), where Eqs(A) is the
categorical group of symmetric monoidal autoequivalences of A. To express an action
ϕ : G→ Eqs(A) as a functor ϕ : G× A→ A, we need one more condition (see Definition
2.1 in [12]) :

(act6) ϕX,B,A2 · c = Xc · ϕX,A,B2

Remark 3.6 In Section 6 we will use the fact that any action ϕ : G → Eq(A) induces
two group actions

π0(ϕ) : π0(G)× π0(A)→ π0(A) and ϕ : π0(G)× π1(A)→ π1(A)

The first one is defined in the obvious way because π0(G × A) = π0(G) × π0(A). The
second one sends a pair ([X], a) ∈ π0(G)× π1(A) on the composite

I
ϕX• // XI

Xa // XI
(ϕX• )−1

// I

and is well-defined thanks to the naturality of ϕ• and the functoriality of ϕ.

3.7 Kernel. Given a homomorphism T : G→ H in CG, its kernel is the following diagram
in CG

G
T

��>>>>>>>>

⇓k(T )

Ker(T )

K(T )
;;wwwwwwwww

0
// H

where

- an object of Ker(T ) is a pair (X ∈ G, x : TX → I);

- an arrow f : (X, x) → (Y, y) in Ker(T ) is an arrow f : X → Y in G such that
y · T (f) = x;

- the faithful (but in general not full) homomorphism K(T ) : Ker(T ) → G is defined
by K(T )(f : (X, x)→ (Y, y)) = (f : X → Y );

- the component at (X, x) of the morphism k(T ) is given by x : T (K(T )(X, x)) =
TX → I = 0(X, x).

The kernel of T is a bilimit in the sense of [4] and also a standard homotopy kernel. Bilimit
means that for any other diagram in CG of the form

G
T

��@@@@@@@

⇓ρ

A

R
??~~~~~~~

0
// H
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there exists a homomorphism R′ : A → Ker(T ) and a morphism ρ′ : K(T ) · R′ ⇒ R
such that ρ · (T ◦ ρ′) = k(T ) ◦ R′ (where ◦ is the horizontal or Godement composition
of morphisms) ; moreover, if R′′ : A → Ker(T ) and ρ′′ : K(T ) · R′′ ⇒ R are such that
ρ · (T ◦ ρ′′) = k(T ) ◦ R′′, then there exists a unique morphism r : R′ ⇒ R′′ such that
ρ′′ · (K(T ) ◦ r) = ρ′.
Standard homotopy kernel means that, in the same situation, there exists a unique ho-
momorphism R′ : A→ Ker(T ) such that K(T ) ◦R′ = R and k(T ) ·R′ = ρ.
Finally, if T : G → H and R : A → G are in SCG, then Ker(T ),K(T ) and R′ also are in
SCG.
Note that, because of the double universal property of the kernel, we do not pay too much
attention to the fact that a diagram in CG or in SCG involving kernels (or cokernels) com-
mutes strictly or just up to a 2-arrow.

3.8 Cokernel. Let now T : G → H be a homomorphism in SCG. Its cokernel is the
following diagram in SCG

H
C(T )

$$IIIIIIIIII

⇓c(T )

G

T

??��������

0
// Coker(T )

and it satisfies two universal properties dual to those of the kernel. It can be described as
follows :

- the objects of Coker(T ) are those of H;

- a prearrow from A to B is a pair (X ∈ G, f : A→ TX ⊗B);

- an arrow [X, f ] : A ◦ // B is an equivalence class of prearrows, where two prearrows
(X, f), (X ′, f ′) fromA to B are equivalent if there exists an arrow x : X → X ′ in G
such that (T (x)⊗ id) · f = f ′;

- the tensor product of two arrows [X, f ] : A ◦ // B and [Y, g] : C ◦ // D is given by
the class of the prearrow with object part X ⊗ Y and arrow part

A⊗ C f⊗g // TX ⊗B ⊗ TY ⊗D id⊗c⊗id // TX ⊗ TY ⊗B ⊗D ' T (X ⊗ Y )⊗B ⊗D

- the essentially surjective on objects homomorphism C(T ) : H→ Coker(T ) sends an
arrow f : A→ B to the class of the prearrow

(I, A
f // B // TI ⊗B )

C(T ) in general is not a full functor ;

- the component at X ∈ G of the morphism c(T ) is given by the class of the prearrow
(X,TX → I ⊗ TX).
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Exercise 3.9 We leave to the reader the following exercise, which is easy but meaningful
to grasp the difference between groups and categorical groups when kernels and cokernels
are involved.
Let A be a categorical group and consider the canonical homomorphisms A → 0 and
0→ A. We have

Ker(A→ 0) = A , Ker(0→ A) = [π1(A)]0

If A is symmetric, we also have

Coker(A→ 0) = [π0(A)]1 , Coker(0→ A) = A

3.10 Exactness. A diagram

B
G

��???????

⇓ρ

A

F
??�������

0
// C

in CG is 2-exact if the comparison homomorphism F ′ : A→ Ker(G) is full and essentially
surjective on objects. When the above diagram is in SCG, its 2-exactness is equivalent to
ask that the comparison homomorphism G′ : Coker(F )→ C is full and faithful.
Obvious examples of 2-exact complexes are

Ker(T )
K(T ) // G T // H and G T // H

C(T ) // Coker(T )

equipped respectively with k(T ) : T ·K(T )⇒ 0 and c(T ) : C(T ) ·T ⇒ 0. More interesting,
if

A F // B G // C with ρ : G · F ⇒ 0

is 2-exact, then

π0( A F // B G // C ) and π1( A F // B G // C )

are exact sequences of groups (the converse implication is not true).

3.11 Derivations. If G is a categorical group and (A, ϕ) is a G-categorical group, a
derivation from G to A is a functor D : G→ A together with a natural family of arrows

βX,Y : DX ⊗ XDY → D(X ⊗ Y )

satisfying the following coherence condition (see Definition 3.1 in [19]) :

(der1) D(a) · βX⊗Y,Z · (βX,Y ⊗ id) · a−1 · (id⊗ (id⊗ ϕX,Y,DZ1 )) =

= βX,Y⊗Z · (id⊗ XβY,Z) · (id⊗ ϕX,DY,
YDZ

2 )

One can construct a unique arrow β0 : I → DI such that

βX,I · (id⊗ Xβ0) · (id⊗ ϕX• ) · r = D(r) , βI,X · (id⊗ ϕDX0 ) · (β0 ⊗ id) · l = Dl

Given two derivations (D, β), (D′, β′) : G → A, a morphism of derivations ε : (D, β) ⇒
(D′, β′) is a natural transformation ε : D ⇒ D′ compatible with β and β′ : (see Definition
3.1 in [19])
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(der2) εX⊗Y · βX,Y = β′X,Y · (εX ⊗ XεY )

From the previous conditions, it follows that εI · β0 = β′0.
When (A, ϕ) is a symmetric G-categorical group, the category of derivations Der(G,A, ϕ)
is a symmetric categorical group, with structure induced by that of A. Moreover, in this
case there exists a homomorphism dG : A→ Der(G,A, ϕ) defined, on an object A, by the
inner derivation dG(A)(X) = XA ⊗ A∗. For such a functor, the structure of derivation
dG(A)(X)⊗ XdG(A)(Y )→ dG(A)(X ⊗ Y ) is provided by

XA⊗ A∗ ⊗ X( YA⊗ A∗)
id⊗(ϕX,

YA,A∗
2 )−1

// (1)
ϕX,Y,A1 ⊗ϕX,A,A

∗
2 // (2)

id⊗ϕX• // X⊗YA⊗ A∗

where

(1) is XA⊗ A∗ ⊗ X( YA)⊗ XA∗ ' X( YA)⊗ A∗ ⊗ XA⊗ XA∗

(2) is X⊗YA⊗ A∗ ⊗ X(A⊗ A∗) ' X⊗YA⊗ A∗ ⊗ XI

For an arrow f : A → B in A, the natural transformation dG(f) : dG(A) ⇒ dG(B) has
component at X given by Xf ⊗ f ∗ : XA⊗A∗ → XB ⊗B∗. We denote the kernel and the
cokernel of dG by

H0(G,A, ϕ)
K(dG) // A

dG // Der(G,A, ϕ)
C(dG) // H1(G,A, ϕ)

4. The second cohomology categorical group

In this section we introduce a possible second cohomology categorical group H2(G,A, ϕ).
To avoid confusion with the second cohomology categorical group H2(G,A) studied in
[20], we adopt the terminology here of “cobord” and “factor set” to describe H2(G,A, ϕ),
and we leave the terminology “cochain” and “cocycle” for H2(G,A).

We fix a symmetric G-categorical group A = (A, ϕ : G → Eqs(A)) as in Subsection 3.5.
We start by describing the symmetric categorical group C1(G,A) of cobords and the
symmetric categorical group Z2(G,A, ϕ) of factor sets. In both cases, the structure of
symmetric categorical group is inherited from that of A.

Definition 4.1 A cobord of G with coefficients in A is a pair G = (G,G0) with G : G→ A
a functor and G0 : I → GI an arrow. Given two cobords G,G′ : G → A, a morphism of
cobords is a natural transformation β : G⇒ G′ such that the following diagram commutes

(cob1) GI
βI // G′I

I
G0

``AAAAAAAA G′0

>>||||||||

We denote by C1(G,A) the symmetric categorical group of cobords.
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Definition 4.2 A factor set of G with coefficients in A is a 4-tuple F = (F, aF , rF , lF )
where F : G×G→ A is a functor and

aX,Y,ZF : F (X, Y )⊗ F (X ⊗ Y, Z)→ XF (Y, Z)⊗ F (X, Y ⊗ Z)

rXF : I → F (X, I) lYF : I → F (I, Y )

are natural families of arrows such that the following diagrams commute

(fs1) I ⊗ F (X,Z)

rXF ⊗F (rX ,id)

��

ϕX• ⊗id // XI ⊗ F (X,Z)

XlZF⊗F (id,lZ)
��

F (X, I)⊗ F (X ⊗ I, Z)
aX,I,ZF

// XF (I, Z)⊗ F (X, I ⊗ Z)

(fs2)

(1)

aX,Y,ZF ⊗F (a,id)
��

id⊗aX⊗Y,Z,WF // (6)
c⊗id // (7)

id⊗aX,Y,Z⊗WF // (8)

(ϕ
X,Y,F (Z,W )
1 )−1⊗id

��
(2)

id⊗aX,Y⊗Z,WF
��

(9)

ϕ
X, YF (Z,W ),F (Y,Z⊗W )
2��

(3)
ϕ
X,F (Y,Z),F (Y⊗Z,W )
2 ⊗id

// (4)
XaY,Z,WF ⊗F (id,a)

// (5)

where

(1) = F (X, Y )⊗ F (X ⊗ Y, Z)⊗ F ((X ⊗ Y )⊗ Z,W )

(2) = XF (Y, Z)⊗ F (X, Y ⊗ Z)⊗ F (X ⊗ (Y ⊗ Z),W )

(3) = XF (Y, Z)⊗ XF (Y ⊗ Z,W )⊗ F (X, (Y ⊗ Z)⊗W )

(4) = X(F (Y, Z)⊗ F (Y ⊗ Z,W ))⊗ F (X, (Y ⊗ Z)⊗W )

(5) = X( YF (Z,W )⊗ F (Y, Z ⊗W ))⊗ F (X, Y ⊗ (Z ⊗W ))

(6) = F (X, Y )⊗ X⊗YF (Z,W )⊗ F (X ⊗ Y, Z ⊗W )

(7) = X⊗YF (Z,W )⊗ F (X, Y )⊗ F (X ⊗ Y, Z ⊗W )

(8) = X⊗YF (Z,W )⊗ XF (Y, Z ⊗W )⊗ F (X, Y ⊗ (Z ⊗W ))

(9) = X( YF (Z,W ))⊗ XF (Y, Z ⊗W )⊗ F (X, Y ⊗ (Z ⊗W ))

Given two factor sets F, F ′ : G×G→ A, a morphism of factor sets is a natural transfor-
mation α : F ⇒ F ′ such that the following diagrams commute

(fs3) F (X, Y )⊗ F (X ⊗ Y, Z)
aX,Y,ZF //

αX,Y ⊗αX⊗Y,Z
��

XF (Y, Z)⊗ F (X, Y ⊗ Z)

XαY,Z⊗αX,Y⊗Z
��

F ′(X, Y )⊗ F ′(X ⊗ Y, Z)
aX,Y,Z
F ′

// XF ′(Y, Z)⊗ F ′(X, Y ⊗ Z)
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(fs4) F (X, I)

αX,I

��

F (I, Y )

αI,Y

��

I

rXF
ccGGGGGGGGGG

lYF
;;wwwwwwwww

rX
F ′{{wwwwwwwwww

lY
F ′ ##GGGGGGGGG

F ′(X, I) F ′(I, Y )

We denote by Z2(G,A, ϕ) the symmetric categorical group of factor sets.

Remark 4.3 The definition of factor set comes from the following fact. Given a functor
F : G×G→ A and three natural families aX,Y,ZF , rXF , l

Y
F , we can define a tensor product

⊗F : A×G× A×G→ A×G , (A,X)⊗F (B, Y ) = (A⊗ XB ⊗ F (X, Y ), X ⊗ Y )

a unit objet (I, I), an inverse (A,X)∗ = (X
∗
A∗ ⊗ X∗F ∗(X,X∗), X∗) and three natural

families

- (A,X)→ (A,X)⊗F (I, I) with components

A // A⊗ I ⊗ I
id⊗ϕX• ⊗rXF // A⊗ XI ⊗ F (X, I) , X // X ⊗ I

- (B, Y )→ (I, I)⊗F (B, Y ) with components

B // I ⊗B ⊗ I
id⊗ϕB0 ⊗lYF // I ⊗ IB ⊗ F (I, Y ) , Y // I ⊗ Y

- ((A,X)⊗F (B, Y ))⊗F (C,Z)→ (A,X)⊗F ((B, Y )⊗F (C,Z)) with first component

(1)
id⊗c⊗id // (2)

id⊗(ϕX,Y,C1 )−1⊗aX,Y,ZF // (3)
id⊗ϕX,B,

YC,F (Y,Z)
2 ⊗id

// (4)

where

(1) = A⊗ XB ⊗ F (X, Y )⊗ X⊗YC ⊗ F (X ⊗ Y, Z)

(2) = A⊗ XB ⊗ X⊗YC ⊗ F (X, Y )⊗ F (X ⊗ Y, Z)

(3) = A⊗ XB ⊗ X( YC)⊗ XF (Y, Z)⊗ F (X, Y ⊗ Z)

(4) = A⊗ X(B ⊗ YC ⊗ F (Y, Z))⊗ F (X, Y ⊗ Z)

and second component (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z).

Conditions (fs1) and (fs2) in Definition 4.2 are precisely what is needed to make such
families coherent in the usual sense of monoidal categories, so that (A×G,⊗F , (I, I), . . .)
is a monoidal category (in fact, a categorical group). In Section 9 we will denote such
a categorical group by A ×F G. Observe that if the factor set F is the 0-functor, then
A×F G is the semi-direct product Aoϕ G, see [19, 25].
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Lemma 4.4 There exists a homomorphism δ = δG : C1(G,A)→ Z2(G,A, ϕ) defined, on
an object G, by

δ(G)(X, Y ) = XGY ⊗G∗(X ⊗ Y )⊗GX

rXδG : I
ϕX• // XI

XG0 // XGI // XGI ⊗G∗(X ⊗ I)⊗GX

lYδG : I // GY ⊗G∗(I ⊗ Y )⊗ I
ϕGY0 ⊗id⊗G0 // IGY ⊗G∗(I ⊗ Y )⊗GI

aX,Y,ZδG : (1) // (2)
(ϕX,Y,GZ1 )−1⊗can

// (3)
ϕ
X, YGZ,G∗(Y⊗Z)
2 ⊗id

// (4)

where

(1) = XGY ⊗G∗(X ⊗ Y )⊗GX ⊗ X⊗YGZ ⊗G∗(X ⊗ Y ⊗ Z)⊗G(X ⊗ Y )

(2) = X⊗YGZ ⊗ XGY ⊗G∗(X ⊗ Y ⊗ Z)⊗GX
(3) = X( YGZ)⊗ XG∗(Y ⊗ Z)⊗ XGY ⊗ XG(Y ⊗ Z)⊗G∗(X ⊗ Y ⊗ Z)⊗GX
(4) = X( YGZ ⊗G∗(Y ⊗ Z)⊗GY )⊗ XG(Y ⊗ Z)⊗G∗(X ⊗ Y ⊗ Z)⊗GX

and, on a morphism β : G⇒ G′, by

δ(β)X,Y : XGY ⊗G∗(X ⊗ Y )⊗GX
XβY ⊗β∗X⊗Y ⊗βX // XG′Y ⊗G′∗(X ⊗ Y )⊗G′X

Moreover, the kernel of δG is equivalent to Der(G,A, ϕ).

The fact that the families rδG, lδG and aδG constructed in Lemma 4.4 are canonical depends
on the fact that A is symmetric, a braiding on A is not sufficient here.

Definition 4.5 The second cohomology categorical group H2(G,A, ϕ) of G with coeffi-
cients in A is the cokernel of δG. Therefore, we have

Der(G,A, ϕ)
K(δ) // C1(G,A)

δ // Z2(G,A, ϕ)
C(δ) // H2(G,A, ϕ)

Example 4.6

1. If G is the discrete categorical group [G]0 associated with a group G, then the
set of objects of Z2([G]0,A) is identified with the set of Ulbrich’s 3-cocycles of G
with coefficients in A, see [33]. In particular (see Example 3 in [12]), if A is the
discrete symmetric [G]0-categorical group [A]0 associated with a G-module A, then
Z2([G]0, [A]0) is the discrete symmetric categorical group [Z2(G,A)]0 associated with
the abelian group of Eilenberg-Mac Lane 2-cocycles of G with coefficients in A.

2. If G = [G]0 and, moreover, A = [A]1 is the symmetric [G]0-categorical group with
only one object associated with a G-module A, then Z2([G]0, [A]1) is the discrete
symmetric categorical group associated with the abelian group of Eilenberg-Mac
Lane 3-cocycles of G with coefficients in the G-module A.

This shows that the cohomology groups introduced by Eilenberg-Mac Lane [28] and
Ulbrich [33] can be obtained as special instances of the symmetric categorical group
H2(G,A, ϕ) via the functor π0.
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5. The Hochschild-Serre sequences for categorical groups

In order to prepare the Hochschild-Serre 2-exact sequences, we generalise Lemma 2.1 and
Lemma 2.2 to symmetric categorical groups.

Lemma 5.1 Consider a diagram in SCG

A D // Ker(δ)
K(δ) //

C(D)

��

C
C(K(δ)·D)

��

δ // Z
C(δ) //

C(δ) ##GGGGGGGGGG Coker(δ)

S
��

Coker(D)
K(δ)

// Coker(K(δ) ·D)

δ

88qqqqqqqqqqqq
Coker(δ)

where K(δ), δ and S are induced by the universal properties of Coker(D), Coker(K(δ) ·D)
and Coker(δ). Then

1. K(δ) : Coker(D)→ Coker(K(δ) ·D) is the kernel of δ : Coker(K(δ) ·D)→ Z;

2. S : Coker(δ)→ Coker(δ) is full and essentially surjective.

Proof. Consider the diagram

A

��

K(δ)·D // C
δ

��

C(K(δ)·D) // Coker(K(δ) ·D)

δ

��
0 // Z

Id
// Z

Apply the Kernel-Cokernel Lemma for symmetric categorical groups (Proposition 6.3 in
[15]) and use Exercise 3.9. We get a 2-exact sequence

A D // Ker(δ) T // Ker(δ) // [π0(A)]1
R // Coker(δ) S // Coker(δ)

1. Consider the factorization through the cokernel

A D // Ker(δ)

C(D)
��

T // Ker(δ)

Coker(D)
T ′

88rrrrrrrrrr

By 2-exactness in Ker(δ), T ′ is full and faithful. Moreover, the sequence

π0(Ker(δ))
π0(T ) // π0(Ker(δ)) // π0([π0(A)]1) = 0

is exact, so that π0(T ) is surjective. This means that T is essentially surjective, and then
T ′ also is essentially surjective.
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2. Consider the factorization through the kernel

[π0(A)]1

R′ &&MMMMMMMMMM
R // Coker(δ) S // Coker(δ)

Ker(S)

K(S)

OO

By 2-exactness in Coker(δ), R′ is (full and) essentially surjective. Therefore,

π0(R′) : π0([π0(A)]1) = 0→ π0(Ker(S))

is surjective, and then π0(Ker(S)) = 0. This means that S is full (see Proposition 2.1 in
[34]). Finally, the fact that S is essentially surjective is obvious because S · C(δ) = C(δ)
and C(δ) is essentially surjective.

Lemma 5.2 Consider a diagram in SCG

A
D

��

F // A′

D′

��
C

G
//

'

C(D)

��

C′

C(D′)
��

C(G) // Coker(G)

R
��

Coker(D)
G
// Coker(D′)

C(G)
// Coker(G)

with F full and essentially surjective, and G faithful. Then

1. the comparison G : Coker(D)→ Coker(D′) is faithful ;

2. the comparison R : Coker(G)→ Coker(G) is an equivalence.

Proof. Using the factorization D of D through the kernel of C(D), and the factorization
D′ of D′ through the kernel of C(D′), we split the upper part of the previous diagram as

A F //

D

%%JJJJJJJJJJ

D

��

A′
D′

yyssssssssss

D′

��

Ker(C(D))
F
//

K(C(D))
yytttttttttt

'

Ker(C(D′))

K(C(D))
%%KKKKKKKKKK

C
G

// C′

Following Proposition 2.1 in [26], we have that D and D′ are full and essentially surjec-
tive. Therefore, Coker(D) is also a cokernel of K(C(D)), Coker(D′) is also a cokernel of
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K(C(D′)), and F is full and essentially surjective. Apply now the Kernel-Cokernel Lemma
to the diagram

Ker(C(D))
K(C(D)) //

F

��

C
C(D) //

G

��

Coker(D)

G

��
Ker(C(D′))

K(C(D′))
// C′

C(D′)
// Coker(D′)

We get a 2-exact sequence

Ker(F ) // Ker(G) // Ker(G) // 0 // Coker(G) R // Coker(G)

where Coker(F ) is equivalent to 0 because F is full and essentially surjective (see Propo-
sition 2.2 in [34]).
1. From the previous 2-exact sequence, we get an exact sequence of abelian groups

0 = π1(Ker(G))→ π1(Ker(G))→ 0

where 0 = π1(Ker(G)) because G is faithful (see Proposition 2.1 in [34]). Therefore,
π1(Ker(G)) = 0, and then G is faithful.
2. The 2-exactness in Coker(G) of the previous sequence of symmetric categorical groups
gives that R is full and faithful (use Exercise 3.9). Finally, R is also essentially surjective
because R · C(G) = C(G) · C(D′).

5.3 Hochschild-Serre 2-exact sequences. In the rest of this section, we fix an es-
sentially surjective homomorphism of categorical groups P : E → G and a symmetric
G-categorical group A = (A, ϕ : G → Eqs(A)). Clearly, P induces a symmetric action
ϕ · P of E on A (by abuse of notation, we will write ϕ instead of ϕ · P ). Moreover, P
induces by composition two faithful homomorphisms

PC : C1(G,A)→ C1(E,A) and PZ : Z2(G,A, ϕ)→ Z2(E,A, ϕ)
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We can now construct the following diagram in SCG (each part is either commutative or
commutative up to a 2-arrow) :

A
dG
��

Id // A
dE
��

Der(G,A, ϕ)

K(δG)

��

C(dG)

''OOOOOOOOOOO
// Der(E,A, ϕ)

K(δE)

��

C(dE)

''OOOOOOOOOOO
// Ker(δP )

K(δP )

��

πP

&&MMMMMMMMMMM

H1(G,A, ϕ)

K(δG)

��

// H1(E,A, ϕ)

K(δE)

��

// Ker(δP )

K(δP )

��

C1(G,A)

δG

��

C(K(δG)·dG)
OOOO

''OOOO

PC // C1(E,A)

δE

��

C(K(δE)·dE)
NNNN

''NNNN

C(PC) // C1(P,A)

δP

��

πP

&&MMMMMMMMMM

C1(G,A)
δG

wwooooooooooo

PC // C1(E,A)
δE

wwppppppppppp

C(PC) // C1(P,A)

δPxxqqqqqqqqqq

Z2(G,A, ϕ)

C(δG)

��

C(δG)

''OOOOOOOOOOO

PZ // Z2(E,A, ϕ)

C(δE)

��

C(δE)

''NNNNNNNNNNN

C(PZ) // Z2(P,A, ϕ)

C(δP )

��

C(δP )

&&MMMMMMMMMMM

H2(G,A, ϕ) // H2(E,A, ϕ) // Coker(δP )

H2(G,A, ϕ) //

sG
77ooooooooooo

H2(E,A, ϕ) //

sE
77ppppppppppp

Coker(δP )

sP

88qqqqqqqqqqq

where

- C1(G,A) is the cokernel of K(δG) · dG and H2(G,A, ϕ) is the cokernel of δG;

- C1(P,A) is the cokernel of PC, C1(P,A) is the cokernel of PC, and Z2(P,A, ϕ) is the
cokernel of PZ.

Proposition 5.4 Let P : E→ G be an essentially surjective homomorphism of categorical
groups and A a symmetric G-categorical group. There exist 2-exact sequences of symmetric
categorical groups

Der(G,A, ϕ)

C(dG)

��

// Der(E,A, ϕ)

C(dE)

��

// Ker(δP )

πP

��

// H2(G,A, ϕ)

sG
��

// H2(E,A, ϕ)

sE
��

// Coker(δP )

sP

��
H1(G,A, ϕ) // H1(E,A, ϕ) // Ker(δP ) // H2(G,A, ϕ) // H2(E,A, ϕ) // Coker(δP )

Moreover, for the connecting homomorphisms, we have :

- C(dG) and C(dE) are essentially surjective ;

- sG and sE are full and essentially surjective ;

- πP and sP are equivalences.
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Proof. Apply the Kernel-Cokernel Lemma to the diagrams

C1(G,A)

δG
��

PC // C1(E,A)

δE
��

Z2(G,A, ϕ)
PZ

// Z2(E,A, ϕ)

C1(G,A)

δG
��

PC // C1(E,A)

δE
��

Z2(G,A, ϕ)
PZ

// Z2(E,A, ϕ)

in order to construct the 2-exact sequeces. Then apply Lemma 5.1 to the diagram

A
dG // Der(G,A, ϕ)

K(δG) //

C(dG)

��

C1(G,A)

C(K(δG)·dG)
��

δG // Z2(G,A, ϕ)
C(δG) //

C(δG) ''PPPPPPPPPPP
H2(G,A, ϕ)

sG
��

H1(G,A, ϕ)
K(δG)

// C1(G,A)

δG

77ppppppppppp

H2(G,A, ϕ)

(and to the similar diagram with G replaced by E) and Lemma 5.2 to the diagram

A
K(δG)·dG

��

Id // A
K(δE)·dE
��

C1(G,A)

C(K(δG)·dG)
��

PC // C1(E,A)

C(K(δE)·dE)
��

C(PC) // C1(P,A)

πP
��

C1(G,A)
PC

// C1(E,A)
C(PC)

// C1(P,A)

The fact that πP is an equivalence immediately implies that πP and sP also are equiva-
lences.

6. The middle point of the Hochschild-Serre 2-exact sequences

In this section we look for a description of Ker(δP ) similar to the one obtained with
Proposition 2.4 in the case of groups.
We fix the following data

N
K(P ) // E P // G

ϕ // Eqs(A)

where P is a homomorphism of categorical groups, N is the kernel of P, and (A, ϕ) is a
symmetric G-categorical group. From Example 2.6.v in [13], recall that there is a canonical
action • : E× N→ N with constraints •0, •1, •2. Explicitly, E • (N, n : PN → I) is given
by

(E ⊗N ⊗ E∗, P (E ⊗N ⊗ E∗) P2 // PE ⊗ PN ⊗ PE∗ id⊗n⊗id // PE ⊗ I ⊗ PE∗ ' I)
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6.1 The equivariant hom. We denote by Hom(N,A) the symmetric categorical group
having equivariant homomorphisms as objects. This means that an object is a homomor-
phism (H,H2) : N→ A in CG together with a natural family of arrows

HE,(N,n)
ϕ : H(E • (N, n))→ PEH(N, n)

satisfying the following coherence conditions 2 :

(act7’) H
I,(N,n)
ϕ ·H(•(N,n)

0 ) = P0H(N, n) · ϕH(N,n)
0

(act8’) PEH
(N,n),(M,m)
2 · ϕPE,(N,n),(M,m)

2 · (HE,(N,n)
ϕ ⊗HE,(M,m)

ϕ ) =

= H
E,(N,n)⊗(M,m)
ϕ ·H(•E,(N,n),(M,m)

2 ) ·HE•(N,n),E•(M,m)
2

(act9’) PE,F2 H(N, n) · ϕPE,PF,(N,n)
1 · PEHF,(N,n)

ϕ ·HE,F•(N,n)
ϕ = H

E⊗F,(N,n)
ϕ ·H(•E,F,(N,n)

1 )

A morphism

α : (H,H2, Hϕ)⇒ (K,K2, Kϕ) : N→ A

in Hom(N,A) is a morphism α : H ⇒ K in CG such that

(act10’) PEα(N,n) ·HE,(N,n)
ϕ = K

E,(N,n)
ϕ · αE•(N,n)

In order to prove that Hom(N,A) and Ker(δP ) are equivalent symmetric categorical groups
(Proposition 6.4), we need two lemmas.

Lemma 6.2 Consider the group actions

π0(E)× π0(N)
π0(•) // π0(N) and π0(E)× π1(A)

π0(P )×id // π0(G)× π1(A)
ϕ
// π1(A)

(see Remark 3.6 for the action ϕ), and the abelian group Homπ0(E)(π0(N), π1(A)) of equi-
variant group homomorphisms. Then

π1(Hom(N,A)) ' Homπ0(E)(π0(N), π1(A))

Proof. As in Remark 3.3, a morphism α : 0 ⇒ 0 in Hom(N,A) induces a group homo-
morphism

π0(N)→ π1(A) , [N, n] 7→ (α(N,n) : I → I)

Moreover, by condition (act10’), such a homomorphism is equivariant.

2. We write these conditions just as equations, because they are special cases of conditions (act7) –
(act10) defining homomorphisms and morphisms of actions, see Subsection 7.1.
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Lemma 6.3 Consider the following diagram in CG

E
P

��???????
0 //

⇓k(P )

A

N

K(P )
??�������

0
// G

U

??~~~~~~~
⇑β

If P is essentially surjective and if β and k(P ) are compatible, that is, for every (N, n) ∈ N

UPN
U(n) //

βN ""EEEEEEEEE UI

I
U0

>>}}}}}}}}

commutes, then there exists a unique morphism β : U ⇒ 0 in CG such that β ◦ P = β.

Proof. Using part 2 of Proposition 7.9, this Lemma can be seen as a special case of Lemma
7.5. For the reader convenience, we sketch here the direct argument. The uniqueness of β
immediately follows from the fact that P is essentially surjective. To construct β, consider
an object X ∈ G, fix E ∈ E and x : X → PE and put

βX : UX
U(x) // UPE

βE // I

The naturality of β amounts to the equation βF ·U(f) = βE for every arrow f : PE → PF
in G. To check this equation, consider the following object in N

(F ⊗ E∗, nf : P (F ⊗ E∗) ' PF ⊗ PE∗ f⊗id // PE ⊗ PE∗ ' I )

The compatibility between β and k(P ) applied to the object (F ⊗ E∗, nf ) gives the
commutativity of the exterior of the following diagram

U(PE ⊗ PE∗)

U(f⊗id)

��

UI
U(ηPE)oo

(∗)

I
U0oo

can

}}{{{{{{{{{

id

��

UPE ⊗ UPE∗
βE⊗βE∗ //

UPE,PE
∗

2

iiSSSSSSSSSSSSSS

U(f)⊗id
��

I ⊗ I
id
��

UPF ⊗ UPE∗

UPF,PE
∗

2
uukkkkkkkkkkkkkk βF⊗βE∗

// I ⊗ I

U(PF ⊗ PE∗)
U(PF,E

∗
2 )

// UP (F ⊗ E∗)
βF⊗E∗

// I

can

aaCCCCCCCCC

Since the four unlabelled regions commute by naturality and monoidality of β, the region
labelled (∗) also commutes. Tensoring (∗) with UPE we get βF ·U(f) = βE, as requested.
The rest of the proof is now easy.
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Consider now N = Ker(P ) → E → G → Eqs(A) as at the beginning of this section, and
Ker(δP )→ C1(P,A)→ Z2(P,A, ϕ) as in Subsection 5.3. We have the following result.

Proposition 6.4 There is a homomorphism of symmetric categorical groups

Σ: Ker(δP )→ Hom(N,A)

Moreover :

1. If P is essentially surjective, then Σ is faithful.

2. If P has a functorial section, then Σ is an equivalence.

Proof. Construction of the functor Σ.
Recall that an object in Ker(δP ) is given by G : E → A in C1(E,A) together with an
equivalence class [L, α] with L : G × G → A in Z2(G,A, ϕ) and α : δE(G) ⇒ PZ(L) in
Z2(E,A, ϕ). We define Σ(G, [L, α]) to be the restriction of G to the kernel of P

Σ(G, [L, α]) = N
K(P ) // E G // A

The monoidal structure G(K(P )(M,m))⊗G(K(P )(N, n))→ G(K(P )((M,m)⊗ (N, n)))
is given by

GM ⊗GN c // GN ⊗GM
ϕGN0 ⊗id

// IGN ⊗GM
m−1

GN⊗id // PMGN ⊗GM
αM,N
��

G(M ⊗N)
rIL=lIL // L(I, I)⊗G(M ⊗N) L(PM,PN)⊗G(M ⊗N)

L(m,n)⊗idoo

where αM,N is obtained in a canonical way from

αM,N : PMGN ⊗G∗(M ⊗N)⊗GM → L(PM,PN)

The equivariant structure G(K(P )(E • (N, n))) → PEG(K(P )(N, n)) is obtained in a
similar way, using ϕ2, αN,E, αE,N⊗E∗ and αE,E∗ .
The functor Σ is well-defined on objects. Indeed, [L, α] = [L′, α′] means that there exists
λ : L⇒ L′ in Z2(G,A, ϕ) such that PZ(λ) ·α = α′. This implies the commutativity of the
following diagram, which expresses the fact that the monoidal structure of Σ(G, [L, α])
does not depend on the choice of L and α (and similarly for the equivariant structure)

L(PM,PN)⊗G(M ⊗N)
L(m,n)⊗id //

λPM,PN⊗id

xx

L(I, I)⊗G(M ⊗N)

λI,I⊗id

&&

PMGN ⊗GM

αM,N

OO

α′M,N
��

G(M ⊗N)

rIL⊗id

OO

rI
L′⊗id

��
L′(PM,PN)⊗G(M ⊗N)

L′(m,n)⊗id
// L′(I, I)⊗G(M ⊗N)
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Recall now that an arrow [U, β] : (G, [L, α]) ⇒ (G′, [L′, α′]) in Ker(δP ) is a class of pairs
with U : G → A in C1(G,A) and β : G ⇒ PC(U) ⊗ G′ in C1(E,A) such that there exists
λ : L⇒ δG(U)⊗L′ in Z2(G,A, ϕ) such that PZ(λ) ·α = (δE(PC(U))⊗α′) ·δE(β). We define

Σ[U, β] : Σ(G, [L, α]) = G ·K(P )⇒ G′ ·K(P ) = Σ(G′, [L′, α′])

Σ[U, β](N,n) : GN
βN // UPN ⊗G′N

U(n)⊗id // UI ⊗G′N ' G′N

The functor Σ is well-defined on arrows. Indeed, [U, β] = [U ′, β′] means that there exists
γ : U ⇒ U ′ in C1(G,A) such that (PC(γ) ⊗ G′) · β = β′. This implies the commutativity
of the following diagram, which expresses the fact that Σ[U, β] does not depend on the
choice of U and β

UPN ⊗G′N
U(n)⊗id //

γN⊗id

ww

UI ⊗G′N

γI⊗id

''

GN

βN

OO

β′N
��

I ⊗G′N

U0⊗id

OO

U ′0⊗id

��
U ′PN ⊗G′N

U ′(n)⊗id
// U ′I ⊗G′N

Since the symmetric monoidal structure of Ker(δP ) and of Hom(N,A) are both induced
by that of A, the functor Σ is a homomorphism in SCG.
1. Σ is faithful. This is equivalent to prove that π1(Σ) : π1(Ker(δP )) → π1(Hom(N,A))
is injective (Proposition 1.1 in [34]). Using Lemma 6.2, we get the following explicit
description of π1(Σ) : for an element [U : G→ A, β : 0⇒ PC(U)] in π1(Ker(δP )),

π1(Σ)[U, β] : π0(N)→ π0(A) , [N, n] 7→ I
βN // UPN

U(n) // UI
U−1
0 // I

Assume now that [U, β] is in the kernel of π1(Σ). This means that, for any object (N, n)
in the kernel of P, one has that

I
βN //

U0 ""EEEEEEEEE UPN

U(n)

��
UI

commutes. This is precisely the compatibility condition requested in Lemma 6.3. Since P
is essentially surjective, from Lemma 6.3. we get a (unique) γ : 0 ⇒ U in C1(G,A) such
that γ ◦ P = β. Therefore, [U, β] = 0 in π1(Ker(δP )) and π1(Σ) is injective. Observe that
we can apply Lemma 6.3 even if U in general is not monoidal. Indeed, since [U, β] is in
the kernel of π1(Σ), there exists λ : 0 ⇒ δG(U) in Z2(G,A, ϕ) such that PZ(λ) = δE(β).
Explicitly, this gives

λX,Y : I → XUY ⊗ U∗(X ⊗ Y )⊗ UX
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so that U is a derivation and β is a morphism of derivations, and derivations correspond
to homomorphisms into the semi-direct product (see [19] or [25]).
2. Assume now that P has a functorial section, that is, there exists a functor S : G → E
and a natural transformation s : Id ⇒ P · S. With no lost of generality, we can assume
that there exists an arrow S0 : I → SI such that P (S0) · P0 = sI .
The functor Σ is essentially surjective. Let

(H,H2) : N→ A , HE,(N,n)
ϕ : H(E • (N, n))→ PEH(N, n)

be an object in Hom(N,A). We look for an object (GS, [LS, αS]) in Ker(δP ) such that
Σ(GS, [LS, αS]) ' (H,H2, Hϕ). From an object E ∈ E, we construct an arrow

es : P (E ⊗ (SPE)∗) ' PE ⊗ (PSPE)∗
id⊗s∗PE // PE ⊗ (PE)∗ ' I

and we define
GS : E→ A , GS(E) = H(E ⊗ (SPE)∗, es)

The functor GS is defined in a similar way on arrows. Using S0 we get that GS is in
C1(E,A). From objects X, Y ∈ G, we construct now an arrow

(x, y)s : P (S(X ⊗ Y )⊗ (SY )∗ ⊗ (SX)∗)→ I

Up to the constraint P2, (x, y)s is given by

PS(X ⊗ Y )⊗ (PSY )∗ ⊗ (PSX)∗
sX⊗Y ⊗s∗Y ⊗s

∗
X // X ⊗ Y ⊗ Y ∗ ⊗X∗ ' I

We define

LS : G×G→ A , LS(X, Y ) = H(S(X ⊗ Y )⊗ (SY )∗ ⊗ (SX)∗, (x, y)s)

LS is defined in a similar way on arrows. To have a factor set, we still need the constraints
aL, rL, lL as in Definition 4.2. We will go back to this point in few lines, let us now construct
αS : δE(GS)⇒ PZ(LS). The idea is to go back to the proof of Proposition 2.4, check that
δE(gs) = p2(fs) and then follow step-by-step such a proof. The output is the following
natural family of arrows (without writing the arrow-part of the objects of N)

(1)
H−1
ϕ ⊗can⊗id

// (2)
c⊗id // (3)

H2 // (4) can // (5)

where

(1) = PXH(Y ⊗ (SPY )∗)⊗H(X ⊗ Y ⊗ (SP (X ⊗ Y ))∗)∗ ⊗H(X ⊗ (SPX)∗)

(2) = H(X ⊗ Y ⊗ (SPY )∗ ⊗X∗)⊗H(SP (X ⊗ Y )⊗ Y ∗ ⊗X∗)⊗H(X ⊗ (SPX)∗)

(3) = H(SP (X ⊗ Y )⊗ Y ∗ ⊗X∗)⊗H(X ⊗ Y ⊗ (SPY )∗ ⊗X∗)⊗H(X ⊗ (SPX)∗)

(4) = H(SP (X ⊗ Y )⊗ Y ∗ ⊗X∗ ⊗X ⊗ Y ⊗ (SPY )∗ ⊗X∗ ⊗X ⊗ (SPX)∗)



29

(5) = H(SP (X ⊗ Y )⊗ (SPY )∗ ⊗ (SPX)∗)

In the same way, to construct the constraints aL, rL, lL one can make explicit the fact that
the map fs : G × G → A considered in the proof of Proposition 2.4 is a 2-cocycle, and
then follow step-by-step such a proof. We omit this part, as well as the straightforward
construction of an isomorphism Σ(GS, [LS, αS]) ' (H,H2, Hϕ).
The functor Σ is full. This is equivalent to prove that π0(Ker(Σ)) = 0 (Proposition 2.1 in
[34]). An object in Ker(Σ) is an object (G, [L, α]) in Ker(δP ) together with a morphism
µ : 0⇒ Σ(G, [L, α]) in Hom(N,A), that is, µ : 0⇒ G ·K(P ) is a monoidal and equivariant
natural transformation. To prove that [G, [L, α]] = 0, we need US : G → A in C1(G,A),
βS : G⇒ PC(US) in C1(E,A) and λS : L⇒ δG(US) in Z2(G,A, ϕ). We define

US : G S // E G // A

We construct βS in two steps. Consider first the following natural family of arrows depen-
ding on the object X ∈ G

I
G0 // GI

G(ηSX)// G(SX ⊗ (SX)∗) α // GSX ⊗ PSXG(S∗X)⊗ L∗(PSX, (PSX)∗)

id⊗ sXG(S∗X)⊗L∗(sX ,s∗X)

��
GSX ⊗ XG(S∗X)⊗ L∗(X,X∗)

with α is obtained in a canonical way from α. Tensoring with G∗SX, we get

bS(X) : G∗SX → XG(S∗X)⊗ L∗(X,X∗)

Fix now an object E ∈ E and consider the object (E ⊗ S∗PE, es : P (E ⊗ S∗PE)→ I) of
N already used to prove that Σ is essentially surjective. We can construct the following
natural family of arrows depending on E ∈ E

I
µ(E⊗S∗PE,es) // G(E ⊗ S∗PE) α̃ // GE ⊗ PEG(S∗PE)⊗ L∗(PE, (PSPE)∗)

id⊗L∗(id,s∗PE)

��
GE ⊗G∗SPE GE ⊗ PEG(S∗PE)⊗ L∗(PE, (PE)∗)

id⊗bS(PE)−1

oo

with α̃ obtained once again from α in a canonical way. Tensoring with GSPE we get

βS(E) : USPE = GSPE → GE

as required. It remains to construct

λS(X, Y ) : L(X, Y )→ XUSX ⊗ U∗S(X ⊗ Y )⊗ USX
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The argument is similar to the one used to prove that Σ is faithful, and we only sketch
it. Using βS and α, we construct

τE,F : L(PE, PF )
α−1
E,F // PEGF ⊗G∗(E ⊗ F )⊗GE

PEβS(F )⊗β∗S(E⊗F )⊗βS(E)
��

PEUSPF ⊗ U∗SP (E ⊗ F )⊗ USPE

Now we have to prove that τ is compatible with k(P ). This means that for every (N, n), (M,m) ∈
N, the following diagram must be commutative

L(PN,PM)

L(n,m)

��

τN,M // PNUSPM ⊗ U∗S(PN ⊗ PM)⊗ USPN
nUS(m)⊗U∗S(n⊗m)⊗US(n)

��
L(I, I) Ican

oo
can

// IUSI ⊗ U∗S(I ⊗ I)⊗ USI

If this is the case, then there exists a unique λS : L⇒ δG(U) such that λS◦(P×P ) = µ, and
we have done. Through a (quite intricate) diagram chasing, the commutativity of the above
diagram reduces to the fact that if E = K(P )(N, n), then the arrow es : P (E⊗S∗PE)→ I
is equal to

P (N ⊗ S∗PN)
P (id⊗S∗(n)) // P (N ⊗ I) ' PN

n // I

and this is easy to prove using the naturality of s and Lemma 3.2 applied to the arrow
n : PN → I.

Putting together Proposition 5.4 and Proposition 6.4, we get the following result.

Corollary 6.5 Let P : E → G be an essentially surjective homomorphism of categorical
groups and A a symmetric G-categorical group. There exist 2-exact sequences of symmetric
categorical groups

Der(G,A, ϕ) // Der(E,A, ϕ) // Hom(N,A) // H2(G,A, ϕ) // H2(E,A, ϕ) // Coker(δP )

H1(G,A, ϕ) // H1(E,A, ϕ) // Hom(N,A) // H2(G,A, ϕ) // H2(E,A, ϕ) // Coker(δP )

7. Categorical crossed modules

Categorical precrossed modules and categorical crossed modules have been introduced in
[13], and used in [10] as algebraic models for connected homotopy 3-types. In this section
we complete the definitions of [13] so to organize categorical (pre)crossed modules in a
2-category. We also add some results on the quotient categorical group associated with a
categorical crossed module.
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7.1 The 2-category of actions. Consider two actions

(ϕ : G× A→ A, ϕ0, ϕ1, ϕ2) and (ϕ′ : G′ × A′ → A′, ϕ′0, ϕ′1, ϕ′2)

in the sense of Subsection 3.5. A homomorphism of actions is a triple

(R,F, λ) : (G,A, ϕ)→ (G′,A′, ϕ′)

with R : G→ G′ and F : A→ A′ two homomorphisms in CG (with F in SCG if the actions
ϕ and ϕ′ are symmetric), and

λX,A : F (XA)→ RXFA

a natural family of arrows satisfying the following coherence conditions :

(act7) FA
F (ϕA0 )

//

ϕ′FA0

��

F ( IA)

λI,A

��
IFA R0FA

// RIFA

(act8) F (XA)⊗ F (XB)

λX,A⊗λX,B
��

F
XA,XB
2 // F (XA⊗ XB)

F (ϕX,A,B2 )
// F (X(A⊗B))

λX,A⊗B

��
RXFA⊗ RXFB

ϕ′RX,FA,FB2

// RX(FA⊗ FB)
RXFA,B2

// RXF (A⊗B)

(act9) RXF ( YA)

RXλY,A

��

F (X( YA))
λX,

YA
oo

F (ϕX,Y,A1 )
// F (X⊗YA)

λX⊗Y,A

��
RX( RYFA)

ϕ′RX,RY,FA1

// RX⊗RYFA
R
X,Y
2 FA

// R(X⊗Y )FA

It follows that λX,I · F (ϕX• ) · F0 = RXF0 · ϕ′RX• .
Given two homomorphisms of actions

(R,F, λ), (R′, F ′, λ′) : (G,A, ϕ)→ (G′,A′, ϕ′)

a morphisms of actions is a pair of morphisms

β : R⇒ R′ α : F ⇒ F ′

in CG such that the following diagram commutes

(act10) F · ϕ λ +3

α◦ϕ
��

ϕ′ · (R× F )

ϕ′◦(β×α)
��

F ′ · ϕ
λ′
+3 ϕ′ · (R′ × F ′)
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Actions with their homomorphisms and morphisms form a 2-category denoted ACT (or
SACT if we restrict to symmetric actions).
Observe that, if (R,F, λ) : (G,A, ϕ) → (G′,A′, ϕ′) is a homomorphism of actions with
A = A′ and F = IdA, then λ becomes a morphism in CG :

G′
ϕ′

##FFFFFFFF

⇑λ

G

R
??��������

ϕ
// Eq(A)

or G′
ϕ′

##GGGGGGGGG

⇑λ

G

R
??��������

ϕ
// Eqs(A)

7.2 The 2-category of categorical precrossed modules. A categorical precrossed
module is a 5-tuple

(G,A, ϕ : G→ Eq(A), T : A→ G, ν)

with (G,A, ϕ) an action, T : A→ G a homomorphism in CG, and

νX,A : T (XA)⊗X → X ⊗ TA

a natural family of arrows satisfying the following coherence conditions (see Definition 2.2
in [13]) :

(pcm1) νX⊗Y,A · (T (ϕX,Y,A1 )⊗ id) = (id⊗ νY,A ⊗ id) · (νX, YA ⊗ id)

(pcm2) (id⊗ TA,B2 ) · (νX,A ⊗ id) · (id⊗ νX,B) = νX,A⊗B · (T (ϕX,A,B2 )⊗ id) · (T
XA,XB

2 ⊗ id)

(pcm3) νI,A · T (ϕA0 ⊗ id) · T (lA) = lTA

It follows that νX,I · T (ϕX• ⊗ id) · (T0 ⊗ id) · lX = (id⊗ T0) · rX .
Given two categorical precrossed modules

(G,A, ϕ : G→ Eq(A), T : A→ G, ν) and (G′,A′, ϕ′ : G′ → Eq(A′), T ′ : A′ → G′, ν ′)

a homomorphism of categorical precrossed modules is a 4-tuple

(R,F, λ, τ) : (G,A, ϕ, T, ν)→ (G′,A′, ϕ′, T ′, ν ′)

with (R,F, λ) : (G,A, ϕ) → (G′,A′, ϕ′) a homomorphism in ACT , and τ : R · T ⇒ T ′ · F
a morphism in CG such that the following diagram commutes

(pcm4) R(T (XA)⊗X)
R(νX,A)

// R(X ⊗ TA)

(RX,TA2 )−1

��
RT (XA)⊗RX

R
T (XA),X
2

OO

τXA⊗id

��

RX ⊗RTA
id⊗τA
��

T ′F (XA)⊗RX

T ′(λX,A)⊗id ))SSSSSSSSSSSSSS
RX ⊗ T ′(FA)

ν′RX,FAuukkkkkkkkkkkkkk

T ′( RXFA)⊗RX
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Given two homomorphisms of categorical precrossed modules

(R,F, λ, τ), (R′, F ′, λ′, τ ′) : (G,A, ϕ, T, ν)→ (G′,A′, ϕ′, T ′, ν ′)

a morphism of categorical precrossed modules is a morphism

(β, α) : (R,F, λ)⇒ (R′, F ′, λ′)

in ACT such that the following diagram commutes

(pcm5) R · T τ +3

β◦T
��

T ′ · F
T ′◦α
��

R′ · T
τ ′
+3 T ′ · F ′

Categorical precrossed modules with their homomorphisms and morphisms form a 2-
category denoted CPCM (or SCPCM if we restrict to symmetric actions).

7.3 The 2-category of categorical crossed modules. A categorical crossed module
is a 6-tuple

(G,A, ϕ : G→ Eq(A), T : A→ G, ν, χ)

with (G,A, ϕ, T, ν) a categorical precrossed module, and

χA,B : TAB ⊗ A→ A⊗B

a natural family of arrows satisfying the following coherence conditions (see Definition 2.4
in [13]) :

(cm1) (id⊗ χB,C) · (χA, TBC ⊗ id) · ((ϕTA,TB,C1 )−1 ⊗ id) · ( T
A,B
2 C ⊗ id) = χA⊗B,C

(cm2) (χA,B ⊗ id) · (id⊗ χA,C) = χA,B⊗C · (ϕTA,B,C2 ⊗ id)

(cm3) XχA,B ·ϕX,
TAB,A

2 · (ϕX,TA,B1 ⊗ id)−1 · ( νX,AB⊗ id) · (ϕT (XA),X,B
1 ⊗ id) = ϕX,A,B2 ·χXA,XB

(cm4) TA,B2 · νTA,B = T (χA,B) · T
TAB,A

2

(cm5) χI,B · r TIB · T0B · ϕB0 = lB

It follows that χA,I · (ϕTA• ⊗ id) · lA = rA.
Given two categorical crossed modules

(G,A, ϕ : G→ Eq(A), T : A→ G, ν, χ) and (G′,A′, ϕ′ : G′ → Eq(A′), T ′ : A′ → G′, ν ′, χ′)

a homomorphism of categorical crossed modules is a homomorphism

(R,F, λ, τ) : (G,A, ϕ, T, ν)→ (G′,A′, ϕ′, T ′, ν ′)

in CPCM such that the following diagram commutes
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(cm6) F ( TAB ⊗ A)
F (χA,B)

// F (A⊗B)

F ( TAB)⊗ FA

F
TAB,A
2

OO

FA⊗ FB

FA,B2

OO

RTAFB ⊗ FA

λTA,B⊗id

OO

τAFB⊗id

// T ′EAFB ⊗ FA

χ′FA,FB

OO

Finally, morphisms of categorical crossed modules are the same as morphisms of catego-
rical precrossed modules.
Categorical crossed modules with their homomorphisms and morphisms form a 2-category
denoted CCM (or SCCM if we restrict to symmetric actions).

7.4 The quotient categorical group. Let us recall from [13] that, given a catego-
rical crossed module (ϕ : G → Eq(A), T : A → G, ν, χ), we can construct the quotient
categorical group

G
C(T )

!!CCCCCCCC

⇓c(T )

A

T

??��������

0
// G/T

Its construction is the same as for the cokernel of a homomorphism in SCG, see Subsection
3.8, the only difference is the tensor product of arrows : given two arrows [A, f ] : X ◦ // Y
and [B, g] : H ◦ // K , their tensor product is given by the class of the prearrow with
object part A⊗ YB and arrow part

X ⊗H f⊗g // TA⊗ Y ⊗ TB ⊗K
id⊗ν−1

Y,B⊗id
// TA⊗ T ( YB)⊗ Y ⊗K ' T (A⊗ YB)⊗ Y ⊗K

Here is the universal property (in the bilimit style) of the quotient categorical group :
given a diagram in CG

G
G

��@@@@@@@

⇓δ

A

T
??~~~~~~~

0
// H

if the following diagram commutes

(qcg1) GX ⊗GTA
id⊗δA

��

GX,TA2 // G(X ⊗ TA) G(T (XA)⊗X)
G(νX,A)

oo

GX ⊗ I can
// I ⊗GX GT (XA)⊗GX

δXA⊗id
oo

G
T (XA),X
2

OO
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then there exists
G/T

G′

!!CCCCCCCC

⇓δ′

G

C(T )
=={{{{{{{{

G
// H

in CG such that the following diagram commutes

(qcg2) G′ · C(T ) · T δ′◦T +3

G′◦c(T )

��

G · T
δ

��
G′ · 0 0can

ks

Moreover, the pair (G′, δ′) is essentially unique.
Conversely, given a pair (G′, δ′) as above, condition (qcg2) defines a morphism δ : G·T ⇒ 0
in CG satisfying condition (qcg1).

As a consequence of its universal property, the quotient categorical group satisfies the
following cancellation property.

Lemma 7.5 Let (ϕ : G → Eq(A), T : A → G, ν, χ) be in CCM, and consider a diagram
in CG

G
C(T ) //

C(T )

��

G/T

H

��
G/T

K
//

⇓β

H

such that the following diagram commutes

(qcg3) H · C(T ) · P H◦c(T ) +3

β◦T
��

H · 0KS
can

��
K · C(T ) · T

K◦c(T )
+3 K · 0

There exists a unique morphism α : H ⇒ K such that α ◦ C(T ) = β.

Here is how homomorphisms of categorical crossed modules extend to the quotient cate-
gorical groups.

Lemma 7.6 Consider a homomorphism in CCM

(R,F, λ, τ) : (ϕ : G→ Eq(A), T : A→ G, ν, χ)→ (ϕ′ : G→ Eq(A′), T ′ : A′ → G′, ν ′, χ′)

There exists a diagram in CG

G
C(T ) //

R

��

G/T

R̃
��

G′
C(T ′)

//

⇓τ̃

G′/T ′
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such that the following diagram commutes

(qcg4) R̃ · C(T ) · T
R̃◦c(T )

��

τ̃◦T +3 C(T ′) ·R · T C(T ′)◦τ +3 C(T ′) · T ′ · F

c(T ′)◦F
��

R̃ · 0 ks can
+3 0 · F

Proof. Define

δ : C(T ′) ·R · T C(T ′)◦τ +3 C(T ′) · T ′ · F c(T ′)◦F +3 0 · F can +3 0

Check condition (qcg1) on δ using condition (pcm4) on τ, and apply the universal property
of G/T. Condition (qcg4) is now a special case of condition (qcg2).

Remark 7.7 To complete Lemma 7.6, consider a morphism in CCM

(β, α) : (R,F, λ, τ)⇒ (R′, F ′, λ′, τ ′) : (G,A, ϕ, T, ν, χ)→ (G′,A′, ϕ′, T ′, ν ′, χ′)

There exists a unique morphism β̃ : R̃⇒ R̃′ such that the following diagram commutes

(qcg5) R̃ · C(T )
τ̃ +3

β̃◦C(T )
��

C(T ′) ·R

C(T ′)◦β
��

R̃′
τ̃ ′

+3 C(T ′) ·R′

We adopt the following terminology, introduced in [13].

Definition 7.8 Let G be a categorical group. A normal sub-categorical group of G is a
categorical crossed module (G,A, ϕ : G→ Eq(A), T : A→ G, ν, χ) with T faithful.

From Example 2.6.v in [13], we know that the kernel of a homomorphism F : G → H
in CG has a canonical structure of normal sub-categorical group. Moreover, condition
(qcg1) is verified if we take δ = k(F ). Here is the relation between kernels and quotients
(Propositions 3.6 and 3.8 in [13]).

Proposition 7.9

1. Let (ϕ : G → Eq(A), T : A → G, ν, χ) be in CCM and consider the factorization
through the kernel as in the following diagram

A T //

T ′ $$IIIIIIIIII G
C(T ) // G/T

Ker(C(T ))

K(C(T ))

OO
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(a) T ′ is a full and essentially surjective homomorphism of G-categorical crossed
modules ;

(b) if T is faithful, then A and Ker(C(T )) are equivalent normal sub-categorical
groups of G.

2. Let F : G → H be in CG and consider the factorization through the quotient as in
the following diagram

Ker(F )
K(F ) // G
C(K(F ))

��

F // H

G/K(F )
F ′

;;wwwwwwwwww

(a) F ′ is full and faithful ;

(b) in particular, F is a quotient (i.e., F ′ is an equivalence) iff F is essentially
surjective.

To end this section, we point out a simple but relevant situation (see Remark 8.5) where
the universal property of the quotient categorical group holds.

Lemma 7.10 Let (ϕ : G→ Eqs(A), T : A→ G, ν, χ) be in SCCM. The morphism in CG

G
ϕ

##GGGGGGGGG

⇓δ

A

T

??��������

0
// Eqs(A)

with δA,B : TAB → B defined by

TAB ' TAB ⊗ A⊗ A∗
χA,B⊗id

// A⊗B ⊗ A∗
cA,B⊗id

// B ⊗ A⊗ A∗ ' B

satisfies condition (qcg1).

Proof. This follows from conditions (act6) in Subsection 3.5 and (cm3) in Subsection
7.3.

8. Extensions with symmetric kernel

Definition 8.1 Let A and G be categorical groups, with A symmetric. An extension of
G by A is a 6-tuple

(B, ψ : B→ Eqs(A), T : A→ B, ν, χ, S)

where (B,A, ψ, T, ν, χ) is an object in SCCM with T faithful (that is, A is a symmetric
normal sub-categorical group of B), and S : B/T → G is an equivalence in CG.
When ψ, ν and χ are understood, we denote an extension of G by A by

A T // B
C(T ) // B/T S // G
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A homomorphism of extensions is a 4-tuple

(R, λ, τ,m) : (B,A, ψ, T, ν, χ, S)→ (B′,A, ψ′, T ′, ν ′, χ′, S ′)

where m : S ⇒ S ′ · R̃ is a morphism in CG (with R̃ induced by λ and τ as in Lemma 7.6),
and (R, IdA, λ, τ) : (B,A, ψ, T, ν, χ)→ (B′,A, ψ′, T ′, ν ′, χ′, ) is a homomorphism in SCCM

B

R

��

ψ

""FFFFFFFFF
C(T ) // B/T

R̃

��

S

!!CCCCCCCCC

A

T

@@��������

T ′ ��======== ⇓τ Eqs(A)⇓λ G⇓m

B′
ψ′

<<xxxxxxxxx

C(T ′)
// B′/T ′

S′

=={{{{{{{{{

A morphism of extensions

β : (R, λ, τ,m)⇒ (R′, λ′, τ ′,m′) : (B,A, ψ, T, ν, χ, S)→ (B′,A, ψ′, T ′, ν ′, χ′, S ′)

is a morphism (β, id) : (R, IdA, λ, τ) ⇒ (R′, IdA, λ
′, τ ′) in SCCM such that the following

diagram commutes

(ext1) S ′ · R̃
S′◦β̃ +3 S ′ · R̃′

S

m

^f DDDDDDDD

DDDDDDDD m′

8@yyyyyyyy

yyyyyyyy

where β̃ is obtained by β as in Remark 7.7.
Extensions of G by A with their homomorphisms and morphisms form a 2-category de-
noted Ext(G,A).

Remark 8.2 Because of Proposition 7.9, in any extension of G by A the symmetric
categorical group A is equivalent, as a normal sub-categorical group, to the kernel of
S · C(T ) : B→ B/T → G.

Remark 8.3 Using Lemma 7.5, in the definition of homomorphism of extensions we can
replace the morphism m : S ⇒ S ′ · R̃ by a morphism

B
C(T ) //

R

��

B/T
S

""EEEEEEEE

⇓µ G

B′
C(T ′)

// B′/T ′
S′

<<yyyyyyyy

such that the following diagram commutes
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(ext2) S · C(T ) · T µ◦T +3

S◦c(T )

��

S ′ · C(T ′) ·R · T S′·C(T ′)◦τ +3 S ′ · C(T ′) · T ′

S′◦c(T )

��
S · 0 ks can

+3 S ′ · 0
In this case, condition (ext1) for a morphism of extensions is to be written as

(ext1’) S ′ · C(T ′) ·R S′·C(T ′)◦β +3 S ′ · C(T ′) ·R′

S · C(T )

µ

ck OOOOOOOOOOO

OOOOOOOOOOO µ′

3;ooooooooooo

ooooooooooo

Remark 8.4 In fact, the 2-category Ext(G,A) is a 2-groupoid, that is, any morhism is
invertible and any homomorphism is an equivalence. The proof of this fact follows the same
lines of the proof of Proposition 2.8 in [6], just replace the cokernel of a homomorphism
in SCG used in [6] by the quotient categorical group (see also Proposition 10.3 in [30]).

Remark 8.5 Consider an extension of G by A

A T // B
C(T ) // B/T S // G

Since A is symmetric, we get a symmetric action of G on A as follows

G S−1
// B/T ψ̃ // Eqs(A)

where (ψ̃, δ̃) is the factorization through the quotient

A T //

0 ""EEEEEEEEE B
C(T ) //

ψ
��

B/T

ψ̃zzvvvvvvvvv⇓δ

Eqs(A)

⇓δ̃

the morphism δ : ψ ·T ⇒ 0 is as in Lemma 7.10, and S−1 is the essentially unique adjoint
quasi-inverse of S. We recall ψ̃ · S−1 : G→ Eqs(A) as the action of G on A induced by a
given extension of G by A.
The next proposition allows us to use the action induced by an extension as a parameter
to classify the extensions with symmetric kernel.

Proposition 8.6 Consider a homomorphism of extensions as in Definition 8.1

B

R

��

ψ

""FFFFFFFFF
C(T ) // B/T

R̃

��

S

!!CCCCCCCCC

A

T

@@��������

T ′ ��======== ⇓τ Eqs(A)⇓λ G⇓m

B′
ψ′

<<xxxxxxxxx

C(T ′)
// B′/T ′

S′

=={{{{{{{{{
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The actions of G on A induced by the two extensions are equivalent.

This statement means that there exists an equivalence of the form

(Id, Id,') : (G,A, ψ̃ · S−1)→ (G,A, ψ̃′ · S ′−1)

in the 2-category SACT of symmetric actions described in Subsection 7.1.
To help reading the proof, let us resume the whole situation in the following diagram

Eqs(A)

B
C(T )

//

R

��

ψ

OO

⇐δ

⇐δ̃

B/T

R̃

��

S

""EEEEEEEE

ψ̃pp

A

0

66

0

((

T

;;wwwwwwwwww

T ′ ##GGGGGGGGGG ⇓τ ⇓τ̃ ⇓m G

B′
C(T ′) //

ψ′

��

⇐δ′

⇐δ̃′

B′/T ′
S′

<<yyyyyyyy

ψ̃′
nnEqs(A)

Proof. The proof essentially consists in finding a morphism λ̃ to fill-in the following
diagram in CG

G
⇒m

B/T R̃ //

ψ̃ $$HHHHHHHHH

S

::uuuuuuuuuu
B′/T ′

ψ̃′zzuuuuuuuuu

S′
eeJJJJJJJJJJ

Eqs(A)

⇒λ̃

We start constructing the following morphism

ψ̃′ · R̃ · C(T )
ψ̃′◦τ̃ +3 ψ̃′ · C(T ′) ·R δ̃′◦R +3 ψ′ ·R ψ

λks ψ̃ · C(T )
δ̃ks

In order to use the cancellation property of the quotient (Lemma 7.5), we have to check

condition (qcg3). Using condition (qcg2) on δ̃ and on δ̃′ and condition (qcg4) on τ̃ , condi-
tion (qcg3) reduces to the commutativity of

ψ′ · T ′

δ′

��

ψ′ ·R · Tψ′◦τks

λ◦T
��

0 ψ · T
δ

ks
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Finally, using the description of δ and δ′ given in Lemma 7.10, the commutativity of the
previous diagram amounts to condition (cm6).

In the next definition we specialize extensions (Definition 8.1) to get ϕ-extensions for ϕ a
fixed symmetric action.

Definition 8.7 Let ϕ : G→ Eqs(A) be a symmetric action. A ϕ-extension of G by A is
a 7-tuple

(B, ψ : B→ Eqs(A), T : A→ B, ν, χ, S, s)

where

A T // B
C(T ) // B/T S // G

is an extension of G by A, and

G
ϕ

##GGGGGGGGG

⇓s

B/T

S

=={{{{{{{{

ψ̃

// Eqs(A)

is a morphism in CG (ψ̃ is as in Remark 8.5).
A homomorphism of ϕ-extensions

(R, λ, τ,m) : (B,A, ψ, T, ν, χ, S, s)→ (B′,A, ψ′, T ′, ν ′, χ′, S ′, s′)

is a homomorphism of extensions (R, λ, τ,m) such that the following diagram commutes

(ϕext1) ψ̃ · S λ̃◦S +3

s

��

ψ̃′ ·R · S

ψ̃′◦m
��

ϕ ψ̃′ · S ′
s′

ks

A morphism of ϕ-extensions

β : (R, λ, τ,m)⇒ (R′, λ′, τ ′,m′) : (B,A, ψ, T, ν, χ, S, s)→ (B′,A, ψ′, T ′, ν ′, χ′, S ′, s′)

is just a morphism of extensions.
ϕ-Extensions of G by A with their homomorphisms and morphisms form a 2-groupoid
denoted Opext(ϕ,G,A).

Remark 8.8 Using Lemma 7.5 once again, we can reformulate Definition 8.7 as follows :
a ϕ-extension of G by A is a 7-tuple

(B, ψ : B→ Eqs(A), T : A→ B, ν, χ, S, σ)

where

A T // B
C(T ) // B/T S // G
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is an extension of G by A, and

Eqs(A)

⇐σ

G
ϕoo

B

ψ

OO

C(T )
// B/T

S

OO

is a morphism in CG such that the following diagram commutes

(ϕext2) ϕ · S · C(T ) · T σ◦T +3

ϕ·S◦c(T )

��

ψ · T
δ

��
ϕ · S · 0 0can

ks

A homomorphism of ϕ-extensions

(R, λ, τ, µ) : (B,A, ψ, T, ν, χ, S, σ)→ (B′,A, ψ′, T ′, ν ′, χ′, S ′, σ′)

is a homomorphism of extensions (R, λ, τ, µ) as in Remark 8.3, such that the following
diagram commutes

(ϕext1’) ϕ · S · C(T )OO ϕ◦µ +3//

σ

��

ϕ · S ′ · C(T ′) ·R��

σ′◦R
��

ψ��
λ

+3 ψ′ ·R

Finally, a morphism of ϕ-extensions

β : (R, λ, τ, µ)⇒ (R′, λ′, τ ′, µ′) : (B,A, ψ, T, ν, χ, S, σ)→ (B′,A, ψ′, T ′, ν ′, χ′, S ′, σ′)

is just a morphism of extensions as in Remark 8.3.

9. Classification of extensions with symmetric kernel

In Subsection 3.8 we have described the cokernel Coker(T ) of a morphism T : G → H
in SCG as a categorical group. In fact, Coker(T ) is obtained from a monoidal bicategory
(that, by abuse of notation, we still denote Coker(T )) by taking 2-isomorphism classes
of 1-arrows as arrows. Explicitly, the objects of Coker(T ) are those of H, a 1-arrow from
A to B is a pair (X ∈ G, f : A → TX ⊗ B), and a 2-arrow from (X, f : A → TX ⊗ B)
to (X ′, f ′ : A → TX ′ ⊗ B) is an arrow x : X → X ′ in G such that (T (x) ⊗ id) · f = f ′.
(The fact that Coker(T ) is a monoidal bicategory is mentioned in the introduction of [34],
and the whole proof has been done in [24]. The same argument can be developed for the
quotient categorical group associated with a categorical crossed module.)
In order to compare H2(G,A, ϕ) with Opext(ϕ,G,A), in the next proposition we look at
H2(G,A, ϕ) as a monoidal bicategory.
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Proposition 9.1 Let G be a categorical group and ϕ : G→ Eqs(A) a symmetric action.
There exists a homomorphism of bicategories

E : H2(G,A, ϕ)→ Opext(ϕ,G,A)

which is locally an equivalence.

Proof. We split the proof in four steps.
Step 1. We construct a 2-functor

E : Z2(G,A, ϕ)→ Opext(ϕ,G,A)

where Z2(G,A, ϕ) is seen as a 2-category with only identity 2-arrows.
Let F : G×G→ A be a factor set and consider the categorical group A×F G described
in Remark 4.3, together with the canonical injection and the canonical projection

A
iA // A×F G pG // G

Since iA : A → A ×F G is equivalent to the kernel of pG, we get a canonical structure of
normal sub-categorical group on iA : A → A ×F G. In particular, the symmetric action
ψ : A×F G→ Eqs(A) is given by

(A,X)B = pA((A,X)⊗F (B, I)⊗F (A,X)∗)

Moreover, since pG is surjective on objects, by Proposition 7.9 we get a monoidal equi-
valence S : (A×F G)/iA → G such that S · C(iA) = pG. In this way, we get an extension
E(F ) of G by A

A
iA // A×F G

C(iA) // (A×F G)/iA
S // G

which in fact is a ϕ-extension because there is an obvious morphism σ : ϕ · pG ⇒ ψ in CG
obtained using ϕ2, ϕ1 and the symmetry of A.
Let now α : F ⇒ F ′ : G×G→ A be a morphism of factor sets. We get a homomorphism
of extensions E(α) : E(F )⇒ E(F ′) as follows

A×F G

Id

��

pG

##HHHHHHHHHH A×F G

Id

��

ψ

&&LLLLLLLLLL

A

iA
;;wwwwwwwwww

iA ##GGGGGGGGGG G ⇓λ Eqs(A)

A×F ′ G
pG

;;wwwwwwwwww
A×F ′ G

ψ′

88rrrrrrrrrr

where λ is given by λ(A,X),B = id⊗ X(id⊗ X∗α∗X,X∗)⊗ αX,X∗ and Id: A×F G→ A×F ′ G
is the identity functor with monoidal structure given by

(A,X)⊗F (B, Y )
(id⊗αX,Y ,id)

// (A,X)⊗F ′ (B, Y )
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In order to check that E(α) is a homomorphism in Opext(ϕ,G,A), one has to apply
Lemma 3.2 to the arrow αX,X∗ : F (X,X∗)→ F ′(X,X∗).
Step 2. We construct now a 2-natural transformation

Z2(G,A, ϕ)
E

((QQQQQQQQQQQQQ

⇓Φ

C1(G,A)
0

//

δ
77ppppppppppp

Opext(ϕ,G,A)

Let G : G→ A be a cobord. We get a homomorphism of extensions as follows

A×δG G

ΦG

��

pG

##HHHHHHHHHH A×δG G

ΦG

��

ψ

&&LLLLLLLLLL

A

iA
;;vvvvvvvvvv

iA ##GGGGGGGGGG ⇓τ G ⇓λ Eqs(A)

A×ϕ G
pG

;;wwwwwwwwww
A×ϕ G

ψ′

99rrrrrrrrrr

where A ×ϕ G is constructed by taking F = 0 in Remark 4.3, and the symmetric action
ψ′ : A ×ϕ G → Eqs(A) is constructed as the action ψ in Step 1, but taking once again
F = 0; explicitly :

(A,X)B = A⊗ XB ⊗ A∗ can // XB

The functor ΦG is defined on arrows by

(f, h) : (A,X)→ (B, Y ) 7→ (f ⊗G(h), h) : (A⊗GX,X)→ (B ⊗GY, Y )

and its monoidal structure is obtained using ϕ2, ϕ1 and the symmetry of A. Finally, the
morphism τ : ΦG · iA ⇒ iA is defined by

ΦG(iA(A))
(id⊗G−1

0 ,id)
// (A⊗ I, I) ' iA(A)

and the morphism λ : ψ ⇒ ψ′ · ΦG is the opposite of the morphism σ used in Step 1.
Step 3. Now we extend the 2-functor E : Z2(G,A, ϕ) → Opext(ϕ,G,A), constructed in
Step 1, to a homomorphism of bicategories

E : H2(G,A, ϕ)→ Opext(ϕ,G,A)

(we limit ourselves to define E on objects, 1-arrows and 2-arrows ; to check that E is indeed
a homomorphism of bicategories is long but essentially straightforward). On objects, E
is defined as E . Consider now a 1-arrow in H2(G,A, ϕ), that is, a pair (G,α) with G in
C1(G,A) and α : F⊗δG⇒ F ′ in Z2(G,A, ϕ); the homomorphism E(G,α) : E(F )⇒ E(F ′)
factors through E(F ⊗ δG) and is described in the following diagram, where ΦG and τ are
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as in Step 2, and Id is the identity functor with monoidal structure determined by α as
in Step 1.

⇑τ

A×F G pG

��
A

iA 11

iA //

iA --

A×F⊗δG G pG //

ΦG

OO

Id
��

G

A×F ′ G pG

JJ

Consider now a 2-arrow β : (G,α)⇒ (G′, α′) in H2(G,A, ϕ), that is, a morphism β : G⇒
G′ in C1(G,A) such that

F ⊗ δG
F⊗δ(β) +3

α
 (HHHHHHHHH

HHHHHHHHH F ⊗ δG′

α′v~ uuuuuuuuu

uuuuuuuuu

F ′

commutes ; the morphism E(β) is described in the diagram

A×F G
β⇒

A×F⊗δG G

ΦG
77ooooooooooo

Id
//

Id ''OOOOOOOOOOO
A×F⊗δG′ G

ΦG′
ggOOOOOOOOOOO

A×F ′ G
Id

77ooooooooooo

where βA,X = (id⊗βX , id) : (A⊗GX,X)→ (A⊗G′X,X), and the monoidal structure on
the identity functor Id is determined by F ⊗ δ(β) as in Step 1. Finally, the fact that the
identity natural transformation in the bottom triangle is monoidal is precisely condition
α′ · (F ⊗ δ(β)) = α above, and the fact that the natural transformation β is monoidal
follows from Lemma 3.2 applied to the arrow βX⊗Y : G(X ⊗ Y )→ G′(X ⊗ Y ).

Step 4. Finally, we prove that the homomorphism E : H2(G,A, ϕ) → Opext(ϕ,G,A),
constructed in Step 3, is locally an equivalence.
E is locally faithful : if β, β′ : G⇒ G′ are such that E(β) = E(β′), then for all A ∈ A and
X ∈ G we have

id⊗ βX = id⊗ β′X : A⊗GX → A⊗G′X

and taking A = I we get βX = β′X .
E is locally full : let (G,α), (G′, α′) : F → F ′ be 1-arrows in H2(G,A, ϕ) and consider a 2-
arrow β : E(G,α)⇒ E(G′, α′) in Opext(ϕ,G,A). Explicitly, β is a natural transformation

βA,X : ΦG(A,X) = (A⊗GX,X)→ (A⊗G′X,X) = ΦG′(A,X)
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and so it has two components

β1(A,X) : A⊗GX → A⊗G′X , β2(A,X) : X → X

We define βX : GX → G′X as follows :

GX ' I ⊗GX
β1(I,X) // I ⊗G′X ' G′X

In this way, condition (pcm5) on β gives condition (cob1) on β, that is, β : G ⇒ G′ is a
morphism in C1(G,A), and the monoidal character of β gives condition α′ ·(F ⊗δ(β)) = α
on β, so that β : (G,α)⇒ (G′, α′) is a 2-arrow in H2(G,A, ϕ). Moreover, condition (act10)
on β gives that

β1(A,X) = id⊗ βX : A⊗GX → A⊗G′X

and condition (ext1’) on β gives that

β2(A,X) = id: X → X

so that E(β) = β.
E is locally essentially surjective : consider two cocycles F, F ′ : G×G → A and a homo-
morphism (R, τ, µ) : E(F ′)→ E(F ) in Opext(ϕ,G,A)

A×F G
pG

$$IIIIIIIII

A

iA
::vvvvvvvvvv

iA $$HHHHHHHHHH ⇓τ G⇑µ

A×F ′ G

R

OO

pG

::uuuuuuuuu

We are going to construct G in C1(G,A), α : F ⊗δG⇒ F ′ in Z2(G,A, ϕ) and β : ΦG ⇒ R
in Opext(ϕ,G,A). Let us write

R(A,X) = (R1(A,X), R2(A,X))

for the two components of R, and

τA = (τ 1(A), τ 2(A)) : (A, I)→ (R1(A, I), R2(A, I))

for the two components of τ, and observe that

µA,I = τ 2(A) : I → R2(A, I)

because of condition (ext2). Now we put

G = R1(I,−) : G→ A
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As far as the natural transformation β is concerned, it is of the form

βA,X = (β1(A,X), β2(A,X)) : ΦG(A,X) = (A⊗GX,X)→ (R1(A,X), R2(A,X))

and we put
β2(A,X) = µA,X : X → R2(A,X)

To construct the first component β1(A,X), observe that for any cocycle F one has
(A, I) ⊗F (I,X) ' (A,X), so that the monoidal structure of R provides a natural fa-
mily of arrows RA,X

2 with two components of the form

(ρ1(A,X), ρ2(A,X)) : (R1(A, I)⊗R1(I,X), R2(A, I)⊗R2(I,X))→ (R1(A,X), R2(A,X))

and we put

β1(A,X) : A⊗R1(I,X)
τ1(A)⊗id // R1(A, I)⊗R1(I,X)

ρ1(A,X) // R1(A,X)

To construct the natural transformation α, consider the following arrow, where we use
µI,X , µI,Y and the definition of ⊗F in the first step, the monoidal structure of R in the
second step, and ϕX• and the definition of ⊗F ′ in the third step

(R1(I,X)⊗ XR1(I, Y )⊗ F (X, Y ), R2(I,X)⊗R2(I, Y ))

��
(R1(I,X), R2(I,X))⊗F (R1(I, Y ), R2(I, Y ))

��
R((I,X)⊗F (I, Y ))

��
(R1(F ′(X, Y ), X ⊗ Y ), R2(F ′(X, Y ), X ⊗ Y ))

Composing the first component of such arrow with

β1(F ′(X, Y ), X ⊗ Y )−1 : R1(F ′(X, Y ), X ⊗ Y )→ F ′(X, Y )⊗R1(I,X ⊗ Y )

we get an arrow

GX ⊗ XGY ⊗ F (X, Y )→ F ′(X, Y )⊗G(X ⊗ Y )

and then, using symmetry and inverses in A, the needed arrow

αX,Y : F (X, Y )⊗ XGY ⊗G∗(X ⊗ Y )⊗GX → F ′(X, Y )

This concludes the proof of Proposition 9.1.
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Remark 9.2 For any cocycle F : G×G→ A, the ϕ-extension

E(F ) : A
iA // A×F G pG // G

described in Step 1 of the proof of Proposition 9.1, has a functorial section given by the
canonical injection iG : G→ A×F G (note that iG is not monoidal, unless F = 0).
We will say that an extension

A T // B
C(T ) // B/T S // G

has a functorial section if there exists a (non necessarily monoidal) functor U : G → B
and a natural transformation

B
S·C(T )

��???????

⇓u

G
Id

//

U
??�������

G

and we will denote by OpextFS(ϕ,G,A) the full and 2-full sub-2-category of Opext(ϕ,G,A)
of those ϕ-extensions which have a functorial section.

Theorem 9.3 Let G be a categorical group and ϕ : G→ Eqs(A) a symmetric action. The
corestriction

E : H2(G,A, ϕ)→ OpextFS(ϕ,G,A)

of the homomorphism of bicategories E : H2(G,A, ϕ) → Opext(ϕ,G,A) of Proposition
9.1, is a biequivalence.

Proof. We have to prove that E is essentially surjective on objects, that is, surjective up
to equivalence. Let

Eqs(A)

⇐σ

G
ϕoo

A
T

// B

ψ

OO

C(T )
// B/T

S

OO

be a ϕ-extension with functorial section. Up to the equivalences G ' B/T and A '
Ker(C(T )), we can describe a cocycle F : B/T × B/T → Ker(C(T )) using a section

B
C(T )

!!CCCCCCCC

⇓u

B/T

U

=={{{{{{{{

Id
// B/T

The functor F is defined by

F (X, Y ) = (UX ⊗ UY ⊗ U∗(X ⊗ Y ), uX ⊗ uY ⊗ u∗X⊗Y )
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Let us look for example to its associator

aX,Y,ZF : F (X, Y )⊗ F (X ⊗ Y, Z)→ XF (Y, Z)⊗ F (X, Y ⊗ Z)

It is given by the following arrow, where the first step is canonical (use the explicit defini-
tion of F ) and the second step comes from the fact that the equivalence A ' Ker(C(T ))
is equivariant (first part of Proposition 7.9)

F (X, Y )⊗ F (X ⊗ Y, Z)

��
UX ⊗ F (Y, Z)⊗ U∗X ⊗ F (X, Y ⊗ Z)

��
XF (Y, Z)⊗ F (X, Y ⊗ Z)

( σ(X)F (Y,Z))−1⊗id
��

XF (Y, Z)⊗ F (X, Y ⊗ Z)

Finally, the needed arrow in OpextFS(ϕ,G,A) is given by

A T //

'
��

' can

B
C(T ) //

R
��

B/T

Ker(C(T ))
iKer(C(T ))

// Ker(C(T ))×F B/T
pB/T

66nnnnnnnnnnnnn

with

RX = ((X ⊗ U∗X, X ⊗ U∗X
id⊗u∗X // X ⊗X∗ ' I ), X)

The previous theorem allows us to define the Baer sum of extensions with symmetric kernel
and functorial section. More precisely, if we denote by OpextFS(ϕ,G,A) the groupoid ob-
tained from OpextFS(ϕ,G,A) taking as arrows 2-equivalence classes of homomorphisms,
we get the following corollary.

Corollary 9.4 Let G be a categorical group and ϕ : G → Eqs(A) a symmetric action.
The biequivalence

E : H2(G,A, ϕ)→ OpextFS(ϕ,G,A)

induces a structure of symmetric categorical group on the groupoid OpextFS(ϕ,G,A).
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