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This paper is a contribution, for a particular aspect, to the problem of how
the study of topology through locales is similar to linear algebra.

Our starting-point is that if (X,O(X)) is a space with its topology, what
counts is the locale of opens O(X), from which it is possible to rediscover the
space X through the morphisms of locales O(X) - 2 under the condition
that the space X is sober; such condition is not a restriction in this context
essentially because the categories of sheaves on a space and on its soberification
are equivalent categories (see [1]).

So it is necessary to study the notion of sheaf on a locale L and it has been
proved that

Sup-lattices (Sh(L)) ' Mod(L)

where Sh(L) is the category of sheaves on a locale L and Mod(L) is the category
of modules on L (see [2]).

We can therefore wonder what we can say about two locales if we know that
they have equivalent categories of modules.

Remembering that a locale is a particular commutative idempotent monoid
in the category of sup-lattices, the right approach to such problem is, as in linear
algebra, to consider monoids in general.

We will show that results inspired from the deepest theorems in classical
Morita theory (see [3]) can be proved if we replace the category of Abelian
groups with the category S of sup-lattices.

Let’s look at this category:
a sup-lattice is a partially ordered set with arbitrary suprema; a morphism

between sup-lattices is a sup-preserving function; the hom-set S(M,N) is a sup-
lattice with the point-wise order; S is a symmetric monoidal closed category
with the tensor product given by the codomain of the universal bimorphism

M ×N -M ⊗N

and with the hom as right adjoint to the tensor

M ⊗− a S(M,−);

so we can define what is a monoid in S with the corresponding categories of
modules and bimodules: for example a monoid in S is a triple (A,mA, eA)
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where A is a sup-lattice, A⊗A mA-A and 2 eA-A are sup-lattice morphisms
for which the usual equations hold (2 is the sup-lattice {0, 1} with 0 ≤ 1);
analogously for the notions of module, bimodule and relative morphisms; we
write A−mod for the category of left modules over the monoid A, and so on.

Furthermore, given three monoids A,B and C and two bimodules

A M-B and B N-C,

S is rich enough to define the bimodule

M⊗BN ∈ A−mod− C

(M⊗BN is exactly the coequalizer M ⊗ B ⊗N -
-

M ⊗N -M⊗BN) and
such a tensor is biclosed

M⊗B− a A−mod(M,−) −⊗BN a mod− C(N,−)

(for details we refer to the first two chapters of [2] where the monoids are always
commutative; it is not difficult the extension to the non-commutative case).

The problem is: given two Morita equivalent monoids A and B, that is two
monoids such that mod − A and mod − B are equivalent categories, what can
we say about A and B?

The first thing to do is the study of the functors

t : mod−A -mod−B

under the condition that the functions between the hom-sets

tX,Y : mod−A(X, Y ) -mod−B(tX, tY )

are sup-lattice functions (because of the good isomorphism between arbitrary
products and coproducts holding in S, this condition is guaranteed if the functor
preserves products or coproducts; such isomorphism will be explicited in the
following).

For such functors, tA has also an A-module structure given by

tA,A : mod−A(A,A) -mod−B(tA, tA)

which, via the closure of the tensor and the monoid-isomorphism

A ' mod−A(A,A)

gives rise to an action
A⊗ tA - tA.

What allows us to classify functors between categories of modules is the
following lemma:

Lemma: A is a cogenerator for mod − A, more exactly for every M in
mod − A, M is the coker of a pair of arrows between modules like

∐
IA (the

coproduct of A’s copies indexed over an arbitrary set I).
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Proof: It follows from the fact (proved in [2]) that every M ∈ mod − A is
a quotient of a free module, that is there exists an epimophism∐

I
A -M,

and that every epimorphism is surjective.

Now it is clear that a colimit-preserving functor

t : mod−A -mod−B

must be completely determined by tA; in fact

t ' −⊗AtA.

Proof: We need a natural isomorphism

F : −⊗AtA - t;

FM : M⊗AtA - tM

is given, via the isomorphism

M ' mod−A(A,M),

by
mod−A(A,M)⊗AtA - tM

that is the trasformed of

tA,M : mod−A(A,M) - mod−B(tA, tM)

in the adjunction
−⊗AtA a mod−B(tA,−);

such F : −⊗AtA - t is natural because it is built with natural steps; now
using the fact that both the functors are colimit-preserving, we prove that it is
an isomorphism:

1) FA : A⊗AtA - tA is the canonical isomorphism,

2) for a free module
∐

IA it follows from the commutativity of the diagram

(
∐

IA)⊗AtA -
F‘

IA
t(

∐
IA)

' '

∐
I(A⊗AtA) -∐

IFA

∐
I(tA)
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3) if M is an arbitrary module, for the Lemma we can write M as a coker∐
J
A -

-∐
I
A -M

then

(
∐

JA)⊗AtA -
- (

∐
IA)⊗AtA -M⊗AtA

F‘
JA

?

F‘
IA

? ?

FM

t(
∐

JA) -
-

t(
∐

IA) - tM

and, as the naturality of F makes these diagrams commutative, we have
finished our proof.

Corollary: Two monoids A and B are Morita-equivalent if and only if there
are two bimodules

A M-B and B N-A

such that
M⊗BN ' A and N⊗AM ' B

as bimodules.
Proof: It suffices to notice that

mod−A
−⊗AX

-
-

−⊗AY
mod−B

are isomorphic as functors if and only if

A X-B and A Y-B

are isomorphic as bimodules.

Now we want to say something about these bimodules M and N : to this
end it is important to notice (see [2]) that if (Mi)i∈I is an arbitrary family of
modules, then ∏

I
Mi '

∐
I
Mi

and the following diagram commutes:

Mi
-id Mi

?

6∐
IMi

-∼∏
IMi
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(that is not surprising if we remember that the fundamental difference between
an abelian group and a sup-lattice is that the internal operation is respectively
finitary in the first case and infinitary in the second one).

From this it is possible to show that if

M⊗BN ' A and N⊗AM ' B,

then M and N are both faithfully projective with respect to A and with respect
to B, where, for example, “M faithfully projective with respect to A” means
that in A−mod there exist two commutative diagrams of this kind:

A -id
A M -id

M
@

@
@R �

�
�� @

@
@R �

�
��

M I AJ

Proof: We omit a detailed proof, for which we refer to the classical case
(see [3]); we limit ourselves to notice that the condition over A and B implies
immediately that

B ' A−mod(M,M) and N ' A−mod(M,A)

and that the two triangular diagrams mean that the two composition-morphisms

A−mod(A,M)⊗BA−mod(M,A) -A−mod(A,A)

A−mod(M,A)⊗AA−mod(A,M) -A−mod(M,M)

are surjective.

We write modf.p.−A for the full subcategory of mod−A whose objects are
the faithfully projective modules; we have

Corollary: mod−A is equivalent to mod−B if and only if modf.p. −A is
equivalent to modf.p. −B.

Proof: If
t : modf.p. −A -modf.p. −B

is an equivalence, we can write t ' −⊗AtA by the same argument developed
above and then extend t to an equivalence

−⊗AtA : mod−A -mod−B;

conversely it suffices to notice that if M ∈ modf.p. −A, N ∈ A−mod−B and
N ∈ modf.p. −B, then M⊗AN ∈ modf.p. −B.

Let us conclude with the commutative case: let mod − A and mod − B be
equivalent categories of modules. We know that the functors realizing such an
equivalence must be of the form

mod−A
−⊗AM-
�
−⊗BN

mod−B
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with M⊗BN ' A and N⊗AM ' B, but then also the functors

A−mod
N⊗A−-
�

M⊗B−
B −mod

are an equivalence; so we have two monoid isomorphisms

mod−A(A,A) ' mod−B(M,M)

B −mod(B,B) ' A−mod(M,M).

Such isomorphisms can be restricted to two isomorphisms

A−mod−A(A,A) ' A−mod−B(M,M)

B −mod−B(B,B) ' A−mod−B(M,M)

and, considering that A − mod − A(A,A) is a monoid isomorphic to the cen-
ter Z(A) of A (see [3]), we have that if A and B are Morita-equivalent, then
Z(A) ' Z(B), that is if A and B are Morita-equivalent commutative monoids,
then A ' B.

In particular, if X and Y are sober topological spaces and their locales O(X)
and O(Y ) are Morita-equivalent, then X and Y are omeomorphic.
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