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Résumé. Nous étudions les équivalences entre sous-catégories multi-

réflectives de catégories de préfaisceaux covariants. En utilisant une

notion convenable de multi-bimodle, nous obtenons une généralisation
des classiques théoremes de Eilenberg-Watts et de Morita concer-

nants les catégories de modules. L’exemple motivant est donné par

les catégories localement multi-présentables, c.-a-d. les catégories

esquissables par des esquisses a limites et coproduits.

Introduction

In [1], Adamek and Borceux have established a very general Morita theory for
sketches. Two sketches S and 7 are called Morita-equivalent if their categories
ModS and Mod7 of Set-valued models are equivalent. In [1], Morita-equivalent
sketches are classified by means of mutually inverse bimodels, where an S-7-
bimodel is a model of S in a certain subcategory 7 of the functor category
[Mod7, Set]. In [1] a great attention is devoted to (connected) limit-coproduct
sketches, since in this case the category T admets a more explicit description :
it is equivalent to the dual of the product-completion [[(Mod7) of Mod7.

The particular case of Morita-equivalent limit sketches was firstly studied in
[4] following a different approach. In [4] a Morita theorem is established using
only the fact that for a limit sketch S, the category ModS is reflective in the
functor category Set® (where S is the small category underlying the sketch S).

The aim of this note is to improve the method used in [4] to recapture
the case of limit-coproduct sketches, because for such a sketch S, the category
ModsS is multi-reflective in Set®. Even if we do not rise the level of generality of
[1], the advantage of this method is that we obtain not only a Morita theorem
(corollary 2.8 below), but also a theorem which is the direct generalisation of
the Eilenberg-Watts theorem characterizing colimit-preserving functors between
module categories. Moreover, since our definition of multi-bimodel is at a non-
doctrinaire level, techniques are quite different from those used in [1].

Another approach to Morita theory for sketches, based on the so-called
generic model of a sketch, is contained in [6].

To support intuition, we recall here the classical Morita theory (all details
can be found in [3]). Let A and B be two unital rings, and A-mod and B-mod
the corresponding categories of left modules. Any A-B-bimodul M induces a



pair of adjoint functors
M®p—: B-mod— A-mod  Ling (M, —): A-mod — B-mod

with M®p— left adjoint to Ling (M, —). The Eilenberg-Watts theorem states
that any colimit-preserving functor F': B-mod —— A-mod is isomorphic to one
of the form M ®g— for a suitable bimodule M. As a consequence, the categories
A-mod and B-mod are equivalent iff there exist a A-B-bimodule M and a B-A-
bimodule N such that M ®p N is isomorphic to A and N ® 4 M is isomorphic
to B.

1 Notations

For a category A, we denote

na: A— (4

its product-completion. If B is a category with products and F: A——B is
an arbitrary functor, we write F*: [[(A)——B for the [[-extension (product-
preserving extension) of F'; it is the essentially unique product-preserving func-
tor making commutative the following diagram

Ui

A T
N A

B

A

(when we say that a diagram of functors is commutative, we mean commutative
up to isomorphisms). Given a functor G: A— B, we write [[(G): [[(A)— [1(B)
for the [[-extension of G - ng: A—B— [[(B).

A functor F: A—— [[(B) is also called a multi-functor F: A — B. The
composition of two multi-functors F: A — B and G:B — C is given by F' -
G*: A— [[(B)——[](C). Up to isomorphisms, this composition is associa-
tive and the unit 7,4: A— [](A) acts as identity. For more details on multi-
functors and multi-adjoints the reader can see [2] and [5].

In what follows T,S,... are small categories. Given a small category T,
Mod7 is a chosen multi-reflective subcategory of the functor category SetT,
ip: Mod7Z — SetT is the full inclusion and Ry: SetT — Mod7 its left multi-
adjoint. If : TP — [[(Mod?) is a functor, in the following diagram



Top

Set”

[1(Set®)

¢ is the left Kan-extension of ¢ along the Yoneda embedding Yr, and Hom(¢p, —): [[(Set®) —
SetT is the right adjoint of . If X is an object of [(Set®) and T is an object

of T, Hom(p, —)(X)(T) is given by the hom-set Hom[p(T'), X]. Note that the
Kan-extension ¢ exists because [[(Set®) is cocomplete.

(We will usually omit subscripts in 74, it, Rt and YT.)

2 Multi-bimodels

Definition 2.1 Let M:T° — ModS be a multi-functor. We say that M is a
multi-bimodel if the functor

Hom(M, —): ModS — Set”

given by Hom(M,—)(G)(T) = Hom[M (T),n(G)] for G in ModS and T in T,
factors through the full inclusion i: ModT — Set” .

In other words, consider the composite functor

o T 2 TTMods) LU T (setf)

we say that M is a multi-bimodel if the functor Hom(pas, —) factors as in the
following diagram

SetT ~ ModT

Hom(par, —)

H(Setg)wﬂ(ModS) 7 ModsS

We call Lin(M, —): ModS —Mod7 the requested factorization. Note that if
it exists, it is essentially unique. The key property of a multi-bimodel is the
following one.



Proposition 2.2 With the previous notations, consider the composite functor

M & —: ModT —» Set™ 2% T (Set®) £ T[(Mods)
if M is a multi-bimodel, then M & — is left multi-adjoint to Lin(M, —).

Proof: Consider the unit 7: ModS —— [[(ModS), an object G in ModS
and an object F' in Mod7 . The proof easily reduces to the following natural
bijections :

M@ F = R (em(i(F)) —n(G) iff

om(i(F))— H iff
i(F)—=Hom[pn, H(i)(n(G))] = i(Lin[M,G))  iff
F—Lin[M,G]
|

Remark : The previous proposition can equivalently stated saying that the
[[-extension M* @ —:[[(Mod7)— [[(ModS) of M ® — is left adjoint to
[[(Lin(M, —). In fact, the following general fact can be proved. Consider two
functors G: B—— A and F': A— [[(B), and the [ [-extension F*: [[(A) — [[(B)
; F'is a left multi-adjoint of G iff F™* is a left adjoint of [[(G).

We need another preliminary fact on multi-bimodels.

Proposition 2.3 Let M:T° — ModS be a multi-bimodel ; then

(i) the following diagram is commutative

> Set” 'H (ModT)
\ % .
[1(ModS)

(ii) M* ® — preserves colimits and products ;

(iii) M*® — is the unique (up to isomorphisms) functor which satisfies the two
previous conditions.

To prove this proposition, we need an easy lemma.



Lemma 2.4

1) consider two functors G: | [(B) — A and F: A—— [[(B), the [ [-extension
F* and the composite G - n: [[(B) —A— [[(A); if F is a left adjoint
of G, then F* is a left adjoint of G - n;

2) the unit n: A— [](.A) preserves all colimits which turn out to exist in

A;

3) if I: A——B is a full and faithful functor, then also [[(I) is full and
faithful ;

4) if I: A—B is full and faithful and has a left multi-adjoint R: B — A,
then I - R ~n: A—[](A).

Proof of proposition 2.3: (i) : observe that the following diagram is commu-
tative

T1(Set™) 80 [T(ModT)

Hom(par, —) 1 [T(Lin(M, —))

T1(Set®) 0 [T(ModS)

Since all the functors involved preserve products (three of them by definition,
and Hom(¢pr, —) -1 by lemma 2.4), this commutativity can be checked precom-
posing with the unit 7: ModS — [[(ModS).

Passing to left adjoints, we obtain the commutativity of the following diagram
(use lemma 2.4 and proposition 2.2)

T1(Set™) —LE—T[(ModT)

oM M*® -

[T(Set®)——T1(Mods)

and, precomposing with the unit 7: Set” — [](Set”), we have the commuta-
tivity of the following diagram



Set” [1(ModT)

oM M*® —

[T(Set®)——T1(Mods)

Finally, precomposing with the Yoneda embedding Y: T‘”’—»SetT7 we obtain
the requested commutativity. In fact Y - ¢ ~ @ because Y is full and faith-
ful, opr = M - T](%) by definition of ¢ps, and [](¢) - R* ~ id because [](7) is a
full and faithful right adjoint of R*.

(ii) : M™* ® — preserves products by definition and colimits because, by propo-
sition 2.2, it has a right adjoint.

(iii) : let G:][(ModT)— [[(ModS) be a functor which preserves colim-
its and products and such that Y - R - G is isomorphic to M. We have Y -
R-G~Y -R-(M*® —), but R preserves colimits (because it factors as
R =n- R*:Set” — [](Set") — [[(ModT), R* preserves colimits because it
is a left adjoint, and 1 preserves colimits by lemma 2.4) and Y is dense, so that
we can deduce R-G ~ R - (M* ® —). (Here we have used that [[(ModS) is
cocomplete, which is the case because it is reflective in the cocomplete category
[1(Set®).) This implies i - R- G ~i-R-(M*® —), that is - G ~n- (M* ® —)
(lemma 2.4). Since both G and M* ® — preserve products, this implies that G
and M* ® — are isomorphic. [ ]

Now we can give two basic examples of multi-bimodels.

Proposition 2.5

1) consider the composite
M =Y -R:T”—Set' — [[(ModT) ;

M is a multi-bimodel and M* ® — is isomorphic to the identity functor
on [[(ModT);

2) let M: T°P — ModS be a multi-bimodel; consider two functors c:: ModS — [[(ModR)
and (8: ModR—— ModS, with « left multi-adjoint to 3; the composite

N =Mo" T — [[(ModS)— [ [(ModR)

is a multi-bimodel and N* ® — is isomorphic to (M* ® —) - a*.

Proof: 1) : we will prove that the diagram



Set™ = ModT

Hom(¢ar, —) id

H(SetT)WH(MOdT) 7 ModT

is commutative. This means that Lin(M, —) is the identity functor and then
M*®—, being left adjoint to [[(Lin(M, —)), is isomorphic to the identity functor.
Let F' be an object of Mod7 and T an object of T :

Hom[s(T), [1())(1(F))] = Hom([[](3) (R(Y (7)), [1(3)(n(F))] =

— Hom[R(Y (T), n(F)] = Hom[Y (T),i(F)] = (iF)(T).

2) : we will prove that the diagram

SetT = ModT
A
Lin(M, —)
Hom(¢n, —) ModS
A
B

[1(Set®) ‘HTH(MOdR) 7 ModR

is commutative. This means that Lin(N,—) = 3 - Lin(M, —) and then N* ® —,
being left adjoint to [[(Lin(N, —)), is isomorphic to (M* ® —) - a*. Let F be an
object of ModR and T an object of T :

Hom[pn (T), T1(7)(n(F))] = Hom([[[(é)(a” (M(T))), [1())(n(F))] =

= Hom[o"(M(T)), n(F)] = Hom[M(T), [1(8)(n(F))] =

= Hom[M (T)),n(3(F))] = Hom([[[(&)(M(T)), I[1(?) (n(B(F)))] =

= Hom[oa (T), T1(9)(n(5(F)))] = Lin[M(T), B(F)]. u

We are ready to construct the composition of multi-bimodels.

Proposition 2.6 Let M:T° — ModS and N:S°? +— ModR be two multi-
bimodels; the composite

M- (N* @ =): T — [ [ (ModS) — [ [(ModR)



is a multi-bimodel. We call this multi-bimodel the composition M ® N of M
and N. Composition of multi-bimodels is associative and the multi-bimodel

Y R:T —Set" — [ [(ModT)
acts as identity (all up to isomorphisms).

Proof: Since N* ® — is left adjoint to [[(Lin(N, —)), we can use the second
part of proposition 2.5 and we have that P = M - (N* ® —) is a multi-bimodel
and P*® — ~ (M* ® —) - (N* ® —). The rest of the statement easily follows
from proposition 2.3. u

The announced generalizations of the Eilenberg-Watts theorem and of the
Morita theorem are now two simple corollaries of the previous analysis.

Corollary 2.7 There is a bijection between isomorphism classes of multi-
bimodels
TP — ModS

and isomorphism classes of left multi-adjoints
ModT — ModS .

This bijection preserves composition and identities.

Proof: Given a multi-bimodel M: T°? — [[(ModS) we obtain the functor
M®@—:ModT — [[(ModS) left multi-adjoint to the functor Lin(M, —): ModS —ModT .
Conversely, given a left multi-adjoint «: Mod7 — [[(ModS), then the com-
posite

Y- R-a": T —Set” — [ [(ModT) — [ [(ModsS)

is a multi-bimodel. The rest of the statement easily follows from propositions
2.3 and 2.5. u

Corollary 2.8 The categories Mod7T and ModS are equivalent if and only if
there exist two multi-bimodels M: T — ModS and N:S° — Mod7 such that
M®N~Yr-Rrand N® M ~Ys - Rs.

Proof: Tt follows from the previous corollary using the following general fact
: two categories A and B are equivalent iff their product-completions [[(A) and
[1(B) are equivalent. ]



3 Comparison with related results

I - We want to compare the classification given in corollary 2.8 with that
given in theorem 5.6 of [4]. In [4] a bimodel is a functor M: T? —ModS such
that the functor Hom(M, —): ModS —Set”, given by Hom(M, —)(G)(T) =
Hom[M(T),G] for G in ModS and T in T, factors through the full inclusion
i: ModT —» Set”.

We will use the following fact.

Lemma 3.1 Given two functors i: A—B and r: B—— A, r is a left adjoint
of i iff r - n: B——A—— [[(A) is a left multi-adjoint of i.

When the chosen subcategory ModT is reflective in Set™, and not only multi-
reflective, we obtain theorem 5.6 of [4] from corollary 2.8 via the following
proposition.

Proposition 3.2

1) there is a bijection between bimodels T°? — ModS in the sense of def-
inition 4.1 in [4] and multi-bimodels T°P +— ModS which factor through
the unit n: ModS — [[(ModS);

2) if ModT ,ModS ... are reflective in the appropriate categories of functors,
then the previous bijection preserves composition and identities.

Proof: 1) : it is easy to check that, given the composite functor M -
n: T? —ModS — [[(ModS), M is a bimodel iff M -7 is a multi-bimodel
(in both directions one uses that the unit 7 is full and faithful).
2) : let r:Set” —>Mod7 the reflector. The previous lemma says that the
identity bimodel Y - r : T —Set” ——Mod7 corresponds to the identity
multi-bimodel Y - R : T% ——Set” —— [[(ModT).
The key to prove that the bijection of point 1) also preserves composition is
to observe that the following diagram is commutative (where N = M - is
the multi-bimodel corresponding to a bimodel M and M ® — is the left Kan-
extension of M along Y - )

ModT —L—[[(ModT)

M@ — N*® —

ModS

7 [T(ModS)

that is N* @ — = [[(M ® —). ]



IT (Adamek, Borceux) - Let 7 and S be two limit sketches, T the small
category underlying the sketch 7 and ModS the usual category of Set-valued
model of §. A functor T°? ——ModS is a bimodel in the sense of definition 4.1
in [4] iff it is a 7-model in (ModS)°? (cf. section 7 in [4]). Categories sketchable
by limit sketches are exactly locally presentable categories.

More in general, locally multipresentable categories are exactly categories
sketchable by limit-coproduct sketches. The category of Set-valued models of
such a sketch is multi-reflective in the category of Set-valued functors defined
on the small category underlying the sketch. To end this note, we show that
our notion of multi-bimodel specializes to the notion of bimodel used in [1] to
classify Morita-equivalences between limit-coproduct sketches. If 7 and S are
two such sketches, in [1] a 7-S-bimodel is a 7-model in ([[(ModS))°?, where
ModsS is the category of Set-valued models of S.

Proposition 3.3 Let 7 and S be two limit-coproduct sketches. A functor
TP — [[(ModS) is a multi-bimodel iff it is a T-model in (] [(ModS))°P.

Proof: The proof is a “[[-fication” of the proof of the first proposition in
section 7 of [4], making use of the following general fact : let A be an ob-
ject of a category A and consider the unit 7: A— [[(A); the hom-functor
Hom(—,n(A)): T](A)°? —Set preserves coproducts. ]

Example 3.4
Let 7 be the sketch over the following poset T :

T1— Y ——T2

with no cones and with the discrete cocone over {z1,z2}. Then Mod7 ~ Set x
Set, so 7 is Morita~equivalent to the sketch S with two objects, no nonidentity
maps, no cones and no cocones.

The multi-bimodel M: T — ModS inducing the equivalence Mod7 ~ ModS
is given by M (z1) = n((+,0)), M(22) = n((0,*)) and M(y) = M(z1) x M(z2).
This equivalence can not be induced by a 7-model in (ModS)°P.
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