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Résumé. Nous étudions les équivalences entre sous-catégories multi-
réflectives de catégories de préfaisceaux covariants. En utilisant une
notion convenable de multi-bimodle, nous obtenons une généralisation
des classiques théorèmes de Eilenberg-Watts et de Morita concer-
nants les catégories de modules. L’exemple motivant est donné par
les catégories localement multi-présentables, c.-à-d. les catégories
esquissables par des esquisses à limites et coproduits.

Introduction

In [1], Adamek and Borceux have established a very general Morita theory for
sketches. Two sketches S and T are called Morita-equivalent if their categories
ModS and ModT of Set-valued models are equivalent. In [1], Morita-equivalent
sketches are classified by means of mutually inverse bimodels, where an S-T -
bimodel is a model of S in a certain subcategory T̂ of the functor category
[ModT , Set]. In [1] a great attention is devoted to (connected) limit-coproduct
sketches, since in this case the category T̂ admets a more explicit description :
it is equivalent to the dual of the product-completion

∏
(ModT ) of ModT .

The particular case of Morita-equivalent limit sketches was firstly studied in
[4] following a different approach. In [4] a Morita theorem is established using
only the fact that for a limit sketch S, the category ModS is reflective in the
functor category SetS (where S is the small category underlying the sketch S).

The aim of this note is to improve the method used in [4] to recapture
the case of limit-coproduct sketches, because for such a sketch S, the category
ModS is multi-reflective in SetS. Even if we do not rise the level of generality of
[1], the advantage of this method is that we obtain not only a Morita theorem
(corollary 2.8 below), but also a theorem which is the direct generalisation of
the Eilenberg-Watts theorem characterizing colimit-preserving functors between
module categories. Moreover, since our definition of multi-bimodel is at a non-
doctrinaire level, techniques are quite different from those used in [1].

Another approach to Morita theory for sketches, based on the so-called
generic model of a sketch, is contained in [6].

To support intuition, we recall here the classical Morita theory (all details
can be found in [3]). Let A and B be two unital rings, and A-mod and B-mod
the corresponding categories of left modules. Any A-B-bimodul M induces a
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pair of adjoint functors

M⊗B−:B-mod -A-mod LinA(M,−):A-mod -B-mod

with M⊗B− left adjoint to LinA(M,−). The Eilenberg-Watts theorem states
that any colimit-preserving functor F :B-mod -A-mod is isomorphic to one
of the form M⊗B− for a suitable bimodule M. As a consequence, the categories
A-mod and B-mod are equivalent iff there exist a A-B-bimodule M and a B-A-
bimodule N such that M ⊗B N is isomorphic to A and N ⊗A M is isomorphic
to B.

1 Notations

For a category A, we denote

ηA:A -
∏

(A)

its product-completion. If B is a category with products and F :A -B is
an arbitrary functor, we write F ∗:

∏
(A) -B for the

∏
-extension (product-

preserving extension) of F ; it is the essentially unique product-preserving func-
tor making commutative the following diagram

A -ηA ∏
(A)

@
@

@
@R

F

�
�

�
�	

F ∗

B

(when we say that a diagram of functors is commutative, we mean commutative
up to isomorphisms). Given a functor G:A -B, we write

∏
(G):

∏
(A) - ∏

(B)
for the

∏
-extension of G · ηB:A -B -

∏
(B).

A functor F :A - ∏
(B) is also called a multi-functor F :A 7→ B. The

composition of two multi-functors F :A 7→ B and G:B 7→ C is given by F ·
G∗:A - ∏

(B) - ∏
(C). Up to isomorphisms, this composition is associa-

tive and the unit ηA:A -
∏

(A) acts as identity. For more details on multi-
functors and multi-adjoints the reader can see [2] and [5].

In what follows T, S, . . . are small categories. Given a small category T,

ModT is a chosen multi-reflective subcategory of the functor category SetT,

iT: ModT - SetT is the full inclusion and RT: SetT 7→ ModT its left multi-
adjoint. If ϕ: Top - ∏

(ModT) is a functor, in the following diagram

2



Top -YT
SetT

@
@

@
@@R

ϕ

�
�

�
��	

ϕ̂∏
(SetS)

ϕ̂ is the left Kan-extension of ϕ along the Yoneda embedding YT, and Hom(ϕ,−):
∏

(SetS) -

SetT is the right adjoint of ϕ̂. If X is an object of
∏

(SetS) and T is an object
of T, Hom(ϕ,−)(X)(T ) is given by the hom-set Hom[ϕ(T ), X]. Note that the
Kan-extension ϕ̂ exists because

∏
(SetS) is cocomplete.

(We will usually omit subscripts in ηA, iT, RT and YT.)

2 Multi-bimodels

Definition 2.1 Let M : Top 7→ ModS be a multi-functor. We say that M is a

multi-bimodel if the functor

Hom(M,−):ModS -SetT

given by Hom(M,−)(G)(T ) = Hom[M(T ), η(G)] for G in ModS and T in T,

factors through the full inclusion i:ModT -SetT.

In other words, consider the composite functor

ϕM : Top M-
∏

(ModS)
∏

(i)-
∏

(SetS) ;

we say that M is a multi-bimodel if the functor Hom(ϕM ,−) factors as in the
following diagram

SetT � i ModT

Hom(ϕM ,−)
6 6

∏
(SetS)�∏

(i)
∏

(ModS)�
η ModS

We call Lin(M,−):ModS -ModT the requested factorization. Note that if
it exists, it is essentially unique. The key property of a multi-bimodel is the
following one.
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Proposition 2.2 With the previous notations, consider the composite functor

M ⊗−:ModT i-SetT ϕ̂M-
∏

(SetS) R∗
-

∏
(ModS) ;

if M is a multi-bimodel, then M ⊗− is left multi-adjoint to Lin(M,−).

Proof: Consider the unit η:ModS -
∏

(ModS), an object G in ModS
and an object F in ModT . The proof easily reduces to the following natural
bijections :

M ⊗ F = R∗(ϕM (i(F ))) - η(G) iff

ϕM (i(F )) -
∏

(i)(η(G)) iff

i(F ) -Hom[ϕM ,
∏

(i)(η(G))] = i(Lin[M,G]) iff

F -Lin[M,G]

Remark : The previous proposition can equivalently stated saying that the∏
-extension M∗ ⊗ −:

∏
(ModT ) -

∏
(ModS) of M ⊗ − is left adjoint to∏

(Lin(M,−). In fact, the following general fact can be proved. Consider two
functors G:B -A and F :A -

∏
(B), and the

∏
-extension F ∗:

∏
(A) -

∏
(B)

; F is a left multi-adjoint of G iff F ∗ is a left adjoint of
∏

(G).
We need another preliminary fact on multi-bimodels.

Proposition 2.3 Let M : Top 7→ ModS be a multi-bimodel ; then

(i) the following diagram is commutative

Top -Y
SetT -R ∏

(ModT )

@
@

@
@

@R

M

�
�

�
�

�	

M∗ ⊗−

∏
(ModS)

(ii) M∗ ⊗− preserves colimits and products ;

(iii) M∗⊗− is the unique (up to isomorphisms) functor which satisfies the two

previous conditions.

To prove this proposition, we need an easy lemma.
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Lemma 2.4

1) consider two functors G:
∏

(B) -A and F :A -
∏

(B), the
∏

-extension

F ∗ and the composite G · η:
∏

(B) -A - ∏
(A); if F is a left adjoint

of G, then F ∗ is a left adjoint of G · η;

2) the unit η:A - ∏
(A) preserves all colimits which turn out to exist in

A;

3) if I:A -B is a full and faithful functor, then also
∏

(I) is full and

faithful ;

4) if I:A -B is full and faithful and has a left multi-adjoint R:B 7→ A,

then I ·R ' η:A - ∏
(A).

Proof of proposition 2.3: (i) : observe that the following diagram is commu-
tative ∏

(SetT)�
∏

(i) ∏
(ModT )

Hom(ϕM ,−) · η
6 6∏

(Lin(M,−))

∏
(SetS)�∏

(i)
∏

(ModS)

Since all the functors involved preserve products (three of them by definition,
and Hom(ϕM ,−) ·η by lemma 2.4), this commutativity can be checked precom-
posing with the unit η:ModS -

∏
(ModS).

Passing to left adjoints, we obtain the commutativity of the following diagram
(use lemma 2.4 and proposition 2.2)∏

(SetT) -R∗ ∏
(ModT )

ϕ̂M
∗

? ?

M∗ ⊗−

∏
(SetS) -

R∗
∏

(ModS)

and, precomposing with the unit η: SetT - ∏
(SetT), we have the commuta-

tivity of the following diagram
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SetT -R ∏
(ModT )

ϕ̂M

? ?

M∗ ⊗−

∏
(SetS) -

R∗
∏

(ModS)

Finally, precomposing with the Yoneda embedding Y : Top -SetT, we obtain
the requested commutativity. In fact Y · ϕ̂M ' ϕM because Y is full and faith-
ful, ϕM = M ·

∏
(i) by definition of ϕM , and

∏
(i) · R∗ ' id because

∏
(i) is a

full and faithful right adjoint of R∗.

(ii) : M∗ ⊗− preserves products by definition and colimits because, by propo-
sition 2.2, it has a right adjoint.
(iii) : let G:

∏
(ModT ) -

∏
(ModS) be a functor which preserves colim-

its and products and such that Y · R · G is isomorphic to M. We have Y ·
R · G ' Y · R · (M∗ ⊗ −), but R preserves colimits (because it factors as
R = η ·R∗: SetT - ∏

(SetT) - ∏
(ModT ), R∗ preserves colimits because it

is a left adjoint, and η preserves colimits by lemma 2.4) and Y is dense, so that
we can deduce R · G ' R · (M∗ ⊗ −). (Here we have used that

∏
(ModS) is

cocomplete, which is the case because it is reflective in the cocomplete category∏
(SetS).) This implies i ·R ·G ' i ·R · (M∗ ⊗−), that is η ·G ' η · (M∗ ⊗−)

(lemma 2.4). Since both G and M∗ ⊗− preserve products, this implies that G

and M∗ ⊗− are isomorphic.

Now we can give two basic examples of multi-bimodels.

Proposition 2.5

1) consider the composite

M = Y ·R : Top -SetT -
∏

(ModT ) ;

M is a multi-bimodel and M∗ ⊗ − is isomorphic to the identity functor

on
∏

(ModT );

2) let M : Top 7→ ModS be a multi-bimodel; consider two functors α:ModS - ∏
(ModR)

and β:ModR -ModS, with α left multi-adjoint to β; the composite

N = M · α∗: Top -
∏

(ModS) -
∏

(ModR)

is a multi-bimodel and N∗ ⊗− is isomorphic to (M∗ ⊗−) · α∗.

Proof: 1) : we will prove that the diagram
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SetT � i ModT

Hom(ϕM ,−)
6 6

id

∏
(SetT)�∏

(i)
∏

(ModT )�
η ModT

is commutative. This means that Lin(M,−) is the identity functor and then
M∗⊗−, being left adjoint to

∏
(Lin(M,−)), is isomorphic to the identity functor.

Let F be an object of ModT and T an object of T :
Hom[ϕM (T ),

∏
(i)(η(F ))] = Hom[

∏
(i)(R(Y (T ))),

∏
(i)(η(F ))] =

= Hom[R(Y (T )), η(F )] = Hom[Y (T ), i(F )] = (iF )(T ).
2) : we will prove that the diagram

SetT � i ModT

6

Lin(M,−)

Hom(ϕN ,−)

6

ModS

6

β

∏
(SetR)�∏

(i)
∏

(ModR)�
η ModR

is commutative. This means that Lin(N,−) = β · Lin(M,−) and then N∗ ⊗−,

being left adjoint to
∏

(Lin(N,−)), is isomorphic to (M∗⊗−) ·α∗. Let F be an
object of ModR and T an object of T :
Hom[ϕN (T ),

∏
(i)(η(F ))] = Hom[

∏
(i)(α∗(M(T ))),

∏
(i)(η(F ))] =

= Hom[α∗(M(T )), η(F )] = Hom[M(T ),
∏

(β)(η(F ))] =
= Hom[M(T ), η(β(F ))] = Hom[

∏
(i)(M(T )),

∏
(i)(η(β(F )))] =

= Hom[ϕM (T ),
∏

(i)(η(β(F )))] = Lin[M(T ), β(F )].

We are ready to construct the composition of multi-bimodels.

Proposition 2.6 Let M : Top 7→ ModS and N : Sop 7→ ModR be two multi-

bimodels; the composite

M · (N∗ ⊗−): Top -
∏

(ModS) -
∏

(ModR)
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is a multi-bimodel. We call this multi-bimodel the composition M ⊗ N of M

and N. Composition of multi-bimodels is associative and the multi-bimodel

Y ·R : Top -SetT -
∏

(ModT )

acts as identity (all up to isomorphisms).

Proof: Since N∗ ⊗− is left adjoint to
∏

(Lin(N,−)), we can use the second
part of proposition 2.5 and we have that P = M · (N∗ ⊗−) is a multi-bimodel
and P ∗ ⊗ − ' (M∗ ⊗ −) · (N∗ ⊗ −). The rest of the statement easily follows
from proposition 2.3.

The announced generalizations of the Eilenberg-Watts theorem and of the
Morita theorem are now two simple corollaries of the previous analysis.

Corollary 2.7 There is a bijection between isomorphism classes of multi-

bimodels

Top 7→ ModS

and isomorphism classes of left multi-adjoints

ModT 7→ ModS .

This bijection preserves composition and identities.

Proof: Given a multi-bimodel M : Top - ∏
(ModS) we obtain the functor

M⊗−:ModT -
∏

(ModS) left multi-adjoint to the functor Lin(M,−):ModS -ModT .

Conversely, given a left multi-adjoint α:ModT - ∏
(ModS), then the com-

posite
Y ·R · α∗: Top -SetT -

∏
(ModT ) -

∏
(ModS)

is a multi-bimodel. The rest of the statement easily follows from propositions
2.3 and 2.5.

Corollary 2.8 The categories ModT and ModS are equivalent if and only if

there exist two multi-bimodels M : Top 7→ ModS and N : Sop 7→ ModT such that

M ⊗N ' YT ·RT and N ⊗M ' YS ·RS.

Proof: It follows from the previous corollary using the following general fact
: two categories A and B are equivalent iff their product-completions

∏
(A) and∏

(B) are equivalent.
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3 Comparison with related results

I - We want to compare the classification given in corollary 2.8 with that
given in theorem 5.6 of [4]. In [4] a bimodel is a functor M : Top -ModS such
that the functor Hom(M,−):ModS -SetT, given by Hom(M,−)(G)(T ) =
Hom[M(T ), G] for G in ModS and T in T, factors through the full inclusion
i:ModT -SetT.

We will use the following fact.

Lemma 3.1 Given two functors i:A -B and r:B -A, r is a left adjoint

of i iff r · η:B -A - ∏
(A) is a left multi-adjoint of i.

When the chosen subcategory ModT is reflective in SetT, and not only multi-
reflective, we obtain theorem 5.6 of [4] from corollary 2.8 via the following
proposition.

Proposition 3.2

1) there is a bijection between bimodels Top -ModS in the sense of def-

inition 4.1 in [4] and multi-bimodels Top 7→ ModS which factor through

the unit η:ModS - ∏
(ModS);

2) if ModT ,ModS . . . are reflective in the appropriate categories of functors,

then the previous bijection preserves composition and identities.

Proof: 1) : it is easy to check that, given the composite functor M ·
η: Top -ModS - ∏

(ModS), M is a bimodel iff M · η is a multi-bimodel
(in both directions one uses that the unit η is full and faithful).
2) : let r: SetT -ModT the reflector. The previous lemma says that the
identity bimodel Y · r : Top -SetT -ModT corresponds to the identity
multi-bimodel Y ·R : Top -SetT - ∏

(ModT ).
The key to prove that the bijection of point 1) also preserves composition is
to observe that the following diagram is commutative (where N = M · η is
the multi-bimodel corresponding to a bimodel M and M ⊗ − is the left Kan-
extension of M along Y · r)

ModT -η ∏
(ModT )

M ⊗−

? ?

N∗ ⊗−

ModS -
η

∏
(ModS)

that is N∗ ⊗− =
∏

(M ⊗−).
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II (Adamek, Borceux) - Let T and S be two limit sketches, T the small
category underlying the sketch T and ModS the usual category of Set-valued
model of S. A functor Top -ModS is a bimodel in the sense of definition 4.1
in [4] iff it is a T -model in (ModS)op (cf. section 7 in [4]). Categories sketchable
by limit sketches are exactly locally presentable categories.

More in general, locally multipresentable categories are exactly categories
sketchable by limit-coproduct sketches. The category of Set-valued models of
such a sketch is multi-reflective in the category of Set-valued functors defined
on the small category underlying the sketch. To end this note, we show that
our notion of multi-bimodel specializes to the notion of bimodel used in [1] to
classify Morita-equivalences between limit-coproduct sketches. If T and S are
two such sketches, in [1] a T -S-bimodel is a T -model in (

∏
(ModS))op, where

ModS is the category of Set-valued models of S.

Proposition 3.3 Let T and S be two limit-coproduct sketches. A functor

Top -
∏

(ModS) is a multi-bimodel iff it is a T -model in (
∏

(ModS))op.

Proof: The proof is a “
∏

-fication” of the proof of the first proposition in
section 7 of [4], making use of the following general fact : let A be an ob-
ject of a category A and consider the unit η:A - ∏

(A); the hom-functor
Hom(−, η(A)):

∏
(A)op -Set preserves coproducts.

Example 3.4

Let T be the sketch over the following poset T :

x1 - y � x2

with no cones and with the discrete cocone over {x1, x2}. Then ModT ' Set×
Set, so T is Morita-equivalent to the sketch S with two objects, no nonidentity
maps, no cones and no cocones.
The multi-bimodel M : Top 7→ ModS inducing the equivalence ModT ' ModS
is given by M(x1) = η((∗, ∅)),M(x2) = η((∅, ∗)) and M(y) = M(x1) ×M(x2).
This equivalence can not be induced by a T -model in (ModS)op.

4 *
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