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Abstract. Given a morphism P : G → H of 2-groupoids, we construct
a 6-term 2-exact sequence of cat-groups and pointed groupoids. We use
this sequence to obtain an analogue for cat-groups (and, in particular,
for crossed modules) of the fundamental exact sequence of non-abelian
group cohomology. The link with simplicial topology is also explained.

Introduction

The aim of this paper is to obtain a basic result in low-dimensional cohomol-
ogy of crossed modules. Homology and cohomology of crossed modules have been
studied extensively, and a satisfactory theory has been developed (see [7] and the
references therein, [14, 19, 20, 26]). The existing literature on this subject consid-
ers crossed modules and their morphisms as a category. Our point of view is that
crossed modules are in a natural way the objects of a 2-category, and therefore they
should be studied in a 2-dimensional context. This different point of view leads to
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a choice of limits and colimits which are the natural ones in our 2-categorical set-
ting, that is bilimits, but which do not have a universal property in the underlying
category of crossed modules. Accordingly, the notions of exactness and extension
we consider are not equivalent to those studied in the previous papers devoted to
this subject.

The result we look for to test our theory is a generalization to crossed modules
of the fundamental exact sequence in non-abelian cohomology of groups [25]. To
get this result, we adapt to crossed modules the method developed by Brown in [5],
where the fundamental sequence is obtained as a special case of an exact sequence
associated to a fibration of groupoids. In fact, to follow in a more transparent way
the analogy with groups, we work with cat-groups instead of crossed modules, since
the 2-category of (strict and small) cat-groups is biequivalent to the 2-category of
crossed modules [6, 23].

The paper is organized as follows. In the first section we recall, for the reader’s
convenience and in a way convenient to be generalized to 2-groupoids, the result
due to Brown. Section 2 is devoted to the construction of a 6-term 2-exact sequence
of strict cat-groups and pointed groupoids from any morphism of 2-groupoids. For
basic facts on cat-groups and 2-exact sequences we refer to [18, 27] and the bib-
liography therein; we recall in Section 2 the definitions we need. The idea of an
higher-dimensional version of Brown’s exact sequence comes from the paper [17] by
Hardie, Kamps and the second author. The precise link between the main result of
[17] and our 2-exact sequence is explained in Remark 2.7. In the third section we
fix a cat-group G and an extension

A i // B
j // C

of G-cat-groups. From such an extension we obtain, as a particular case of the se-
quence in Section 2, a 6-term 2-exact sequence of cat-groups and pointed groupoids

AG → BG → CG → H1(G,A) → H1(G,B) → H1(G,C)

which is the 2-dimensional generalization of the fundamental sequence in non-
abelian group cohomology. As a corollary of the main result of Section 2, we
also get a 9-term exact sequence of groups and pointed sets. Instead of exploiting
the homological notion of 2-exactness, this 9-term sequence can also be obtained
using classical results from simplicial topology. This is the content of Section 4.

1 Brown’s exact sequence

As in the topological case, it is better to work with the homotopy fibre instead
of the “set-theoretical” fibre. In this way, we can obtain an exact sequence from
any functor between groupoids (and not only from a fibration). Moreover, we
avoid some choices which would be quite hard to handle in the higher dimensional
analogue developed in Section 2.

Recall that a groupoid G is a category in which each arrow is an isomorphism.
Consider now a functor between groupoids

P : G → H
and fix an object H in H. The homotopy fibre FH of P at the point H is the
following comma groupoid:

- objects of FH are pairs (Y, y : P (Y ) → H), with Y an object of G and y an
arrow in H ;
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- an arrow f : (Y1, y1) → (Y2, y2) in FH is an arrow f : Y1 → Y2 in G such that
P (f) · y2 = y1 (composition denoted from left to right).

There is an obvious faithful functor j : FH → G. If X is an object of G, we write
FX for FP (X).

Now fix an object X in G and consider the following groups and pointed sets:
- π0(G), the set of isomorphism classes of objects of G, pointed by the class

of X ; π0(H), pointed by the class of P (X) ; π0(FX), pointed by the class of
(X, 1P (X)) ;

- G(X) = G(X,X), the group of automorphisms of the object X in G ;
H(X) = H(P (X), P (X)), the group of automorphisms of the object P (X)
in H ; FX(X) = FX((X, 1P (X)), (X, 1P (X))), the group of automorphisms of
(X, 1P (X)) in FX .

They can be connected by the following morphisms (square brackets are isomor-
phism classes):

- jX : FX(X) → G(X) jX(f : X → X) = f ;
- PX : G(X) → H(X) PX(f : X → X) = P (f) ;
- π0(P ) : π0(G) → π0(H) [X] 7→ [P (X)] ;
- π0(j) : π0(FX) → π0(G) [Y, y : P (Y ) → P (X)] 7→ [Y ] ;
- δ : H(X) → π0(FX) δ(x : P (X) → P (X)) = [X,x : P (X) → P (X)].

Proposition 1.1 With the previous notations, the sequence

0 → FX(X)
jX // G(X)

PX // H(X) δ // π0(FX)
π0(j) // π0(G)

π0(P ) // π0(H)

is exact.

Proof Consider an element [Y, y] in π0(FX) and assume that [Y ] = [X] in
π0(G). Then there is an arrow y′ : Y → X in G and therefore [Y, y] = [X,P (y′)−1 ·
y] = δ(P (y′)−1 ·y) because y′ : (Y, y) → (X,P (y′)−1 ·y) is an arrow in FX . The rest
of the proof is straightforward.

Now consider the strict fibre SH of P at the point H :
- objects of SH are the objects Y of G such that P (Y ) = H;
- an arrow f : Y1 → Y2 of G is in SH if P (f) = 1H .

There is, for each object H in SH , a full and faithful functor iH : SH → FH . Clearly,
P is a fibration of groupoids [5] if and only if for each H the functor iH is essentially
surjective on objects. Therefore, if P is a fibration, we can replace FX(X) and
π0(FX) by SX(X) and π0(SX) and we obtain Brown’s exact sequence associated to
a fibration of groupoids (Theorem 4.3 in [5]).

2 The 2-exact sequence

In this section we fix a morphism of 2-groupoids

P : G → H
that is a 2-functor between 2-categories in which each arrow is an equivalence and
each 2-cell is an isomorphism.

Fix an object H in H ; the homotopy fibre FH of P at the point H is the
following 2-groupoid:

- objects are pairs (Y, y : P (Y ) → H), with Y an object in G and y an arrow
in H ;
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- arrows (f, ϕ) : (Y1, y1) → (Y2, y2) are pairs with f : Y1 → Y2 an arrow in G
and ϕ : y1 ⇒ P (f) · y2 : P (Y1) → H a 2-cell in H ;

- a 2-cell α : (f, ϕ) ⇒ (g, ψ) : (Y1, y1) → (Y2, y2) is a 2-cell α : f ⇒ g in G such
that the following diagram commutes

P (f) · y2
P (α)·y2 +3 P (g) · y2

y1

ϕ

`h HHHHHHHHH

HHHHHHHHH ψ

6>vvvvvvvv

vvvvvvvv

There is a morphism j : FH → G which sends α : (f, ϕ) ⇒ (g, ψ) : (Y1, y1) → (Y2, y2)
to α : f ⇒ g : Y1 → Y2. The morphism j is faithful on arrows and on 2-cells. If X
is an object of G, we write FX for FP (X).

We recall now the notion of 2-exact sequence for pointed groupoids (and, in
particular, for cat-groups, i.e. monoidal groupoids in which each object is in-
vertible, up to isomorphisms, w.r.t. the tensor product). Morphisms of pointed
groupoids (cat-groups) are pointed functors (monoidal functors). A natural trans-
formation between pointed (monoidal) functors is always assumed to be pointed
(monoidal). Let F : G → H be a morphism of pointed groupoids; its homotopy
kernel kF : KerF → G is the homotopy fibre (in the sense of Section 1) of F on
the base object I of H. There is a natural transformation κF : kF ·F ⇒ 0 (0 is the
morphism which sends each arrow to the identity of I) given, for each object (Y, y)
of KerF, by y : F (Y ) → I.

G
F

��@
@@

@@
@@

κF⇓

KerF

kF

<<xxxxxxxxx

0
// H

G
F

��@
@@

@@
@@

ϕ⇓

K

G

??~~~~~~~

0
// H

Moreover, given a pointed groupoid K, a morphism G and a natural transfor-
mation ϕ as in the previous diagram, there is a unique comparison morphism
G′ : K → KerF , G′(g : A1 → A2) = G(g) : (G(A1), ϕA1) → (G(A2), ϕA2) , such
that G′ · kF = G and G′ · κF = ϕ (compare with [15]). The universal property
of (KerF, kF, κF ) as a bilimit, discussed in [18, 27], determines it uniquely, up to
equivalence.

Definition 2.1 Consider two morphisms G,F and a natural transformation
ϕ of pointed groupoids as in the previous diagram; we say that the triple (G,ϕ, F )
is 2-exact if the comparison G′ : K → KerF is full and essentially surjective on
objects.

Now come back to the 2-functor between 2-groupoids P : G → H and fix
an object X of G. We can consider the following three hom-categories, which
are in fact strict cat-groups: G(X) = G(X,X) , H(X) = H(P (X), P (X)) and
FX(X) = FX((X, 1P (X)), (X, 1P (X))). Moreover, we can consider the classifying
groupoid cl(G) of the 2-groupoid G : cl(G) has the same objects as G and 2-
isomorphism classes of arrows of G as arrows. The groupoid cl(G) is pointed by the
object X. Similarly, we have the groupoid cl(H) pointed by P (X) and the groupoid
cl(FX) pointed by (X, 1P (X)). These cat-groups and pointed groupoids can be con-
nected by the following morphisms (square brackets are 2-isomorphism classes of
arrows):
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- jX : FX(X) → G(X)
α : (f, ϕ) ⇒ (g, ψ) : (X, 1P (X)) → (X, 1P (X)) 7→ α : f ⇒ g : X → X

- PX : G(X) → H(X)
α : f ⇒ g : X → X 7→ P (α) : P (f) ⇒ P (g) : P (X) → P (X)

- cl(j) : cl(FX) → cl(H)
[f, ϕ] : (Y1, y1) → (Y2, y2) 7→ [f ] : Y1 → Y2

- cl(P ) : cl(G) → cl(H)
[f ] : Y1 → Y2 7→ [P (f)] : P (Y1) → P (Y2)

- δ : H(X) → cl(FX)
β : h⇒ k : P (X) → P (X) 7→ [1X , β] : (X,h) → (X, k).

Proposition 2.2 With the previous notations, the sequence

FX(X)
jX // G(X)

PX // H(X) δ // cl(FX)
cl(j) // cl(G)

cl(P ) // cl(H)

with the obvious natural transformations jX · PX ⇒ 0 , PX · δ ⇒ 0 , δ · cl(j) ⇒
0 , cl(j) · cl(P ) ⇒ 0 , is 2-exact.

Proof 1) 2-exactness in G(X) : it is straightforward to verify that the
functor jX : FX(X) → G(X) is exactly the kernel of PX : G(X) → H(X).

2) 2-exactness in H(X) : consider the comparison P ′X : G(X) → Kerδ
α : f ⇒ g : X → X 7→ P (α) : (P (f), [f, 1P (f)]) ⇒ (P (g), [g, 1P (g)])

- P ′X is essentially surjective: given an object (h, [f, ϕ]) in Kerδ, we obtain an
arrow ϕ : (h, [f, ϕ]) ⇒ δ(f) in Kerδ ;

- P ′X is full: given an arrow β : δ(f) ⇒ δ(g) in Kerδ, then δ(β) · [g, 1P (g)] =
[f, 1P (f)], but this means that there exists a 2-cell α : f ⇒ g such that
P (α) = β.

3) 2-exactness in cl(G) : consider the comparison j′ : cl(FX) → Ker(cl(P ))
[f, ϕ] : (Y1, y1) → (Y2, y2) 7→ [f ] : (Y1, [y1]) → (Y2, [y2])

- j′ is essentially surjective: obvious;
- j′ is full: let [f ] : j′(Y1, y1) → j′(Y2, y2) be an arrow in Ker(cl(P )), this

means that there exists a 2-cell ϕ : y1 ⇒ P (f) ·y2 and then [f, ϕ] : (Y1, y1) →
(Y2, y2) is an arrow in cl(FX).

4) 2-exactness in cl(FX) : consider the comparison δ′ : H(X) → Ker(cl(j))
β : h⇒ k : P (X) → P (X) 7→ [1X , β] : (X,h, [1X ]) → (X, k, [1X ])

- δ′ is full: let [f, ϕ] : δ′(h) → δ′(k) be an arrow in Ker(cl(j)), then [f ] · [1X ] =
[1X ], that is there exists a 2-cell α : 1X ⇒ f. We obtain β : h ⇒ k in H(X)
in the following way :

β = (h
ϕ +3 P (f) · k

P (α)−1·k +3 k) ;

- δ′ is essentially surjective: consider an object

(Y, y : P (Y ) → P (X), [x] : Y → X)

in Ker(cl(j)), then P (x)−1 · y : P (X) → P (X) is an object in H(X) and
[x, c] : (Y, y, [x]) → δ′(P (x)−1 · y) is an arrow in Ker(cl(j)), where c is the
canonical 2-cell c : y ⇒ P (x) · P (x)−1 · y .

As in Section 1, if (G, I) is a pointed groupoid (a cat-group), we write π0(G)
for the pointed set (the group) of isomorphism classes of objects and π1(G) for the
(abelian) group of automorphisms G(I, I). π0 and π1 extend to morphisms and carry
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2-exact sequences on exact sequences of pointed sets or groups. Finally, observe
that if G is a 2-groupoid and X is a chosen object in G, then π1(cl(G)) = π0(G(X)).
In a similar way, if P : G → H is a 2-functor, then π1(cl(P )) = π0(PX).

Corollary 2.3 Let P : G → H be a 2-functor between 2-groupoids and fix an
object X in G ; the following is an exact sequence of groups and pointed sets (the
last three terms)

0 → π1(FX(X)) → π1(G(X)) → π1(H(X)) →

π1(cl(FX)) = π0(FX(X)) → π1(cl(G)) = π0(G(X)) → π1(cl(H)) = π0(H(X))

→ π0(cl(FX)) → π0(cl(G)) → π0(cl(H)) .

Proof As far as exactness in π1(FX(X)) is concerned, observe that jX is the
kernel of PX , so it is faithful and then π1(jX) is injective. The rest follows from
the 2-exactness of the sequence in Proposition 2.2 and the previous remarks on π0

and π1.

Remark 2.4 If P : G → H is a functor between groupoids, we can look at
it as a 2-functor between discrete 2-groupoids (2-groupoids with no non-trivial 2-
cells). The exact sequence of Corollary 2.3 reduces then to the exact sequence of
Proposition 1.1, because the first non-trivial term is π0(FX(X)).

Remark 2.5 Brown’s exact sequence of Proposition 1.1 satisfies a strong exact-
ness condition in π0(FX), which is the transition point between groups and pointed
groupoids. The 2-dimensional analogue of strong exactness has been formulated in
[16]. It is not difficult to prove that the sequence of Proposition 2.2 is strongly 2-
exact in cl(FX), let us just observe that the needed actionH(X)×cl(FX) → cl(FX)
sends (f : P (X) → P (X), (Y, y : P (Y ) → P (X))) into (Y, y · f : P (Y ) → P (X) →
P (X)).

Remark 2.6 Proposition 2.2 and Corollary 2.3 hold also for a morphism
P : G → H of bigroupoids, that is a pseudo-functor between bicategories [2, 3]
in which each arrow is an equivalence and each 2-cell is an isomorphism. The gen-
eralization is strightforward: just observe that the homotopy fibre FH inherits a
structure of bicategory from that of G. Clearly, if G and H are bigroupoids, the cat-
groups FX(X),G(X) and H(X) of Proposition 2.2 are no longer strict. In Section
3 we will use this more general version of Proposition 2.2.

Remark 2.7 Recall that a morphism of bigroupoids P : G → H is a fibration
if the functor cl(P ) : cl(G) → cl(H) is a fibration of groupoids and for each Y1, Y2

in G the functor PY1,Y2 : G(Y1, Y2) → H(P (Y1), P (Y2)) is a fibration of groupoids
[17, 22]. This is equivalent to ask that for each object X in G, the induced functor
StP (X) : StG(X) → StH(P (X)) (where the “star-groupoid” StG(X) is the groupoid
having morphisms y : X → Y as objects and 2-cells α : y1 ⇒ y2 : X → Y as arrows)
is an essentially surjective fibration. When P is a fibration, one easily checks that
for each object H of H, the homotopy fibre FH is biequivalent to the strict fibre SH
(i.e. the sub-bigroupoid of G having as 2-cells the 2-cells α : f ⇒ g : Y1 → Y2 such
that P (α) is the identity 2-cell of 1H). Therefore, if P is a fibration, FX(X) and
cl(FX) are equivalent to SX(X) and cl(SX) and the sequence of Corollary 2.3 is
exactly the Hardie-Kamps-Kieboom 9-term exact sequence associated to a fibration
of bigroupoids (Theorem 2.4 in [17]).
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Remark 2.8 Proposition 2.2 can be also used to construct a Picard-Brauer
2-exact sequence from a homomorphism of unital commutative rings. In fact such
a morphism induces a pseudo-functor between the bigroupoids having Azumaya
algebras as objects, invertible bimodules as arrows and bimodule isomorphisms as
2-cells. Compare with [27], where a similar 2-exact sequence is obtained using
homotopy cokernels instead of homotopy fibres.

3 The cohomology sequence

Let us fix a cat-group G. A G-cat-group is a pair (C, γ) where C is a cat-group
and γ : G → AutC is a monoidal functor with codomain the cat-group of monoidal
auto-equivalences of C. G-cat-groups are the objects of a 2-category, having equi-
variant monoidal functors as arrows and compatible monoidal transformations as
2-cells (see [9, 12] for more details and for an equivalent definition of G-cat-group
in terms of an action G×C → C). Observe that homotopy kernels in the 2-category
of G-cat-groups are computed as in the 2-category of cat-groups (in other words,
if j : (B, β) → (C, γ) is a morphism of G-cat-groups and i : A → B is its kernel as
a morphism of cat-groups, then A inherits from B a structure α : G → AutA of
G-cat-group such that i : A → B is a morphism of G-cat-groups).

If (C, γ) is a G-cat-group, a derivation is a pair 〈M : G → C,m〉 where M is a
functor and

m = {mX,Y : M(X)⊗ γ(X)(M(Y )) →M(X ⊗ Y )}X,Y ∈G

is a natural family of coherent isomorphisms (for more details, see [13], where C is
assumed to be braided, or [11], where G is discrete). Derivations are the objects of
a bigroupoid Z1(G,C) :

- an arrow is a pair 〈C, c〉 : 〈M,m〉 → 〈N,n〉 with C ∈ C and

c = {cX : M(X)⊗ γ(X)(C) → C ⊗N(X)}X∈G

is a natural family of isomorphisms, compatible with m and n;
- a 2-cell f : 〈C, c〉 ⇒ 〈C ′, c′〉 is an arrow f : C → C ′ in C compatible with c

and c′.
In Z1(G,C) there is a trivial derivation

θC = 〈0: G → C, {I ⊗ γ(X)(I) ' I}〉
and the cat-group Z1(G,C)(θC, θC) is the cat-group CG of G-invariant objects.
Explicitly:

- an object of CG is a pair 〈C, c〉 with C ∈ C and

c = {cX : γ(X)(C) → C}X∈G

a natural family of isomorphisms compatible with the monoidal structure of
G;

- an arrow f : 〈C, c〉 → 〈D,d〉 in CG is an arrow f : C → D in C such that
the following diagram commutes for each X ∈ G

γ(X)(C)
cX //

γ(X)(f)

��

C

f

��
γ(X)(D)

dX

// D
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A morphism j : (B, β) → (C, γ) of G-cat-groups induces a pseudo-functor

j∗ : Z1(G,B) → Z1(G,C).

This pseudo-functor j∗ sends a derivation 〈H : G → B,h〉 into the derivation 〈H ·
j : G → B → C, j(h)〉, where j(h) is defined by the following composition

j(H(X))⊗ γ(X)(j(H(Y )))

'
��

j(H(X))⊗ j(β(X)(H(Y )))

'
��

j(H(X)⊗ β(X)(H(Y )))

j(hX,Y )

��
j(H(X ⊗ Y ))

(the first isomorphism is the equivariant structure of j, the second one is its monoidal
structure) and is defined in an obvious way on arrows and 2-cells.

In the next lemma we need the homotopy fibre F of j∗ at the point θB. Let us
describe explicitly the objects of F (without loosing in generality, we can assume
that j(I) = I, so that j∗(θB) = θC). An object of F is a 4-tuple

〈D = 〈H : G → B,h〉 ∈ Z1(G,B), 〈H ∈ C,h〉 ∈ Z1(G,C)(j∗(D), θC) 〉
with

h = {hX,Y : H(X)⊗ β(X)(H(Y )) → H(X ⊗ Y )}X,Y ∈G

h = {hX : j(H(X))⊗ γ(X)(H) → H}X∈G

Lemma 3.1 Consider an essentially surjective morphism j : B → C of G-cat-
groups and its homotopy kernel

B
j

��>
>>

>>
>>

κj⇓

A = Kerj

i

::uuuuuuuuuu

0
// C

The homotopy fibre F of j∗ : Z1(G,B) → Z1(G,C) at the point θB is biequivalent to
the bigroupoid of derivations Z1(G,A).

Proof Given an object in Z1(G,A)

〈F : G → A, f = {fX,Y : F (X)⊗ α(X)(F (Y )) → F (X ⊗ Y )}X,Y ∈G〉
we get an object in F

〈 〈F · i : G → A → B, i(f)〉, 〈I ∈ C, {κjF (X) : j(i(F (X))) → I}X∈G〉 〉

This construction extends to a 2-functor ε : Z1(G,A) → F which is always locally
an equivalence (even if j : B → C is not essentially surjective). Let us check that ε
is surjective on objects up to equivalence. Let 〈 〈H : G → B,h〉, 〈H ∈ C,h〉 〉 be an
object of F. Since j : B → C is essentially surjective, there is an object Z ∈ B and
an arrow z : H → j(Z). Now we can construct a functor

D : G → B X 7→ Z∗ ⊗H(X)⊗ β(X)(Z)
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(Z∗ is a dual of Z in the cat-group B) which has a structure of derivation d =
{dX,Y : D(X)⊗β(X)(D(Y )) → D(X⊗Y )} obtained from that of H in the following
way

D(X)⊗ β(X)(D(Y ))

=

��
Z∗ ⊗H(X)⊗ β(X)(Z)⊗ β(X)(Z∗ ⊗H(Y )⊗ β(Y )(Z))

'
��

Z∗ ⊗H(X)⊗ β(X)(Z)⊗ β(X)(Z∗)⊗ β(X)(H(Y )⊗ β(Y )(Z))

'
��

Z∗ ⊗H(X)⊗ β(X)(H(Y ))⊗ β(X)(β(Y )(Z))

'
��

Z∗ ⊗H(X)⊗ β(X)(H(Y ))⊗ β(X ⊗ Y )(Z)

1⊗hX,Y ⊗1

��
Z∗ ⊗H(X ⊗ Y )⊗ β(X ⊗ Y )(Z) = D(X ⊗ Y )

Observe now that the functor D : G → B factors through the kernel of j. Indeed, if
X ∈ G, we have

j(D(X)) = j(Z∗ ⊗H(X)⊗ β(X)(Z))

'
��

j(Z∗)⊗ j(H(X))⊗ j(β(X)(Z))

'
��

j(Z∗)⊗ j(H(X))⊗ γ(X)(j(Z))

z∗⊗1⊗z−1

��
H
∗ ⊗ j(H(X))⊗ γ(X)(H)

1⊗hX

��
H
∗ ⊗H ' I

Let us call D̃ : G → A the factorization of D : G → B through the kernel A. The
structure d of the derivation D pass to D̃ because h is compatible with j(h) and
with the structure of the trivial derivation θC. In this way, we have built up an
object 〈D̃ : G → A, d̃〉 of Z1(G,A). Finally, an arrow

〈 〈H : G → B,h〉, 〈H ∈ C,h〉 〉 → ε〈D̃ : G → A, d̃〉

in F is provided by Z ∈ B, z : H → j(Z) and by the family of canonical isomorphisms

{H(X)⊗ β(X)(Z) ' Z ⊗ Z∗ ⊗H(X)⊗ β(X)(Z) = Z ⊗D(X)}X∈G
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An essentially surjective morphism with its homotopy kernel

B
j

��?
??

??
??

κj⇓

A

i

??�������

0
// C

is called in [4, 8, 24] an extension. Putting together Proposition 2.2 and the previous
lemma, we get our generalization of the fundamental sequence in non-abelian group
cohomology. We write H1(G,C) for cl(Z1(G,C)).

Corollary 3.2 Consider an extension of G-cat-groups

B
j

��?
??

??
??

κj⇓

A

i

??�������

0
// C

There is a 2-exact sequence of cat-groups and pointed groupoids

AG → BG → CG → H1(G,A) → H1(G,B) → H1(G,C) .

Remark 3.3 Observe that if the cat-groups G,B,C and the monoidal functor
j : B → C are strict, then j∗ : Z1(G,B) → Z1(G,C) is a 2-functor between 2-
groupoids, and the cat-groups involved in the previous corollary are strict, that is
they are crossed modules.

To end, we sketch an equivalent description of the bigroupoid Z1(G,C) of
derivations using the semi-direct product. Let us start with a general construction:
if G and H are bicategories, [G,H] is the bicategory of pseudo-functors G → H,
pseudo-natural transformations and modifications [2, 3]. If G and H are cat-groups,
we can see them as bicategories with only one object, and [G,H] is now a bigroupoid.
Explicitly:

- an object of [G,H] is a monoidal functor F : G → H;
- an arrow (H,ϕ) : F → G : G → H is an object H of H and a natural trans-

formation

H
−⊗H

��@
@@

@@
@@

ϕ⇓G

F

??~~~~~~~

G ��@
@@

@@
@@

H

H
H⊗−

??~~~~~~~

making commutative the following diagrams

F (X)⊗ F (Y )⊗H
1⊗ϕY //

'
��

F (X)⊗H ⊗G(Y )
ϕX⊗1 // H ⊗G(X)⊗G(Y )

'
��

F (X ⊗ Y )⊗H
ϕX⊗Y

// H ⊗G(X ⊗ Y )
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F (I)⊗H

ϕI

��

I ⊗H ' H
'oo

1

��
H ⊗G(I) H ⊗ I ' H'

oo

Observe that composition of arrows and parallel composition of 2-cells are defined
using the tensor product in H. Finally, a morphism of cat-groups P : H → K induces
a pseudo-functor P∗ : [G,H] → [G,K].

Now we apply the previous construction to a particular case. Consider a cat-
group G and a G-cat-group (C, γ : G → AutC). Following [12], we can construct the
semi-direct product G×γ C together with the projection P : G×γ C → G, which is
a monoidal functor. Therefore, we have a pseudo-functor

P∗ : [G,G×γ C] → [G,G]

and it is possible to construct a biequivalence from Z1(G,C) to the homotopy fibre
of P∗ at the point IdG ∈ [G,G]. This biequivalence is another way to formulate the
universal property of the semi-direct product studied in [13].

4 The simplicial topological point of view

As with the original paper [5] of Brown, we are motivated by homotopy theory
and the classical exact sequences of homotopy groups and pointed sets which occur
there, although in the previous sections the linkage to 2-types of topological spaces is
far in the background. Indeed, because our bicategorical notion of 2-exact sequence,
the presentation has been more homological/algebraic in feeling.

Nevertheless, the link to simplicial homotopy theory as pioneered by Daniel
Kan, John Moore, and John Milnor in the fifties is quite direct. To briefly review
the relevant parts of this theory 1, recall that as observed by Kan, the property of
the singular complex of a topological space which permits one to combinatorially
define all of the homotopy groups at any base point is that the singular complex
has a simple simplicial horn-lifting property which makes it a “Kan complex”, and
that a corresponding “Kan fibration” property (that corresponds essentially to the
lifting properties of a fibration of spaces) is all that is needed to associate to a
pointed simplicial Kan fibration f with fiber F :

F ⊂ E −→ B

1For more detail see [21], [10], or [1]
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a long exact sequence of pointed sets, groups and abelian groups:

πn(F )
πn(i) // πn(E)

πn(f) // πn(B)

π2(F )
π2(i)

// π2(E)
π2(f) // π2(B)

δ

uujjjjjjjjjjjjjjjjjj

π1(F )
π1(i)

// π1(E)
π1(f) // π1(B)

δ

uujjjjjjjjjjjjjjjjjj

π0(F )
π0(i)

// π0(E)
π0(f) // π0(B).

Now associated with any pointed simplicial complex X is the contractible complex
P(X) of “based paths” of X which has as its 0-simplices the 1-simplices of X of
the form x −→ 0, where 0 ∈ X0 is the base point. It is supplied with a canonical
pointed simplicial map (last face) dn(X) : P(X) −→ X which is a Kan fibration
provided that X is a Kan complex. The fiber of this simplicial map is then also a
Kan complex and is, of course, the complex Ω(X) of loops of X at the base point
of X.

Ω(X) ⊂ P(X) −→ X

The long exact sequence associated with this fibration (since πi(P(X)) = {0}) just
recapitulates the familiar sequence of isomorphisms

πi(Ω(X)) ' πi+1(X) i ≥ 0.

Thus if f : X −→ Y is a pointed simplicial map of Kan complexes, one can
form the pullback along f of the fibration dn(Y ) : P(Y ) −→ Y

Ω(Y )

⊆
��

∼= // Ω(Y )

⊆
��

Γ(f)
pr2 //

pr1

��

P(Y )

��
X

f
// Y

The fibers at the base point are then isomorphic and pr1, as a pullback of a fibration,
is itself a fibration. We then obtain a long exact sequence associated with the
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fibration pr1,

πn(Ω(Y ))
πn(i) // πn(Γ(f))

πn(f) // πn(X)

π2(Ω(Y ))
π2(i)

// π2(Γ(f))
π2(pr1) // π2(X)

δ

ttiiiiiiiiiiiiiiiiiiii

π1(Ω(Y ))
π1(i)

// π1(Γ(f))
π1(pr1) // π1(X)

δ

ttiiiiiiiiiiiiiiiiiiii

π0(Ω(Y ))
π0(i)

// π0(Γ(f))
π0(pr1) // π0(X)

which then becomes the long exact sequence of the pointed simplicial mapping
f : X −→ Y :

πn+1(Y )
πn(i) // πn(Γ(f))

πn(f) // πn(X)

π3(Y )
π2(i)

// π2(Γ(f))
π2(pr1) // π2(X)

δ

ttiiiiiiiiiiiiiiiiiiiii

π2(Y )
π1(i)

// π1(Γ(f))
π1(pr1) // π1(X)

δ

ttiiiiiiiiiiiiiiiiiiiii

π1(Y )
π0(i)

// π0(Γ(f))
π0(pr1) // π0(X)

π0(f)
ttiiiiiiiiiiiiiiiiiiiii

π0(Y )

or, equivalently,

πn(Γ(f))
πn(pr1) // πn(X)

πn(f) // πn(Y )

π2(Γ(f))
π2(pr1)

// π2(X)
π2(f) // π2(Y )

π1(i)

ttjjjjjjjjjjjjjjjjjj

π1(Γ(f))
π1(pr1)

// π1(X)
π1(f) // π1(Y )

π0(i)

ttjjjjjjjjjjjjjjjjjj

π0(Γ(f))
π0(pr1)

// π0(X)
π0(f) // π0(Y )

and thus another justification for calling Γ(f) the homotopy fiber of f : X −→ Y.
If f is already a fibration with fiber F, then pr2 : Γ(f) −→ P(Y ) is a fibration and
its long exact sequence combined with the contractibility of P(Y ) then gives that
πn(F ) ' πn(Γ(f)), as expected. If f is an inclusion f : X ⊆ Y then Γ(f) defines
the homotopy groups of Y relative to X with πn−1(Γ(f)) = πn(Y ;X).
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In the previous sections, we have used bigroupoids, that is bicategories in which
every 2-cell is an isomorphism and every 1-cell is an equivalence (i.e., invertible up
to isomorphism with respect to the (horizontal)“tensor product ” composition).
The link to simplicial topology now comes from the fact that every bicategory G
has a simplicial set nerve, Ner(G), and this simplicial set is is a Kan complex,
precisely when the bicategory is a bigroupoid, i.e., has exactly the same invertibility
requirements as those required for the bicategory to be a bigroupoid [10]. This
nerve is minimal in dimensions ≥ 2 and if one chooses a base point 0 ∈ Ner(G)0,
which is the set of objects or 0-cells of G, then Ner(G) has at that basepoint:

• π0(Ner(G)) = the pointed set of categorical equivalence classes of the objects
of G, pointed by the class of 0.

• π1(Ner(G)) = the group of homotopy classes of 1-cells of the form f : 0 −→ 0
under (horizontal) tensor composition of 1-cells

= π0(G(0, 0)), the set of connected components of the groupoid G(0, 0) =DEF

G(0), whose objects are 1-cells f : 0 −→ 0 and whose arrows are the 2-cell
isomorphisms α : f =⇒ g and whose nerve is Ω(Ner(G)) at the basepoint 0.

= π1(cl(G)), where cl(G) denotes, as in Section 2, the groupoid which has the
same objects as G but has 2-cell isomorphism classes of 1-cells for arrows
and is the fundamental groupoid Π1(Ner(G)) of the Kan complex Ner(G).

• π2(Ner(G)) = the abelian group of 2-simplices all of whose 1-simplex faces
are at the base point s0(0) : 0 −→ 02

= Aut(10) in the groupoid G(0, 0)), where 10 = s0(0) : 0 −→ 0 is the pseudo-
identity 1-cell for 0 under tensor composition

= π1(G(0)) in the notation of Section 2, and equivalently, π1(Ω(Ner(G)) in
conventional simplicial notation.

• For i ≥ 3, πi(Ner(G)) = 0, since, by definition, the canonical map

Ner(G) −→ Cosk3(Ner(G))

is an isomorphism and this forces all higher dimensional homotopy groups
of the pointed Kan complex Ner(G) to be trivial.

Now it is easy to verify that simplicial maps between nerves of bigroupoids
correspond exactly to strictly unitary homomorphisms P : G −→ H of bigroupoids.
With this in mind and choosing P (0) = 0 as the base point ofH, we obtain a pointed
simplicial mapping of Kan complexes Ner(P ) : Ner(G) −→ Ner(H). Thus all one
need note is that the nerve of the “homotopy fiber bigroupoid” F0 of Section 2 is
just Γ(Ner(P )), F0(0) ' Ω(Γ(Ner(P ))), and that the long exact sequence of the
pointed simplicial mapping Ner(P ) is precisely the nine term sequence of Corollary
2.3.

Similar remarks apply to Brown’s original paper: every category G has canon-
ically associated to a simplicial set, its Grothendieck nerve, whose n-simplices can
be identified with “composable sequences of length n of arrows of the category”.
The resulting simplicial set is a Kan complex if, and only if, every arrow of G is
invertible, i.e., G is a groupoid. For any object 0 in Ner(G) as a base point, Ner(G)
has only the pointed set of isomorphism classes of its objects as π0 and Aut(0) as
π1. The long exact sequence above then reduces to a six term one of exactly the
same form.

2The complex is minimal in this dimension (and higher), so homotopic 2-simplices are equal.
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Note that in both cases, the weakest tenable notion of f : X −→ Y is a fibration
is that which guarantees that for any choice of basepoint, the canonical simplicial
mapping from the true fiber Fib(f) of the mapping f to the “homotopy fiber” Γ(f)
of the same mapping be a weak equivalence.
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