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Abstract. We define the cohomology categorical groups of a com-
plex of symmetric categorical groups, and we construct a long 2-
exact sequence from an extension of complexes. As special cases,
we obtain Ulbrich cohomology of Picard categories and the Hattori-
Villamayor-Zelinsky sequence associated with a ring homomorphism.
Applications to simplicial cohomology with coefficients in a symmet-
ric categorical group, and to derivations of categorical groups are also
discussed.
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1 Introduction

In the late seventies, Villamayor and Zelinsky [18] and, independently, Hattori
[9], discovered a long exact sequence connecting Amitsur cohomology groups of
a commutative algebra with coefficients U (the group of units) and Pic (the
Picard group). The search of a better understanding of the Hattori-Villamayor-
Zelinsky sequence lead to a series of works by Takeuchi and Ulbrich culminating
with a cohomology theory for Picard categories [13, 14, 15, 16, 17].

The aim of this work is to revisit the previous results using recent tech-
niques developed in higher dimensional homological algebra. In fact, we will
derive Hattori-Villamayor-Zelinsky sequence and Ulbrich cohomology as special
instances of general results on the homology of symmetric categorical groups.

The plan of the paper is the following:

Sect. 2 The kernel and the cokernel of a morphism between symmetric categor-
ical groups have been studied in [10, 19]. Here we refine these notions,
introducing kernel and cokernel relative to a natural transformation ϕ, as
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in the following diagram

Ker(F,ϕ) // A 0 //

F ��>
>>

>>
>>

> C // Coker(ϕ,G)

B
G

@@��������

ϕ

⇑

Sect. 3 Using relative kernels and cokernels, we define the cohomology categori-
cal groups of a complex of symmetric categorical groups. As for abelian
groups, there are two possible definitions, giving equivalent cohomology
categorical groups.

Sect. 4 An extension of (symmetric) categorical groups is a diagram

A 0 //

F ��?
??

??
??

C

B
G

??�������

ϕ

⇑

which is 2-exact in the sense of [10, 19] and such that F is faithful and G is
essentially surjective (see [1, 12]). Following the lines of [11], we associate
a long 2-exact sequence of cohomology categorical groups to any extension
of complexes of symmetric categorical groups.

Sect. 5 We specialize the previous result to get Ulbrich cohomology and Hattori-
Villamayor-Zelinsky exact sequences. We discuss also simplicial cohomol-
ogy with coefficients in a symmetric categorical group.

Sect. 6 In [7], a six term 2-exact sequence involving the low-dimensional cohomol-
ogy of a categorical group G with coefficients in a symmetric G-module
is constructed. We obtain this sequence as a special case of the kernel-
cokernel lemma for symmetric categorical groups, which is a special case
of the long cohomology sequence obtained in Section 4.

2 Relative kernel and cokernel

A (symmetric) categorical group is a (symmetric) monoidal groupoid in which
each object is invertible, up to isomorphism, with respect to the tensor prod-
uct. We write CG for the 2-category of categorical groups, monoidal functors,
and monoidal natural transformations (which always are natural isomorphisms);
SCG is the 2-category of symmetric categorical groups, monoidal functors com-
patible with the symmetry, and monoidal natural transformations. For basic
facts on (symmetric) categorical groups, we refer to [10, 19] and the references
therein. As far as notations are concerned, if G is a (symmetric) categorical
group, we write π0(G) for the (abelian) group of its connected components,
and π1(G) for the abelian group of automorphisms of the unit object, that is
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π1(G) = G(I, I). If G is a group, we write G[0] for the discrete categorical group
having the elements of G as objects. If G is abelian, we write G[1] for the cate-
gorical group with just one object and having the elements of G as arrows (if G
is not abelian, G[1] is just a groupoid). If X is an object of a categorical group
G, we denote by X∗ a fixed dual of X. (Note: composition is always written
diagrammatically.)

2.1 The relative kernel

Given a morphism F : A → B in CG, the notation for its kernel, see [10, 19], is

A
F

��?
??

??
??

εF
⇓

KerF
0

//

eF

<<xxxxxxxxx
B

We consider now two composable morphisms F and G in CG, such that
the composite is naturally equivalent to the zero functor, and we construct the
relative kernel as in the following diagram

Ker(F,ϕ)
e(F,ϕ) //

0

88A
ε(F,ϕ)
⇓

F //

0

%%
B

ϕ

⇑
G // C (1)

The relative kernel Ker(F,ϕ) is in CG (in SCG if F,G and ϕ are in SCG), and
it can be described as follows:

- an object is a pair (A ∈ A, a : FA → I) such that the following diagram
commutes

G(FA) Ga //

ϕA
""E

EE
EE

EE
EE

GI

I

GI

??~~~~~~~~

- an arrow f : (A, a) → (A′, a′) is an arrow f : A→ A′ such that the follow-
ing diagram commutes

FA
Ff //

a
  A

AA
AA

AA
A FA′

a′}}||
||

||
||

I
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- the faithful functor e(F,ϕ) is defined by e(F,ϕ)(A, a) = A, and the natural
transformation ε(F,ϕ) by ε(F,ϕ)(A, a) = a.

The natural transformation ε(F,ϕ) is compatible with ϕ, in the sense that the
following diagram commutes

e(F,ϕ) · F ·G
e(F,ϕ)·ϕ +3

ε(F,ϕ)·G
��

e(F,ϕ) · 0

can

��
0 ·G can

+3 0

The relative kernel is a bi-limit, in the sense that it satisfies the following
universal property (and it is determined by this property, up to equivalence):
given a diagram in CG

K E //

0

99A
ψ

⇓

F //

0

%%
B

ϕ

⇑
G // C (2)

with ψ compatible with ϕ, there is a factorization

(E′ : K → Ker(F,ϕ) , ψ′ : E′ · e(F,ϕ) ⇒ E)

in CG of (E,ψ) through (e(F,ϕ), ε(F,ϕ)), that is the following diagram commutes

E′ · e(F,ϕ) · F
ψ′·F +3

E′·ε(F,ϕ)

��

E · F

ψ

��
E′ · 0 can

+3 0

and, if (E′′, ψ′′) is another factorization of (E,ψ) through (e(F,ϕ), ε(F,ϕ)), then
there is a unique 2-cell e : E′ ⇒ E′′ such that

E′ · e(F,ϕ)

e·e(F,ϕ) +3

ψ′

 (H
HH

HH
HH

HH

HH
HH

HH
HH

H
E′′ · e(F,ϕ)

ψ′′

v~ uuuuuuuuu

uuuuuuuuu

E

commutes. The relative kernel is also a standard homotopy kernel, in the sense
that it satisfies the following universal property (and it is determined by this
property, up to isomorphism): in the situation of diagram (2), there is a unique
E′ : K → Ker(F,ϕ) in CG such that E′ · e(F,ϕ) = E and E′ · ε(F,ϕ) = ψ.

To prove the previous universal properties is a simple exercise. The next
proposition expresses the kind of injectivity measured by the relative kernel
(compare with the similar results stated in [10, 19] for the usual kernel).
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Proposition 2.1 With the notations of diagram (1).

1. π1(Ker(F,ϕ)) = 0 if and only if F is faithful;

2. π0(Ker(F,ϕ)) = 0 if and only if F is ϕ-full (this means full with respect
to arrows g : FA1 → FA2 such that G(g) · ϕA2 = ϕA1).

Proof. 1) We know from [10, 19] that π1(KerF ) = 0 if and only if F is faith-
ful. Moreover, the comparison between Ker(F,ϕ) and KerF is full and faithful,
so that it induces an isomorphism between π1(Ker(F,ϕ)) and π1(KerF ).

2) Let (A, a) be an object of Ker(F,ϕ). The arrow a · FI : FA→ I → FI is
such that G(a · FI) · ϕI = ϕA. If F is ϕ-full, there exists α : A → I such that
F (α) = a · FI . This means that α realizes an isomorphism between (A, a) and
the unit object of Ker(F,ϕ).

Conversely, if g : FA1 → FA2 is such that G(g) · ϕA2 = ϕA1 , then the
following is an object of Ker(F,ϕ)

(A1 ⊗A∗2, g ⊗ 1: F (A1 ⊗A∗2) ' FA1 ⊗ FA∗2 → FA2 ⊗ FA∗2 ' I)

If π0(Ker(F,ϕ)) = 0, there is a morphism h : (A1 ⊗ A∗2, g ⊗ 1) → (I, F−1
I ) in

Ker(F,ϕ). Now, if we call f : A1 → A2 the following composition

A1 ' A1 ⊗ I ' A1 ⊗A∗2 ⊗A2
h⊗1 // I ⊗A2 ' A2

we have that F (f) = g. �

A direct consequence of the universal property (as a bi-limit) of the relative
kernel is the following cancellation property.

Proposition 2.2 In the situation of diagram (1), consider the following dia-
gram in CG

Ker(F,ϕ)
e(F,ϕ)

$$II
III

III
II

α

⇓

K
0

//

H
::uuuuuuuuuu

A

If α and ε(F,ϕ) are compatible, then there is a unique 2-cell α : H ⇒ 0 such that
α · e(F,ϕ) = α.

Proof. This is because (H,α) and (0, can : 0 · e(F,ϕ) ⇒ 0) provide two factor-
izations of (0, can : 0 · F ⇒ 0) through the relative kernel. �

To finish, let us observe that the usual kernel is a special case of the relative
one. Indeed, given a morphism F : A → B in CG, we can consider the canonical
natural isomorphism

B
0

��>
>>

>>
>>

can

⇓

A
0

//

F

??�������
0

and the relative kernel Ker(F, can) is nothing but the usual kernel KerF. In
particular, can-full just means full.

5



2.2 The relative cokernel

Given a morphism G : B → C in SCG, the notation for its cokernel, see [10, 19],
is

C
PG

$$H
HHHHHHHH

πG
⇓

B
0

//

G

??�������
CokerG

The picture for the relative cokernel is the following one (everything is in
SCG):

A F //

0

99B
ϕ

⇓

G //

0

''
C

π(ϕ,G)
⇑ P(ϕ,G) // Coker(ϕ,G) (3)

The relative cokernel Coker(ϕ,G) can be described as follows:

- objects are those of C ;

- pre-arrows are pairs (B, f) : X → Y with B ∈ B and f : X → GB ⊗ Y ;

- an arrow is a class of pre-arrows, two pre-arrows (B, f), (B′, f ′) : X → Y
are equivalent if there is A ∈ A and a : B → F (A) ⊗ B′ such that the
following diagram commutes

X
f //

f ′

��

GB ⊗ Y

Ga⊗1

��
GB′ ⊗ Y

'
��

G(FA⊗B′)⊗ Y

'
��

I ⊗GB′ ⊗ Y G(FA)⊗GB′ ⊗ Y
ϕA⊗1⊗1

oo

- the essentially surjective functor P(ϕ,G) and the natural transformation
π(ϕ,G) are defined as for the usual cokernel.

Once again, the natural transformation π(ϕ,G) is compatible with ϕ, in the sense
that the following diagram commutes

F ·G · P(ϕ,G)

ϕ·P(ϕ,G) +3

F ·π(ϕ,G)

��

0 · P(ϕ,G)

can

��
F · 0 can

+3 0
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Like the relative kernel, the relative cokernel is both a bi-limit and a standard
homotopy cokernel with respect to diagrams in SCG of the following kind

A F //

0

99B
ϕ

⇓

G //

0

%%
C

ψ

⇑
P // K (4)

where ψ is compatible with ϕ in the obvious sense. We leave to the reader
to state the universal properties and the cancellation property for the relative
cokernel.

In the next proposition, we fix the kind of surjectivity measured by the
relative cokernel.

Proposition 2.3 With the notations of diagram (3).

1. π0(Coker(ϕ,G)) = 0 if and only if G is essentially surjective;

2. π1(Coker(ϕ,G)) = 0 if and only if G is ϕ-full (this means that, given
h : GB1 → GB2, there is A ∈ A and g : B1 → FA ⊗ B2 such that h =
G(g) · (ϕA ⊗ 1GB2) ).

Proof. 1) From [10, 19], we know that π0(CokerG) = 0 if and only if
G is essentially surjective. Moreover, the comparison between CokerG and
Coker(ϕ,G) is full and essentially surjective, so that it induces an isomorphism
between π0(CokerG) and π0(Coker(ϕ,G)).

2) Let [B ∈ B, b : I → GB ⊗ I] : I → I be a morphism in Coker(ϕ,G).
The arrow b gives rise to an arrow h : GI ' I → GB ⊗ I ' GB in C. If G is
ϕ-full, there is A ∈ A and g : I → FA ⊗ B such that h = G(g) · (ϕA ⊗ 1GB).
The pair (A, g) attests that the morphism [B, b] is equal to the identity on I in
Coker(ϕ,G).

Conversely, let g : GB1 → GB2 be a morphism in C. We get the following
morphism in Coker(ϕ,G)

I
πG(B1)

−1

// GB1

PG(h) // GB2

πG(B2) // I

If π1(Coker(ϕ,G)) = 0, the previous morphism is equal to the identity. This
means that there is A ∈ A and a : B1 → FA⊗B2 such that G(a) · (ϕA⊗1) = h.

�

The usual cokernel is a particular case of the relative cokernel. Indeed,
given a morphism G : B → C in SCG, its cokernel is the relative cokernel
Coker(can,G) as in the following diagram

B
G

��?
??

??
??

can

⇓

0
0

//

0

??�������
C
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Once again, can-full just means full.

2.3 2-exactness and relative 2-exactness

Let us recall from [10, 19] the notion of 2-exactness. Consider a sequence
(F,ϕ,G) in SCG together with the canonical factorizations through the ker-
nel and the cokernel

A

F ′
""F

FF
FF

FF
FF

F //

0

**B

PF ((RRRRRRRRRRRRRRR

ϕ

⇑
G // C

KerG //
eG

66mmmmmmmmmmmmmm
CokerF ′ ' KerG′ // CokerF

G′

;;vvvvvvvvv

We say that the sequence (F,ϕ,G) is 2-exact if the functor F ′ is full and essen-
tially surjective on objects or, equivalently, if the functor G′ is full and faithful.
This is also equivalent to say that CokerF ′ (or KerG′) is equivalent to 0.

Consider now the following diagram in SCG

A′
L //

0

  
A

α

⇑
F //

0

??B
ϕ

⇓

G //

0

  
C

γ

⇑
M // C′

with α compatible with ϕ and ϕ compatible wit γ. By the universal property of
the relative kernel Ker(G, γ), we get a factorization (F ′, ϕ′) of (F,ϕ) through
(e(G,γ), ε(G,γ)). By the cancellation property of e(G,γ), we have a 2-cell α as in
the following diagram

A′
L //

0

""F
FFFFFFFFFFFFFFFFF A

F ′

��

F // B G // C
α

⇓

Ker(G, γ)

e(G,γ)

99ssssssssssssssssssssss
// Coker(α, F ′)

ϕ′

⇑
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The dual construction gives rise to the following diagram

A F // B

P(α,F )

%%KKKKKKKKKKKKKKKKKKKKKK
G // C M // C′

Ker(G′, γ)

ϕ′′

⇑

// Coker(α, F )

G′

OO

0

;;wwwwwwwwwwwwwwwwwww

γ

⇓

A direct calculation shows that Coker(α, F ′) ' Ker(G′, γ). We say that the
sequence (L,α, F, ϕ,G, γ,M) is relative 2-exact if the functor F ′ is essentially
surjective and α-full or, equivalently, if the functor G′ is faithful and γ-full. This
is also equivalent to say that Coker(α, F ′) (or Ker(G′, γ)) is equivalent to 0.

Since the comparison Ker(G, γ) → KerG is full and faithful, 2-exactness
always implies relative 2-exactness. To make clear the difference between 2-
exactness and relative 2-exactness, let us consider two basic examples.

Example 2.4

1. Consider the following sequence in SCG

0
0 // A F // B

PF // CokerF

together with can : 0 ·F ⇒ 0 and πF : F ·PF ⇒ 0. It is always 2-exact in B.
It is 2-exact in A if and only if F is full and faithful. Moreover, it is relative
2-exact in A if and only if F is faithful. Indeed, π0(Ker(F, πF )) = 0, so
that any functor F is πF -full.

2. Consider the following sequence in SCG

KerG
eG // B G // C 0 // 0

together with εG : eG · G ⇒ 0 and can : G · 0 ⇒ 0. It is always 2-exact
in B. It is 2-exact in C if and only if G is full and essentially surjective.
Moreover, it is relative 2-exact in C if and only if G is essentially surjective.
Indeed, π1(Coker(can,G)) = 0, so that any functor G is εG-full.

3 The cohomology of a complex

From [11, 13], recall that a complex of symmetric categorical groups is a diagram
in SCG of the form

A• = A0
L0 // A1

L1 // A2
L2 // . . . Ln−1 // An

Ln // An+1
Ln+1 // . . .
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together with a family of 2-cells {αn : Ln · Ln+1 ⇒ 0}n≥0 such that, for all n,
the following diagram commutes

Ln−1 · Ln · Ln+1
Ln−1·αn +3

αn−1·Ln+1

��

Ln−1 · 0

can

��
0 · Ln+1 can

+3 0

To define the n-th cohomology categorical group of the complex A•, we use
the following part of the complex

An−2
Ln−2 //

0

""
An−1

αn−2
⇑

Ln−1 //

0

<<An
αn−1
⇓

Ln //

0

""
An+1

αn
⇑

Ln+1 // An+2

and we repeat the construction given in 2.3: by the universal property of the
relative kernel Ker(Ln, αn), we get a factorization (L′n−1, α

′
n−1) of (Ln−1, αn−1)

through (e(Ln,αn), ε(Ln,αn)). By the cancellation property of e(Ln,αn), we have a
2-cell αn−2 as in the following diagram

An−2
Ln−2 //

0

$$H
HHHHHHHHHHHHHHHHHH

An−1

L′n−1

��

Ln−1 // An
Ln // An+1

αn−2
⇓

Ker(Ln, αn)

e(Ln,αn)

88pppppppppppppppppppppppp
// Coker(αn−2, L

′
n−1)

α′n−1
⇑

Definition 3.1 With the previous notations, we define the n-th cohomology
categorical group of the complex A• as the following relative cokernel

Hn(A•) = Coker(αn−2, L
′
n−1).

Note that, as in Section 2.3, there is a dual construction of Hn(A•) starting with
the relative cokernel Coker(αn−2, Ln−1) and ending with a convenient relative
kernel. The resulting categorical groups are equivalent. Note also that, to get
H0(A•) and H1(A•), we have to complete the complex A• on the left with two
zero-morphisms and two canonical 2-cells

0
0 // 0

0 // A0
L0 // A1 . . . , can : 0 · 0 ⇒ 0 , can : 0 · L0 ⇒ 0

We give now an explicit description of Hn(A•) :
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- an object of Hn(A•) is an object of the relative kernel Ker(Ln, αn), that
is a pair

(An ∈ An, an : Ln(An) → I)

such that Ln+1(an) = αn(An) ;

- a pre-arrow (An, an) → (A′n, a
′
n) is a pair

(Xn−1 ∈ An−1, xn−1 : An → Ln−1(Xn−1)⊗A′n)

such that the following diagram commutes

Ln(An)
Ln(xn−1) //

an

��

Ln(Ln−1(Xn−1)⊗A′n)

'
��

I Ln(Ln−1(Xn−1))⊗ Ln(A′n)

αn−1(Xn−1)⊗1

��
Ln(A′n)

a′n

OO

I ⊗ Ln(A′n)'
oo

- an arrow is a class of pre-arrows; two parallel pre-arrows

(Xn−1, xn−1), (X ′
n−1, x

′
n−1) : (An, an) → (A′n, a

′
n)

are equivalent if there is a pair

(Pn−2 ∈ An−2, pn−2 : Xn−1 → Ln−2(Pn−2)⊗X ′
n−1)

such that the following diagram commutes

An
xn−1 //

x′n−1

��

Ln−1(Xn−1)⊗A′n

Ln−1(pn−2)⊗1

��
Ln−1(X ′

n−1)⊗A′n Ln−1(Ln−2(Pn−2)⊗X ′
n−1)⊗A′n

'
��

I ⊗ Ln−1(X ′
n−1)⊗A′n

'

OO

Ln−1(Ln−2(Pn−2))⊗ Ln−1(X ′
n−1)⊗A′nJKHI

αn−2(Pn−2)⊗1⊗1

OO

Remark 3.2 From the previous description, it is evident that

π0(Hn(A•)) ' π1(Hn+1(A•))

This will be useful in Section 5 to make some proofs shorter.
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Let us look now at the functoriality of Hn. A morphism F• : A• → B• of
complexes in SCG is pictured in the following diagram

. . .An−1

0

##

λn−1
⇓

Ln−1 //

Fn−1

��

An

αn−1
⇑

λn
⇓

Ln //

Fn

��

An+1 . . .

Fn+1

��
. . .Bn−1

0

;;Mn−1

// Bn
Mn

//

βn−1
⇓

Bn+1 . . .

where the family of 2-cells {λn : Ln · Fn+1 ⇒ Fn ·Mn}n≥0 makes commutative
the following diagram

Ln−1 · Ln · Fn+1
Ln−1·λn +3

αn−1·Fn+1

��

Ln−1 · Fn ·Mn
λn−1·Mn +3 Fn−1 ·Mn−1 ·Mn

Fn−1·βn−1

��
0 · Fn+1 can

+3 0 Fn−1 · 0can
ks

Such a morphism induces, for each n, a morphism of symmetric categorical
groups Hn(F•) : Hn(A•) → Hn(B•). Its existence follows from the universal
property of the relative kernels and cokernels involved. It can be described
explicitly: given an object (An ∈ An, an : Ln(An) → I) in Hn(A•), we have

Hn(F•)(An, an) = (Fn(An) ∈ Bn, λ−1
n (An) · Fn+1(an) :

Mn(Fn(An)) → Fn+1(Ln(An)) → Fn+1(I) ' I)

The fact that (Fn(An), λ−1
n (An) · Fn+1(an)) is an object of the relative kernel

Ker(Mn, βn) depends on the condition on the family {λn}. Given an arrow

[Xn−1 ∈ An−1, xn−1 : An → Ln−1(Xn−1)⊗A′n] : (An, an) → (A′n, a
′
n)

in Hn(A•), we have

Hn(F•)[Xn−1, xn−1] = [Fn−1(Xn−1) ∈ Bn−1, Fn(xn−1) · (λn−1(Xn−1)⊗ 1) :

Fn(An) → Fn(Ln−1(Xn−1)⊗A′n) '

' Fn(Ln−1(Xn−1))⊗ Fn(A′n) →Mn−1(Fn−1(Xn−1))⊗ Fn(A′n)]
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4 The long cohomology sequence

Recall that an extension of symmetric categorical groups is a diagram in SCG

A 0 //

F ��?
??

??
??

C

B
G

??�������

ϕ

⇑

which is 2-exact, F is faithful and G is essentially surjective (see [1, 12]). Equiv-
alently, an extension is a diagram in SCG of the form

0
0 //

0

��
A

can

⇑
F //

0

??B
ϕ

⇓

G //

0

��
C

can

⇑
0 // 0

which is relative 2-exact in A,B and C. (Indeed, 2-exactness and relative 2-
exactness are equivalent conditions in B, because Ker(G, can) ' KerG and
can-full means full. Now, if the factorization of G through CokerF is full and
faithful, the relative 2-exactness in A of (0, can, F, ϕ,G) is equivalent to the
relative 2-exactness in A of (0, can, F, πF , PF ), that is, by Example 2.4, to the
faithfulness of F. The argument for the essential surjectivity of G is dual.)

A morphism of extensions is pictured in the following diagram

A

0

  

λ⇒

F //

L

��

B

ϕ

⇑

µ⇒

G //

M

��

C

N

��
A′

0

>>F ′
// B′

G′
//

ϕ′

⇓

C′

where the 2-cells make commutative the following diagram

F ·G ·N
F ·µ +3

ϕ·N
��

F ·M ·G′ λ·G′
+3 L · F ′ ·G′

L·ϕ′

��
0 ·N can

+3 0 L · 0can
ks
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Definition 4.1 An extension of complexes in SCG is a diagram

A•
0 //

F•   A
AA

AA
AA

A C•

B•
G•

>>}}}}}}}}

ϕ•
⇑

where

A•
F• // B•

G• // C•

are morphisms of complexes, and ϕ• = {ϕn : Fn · Gn ⇒ 0}n≥0 is a family of
2-cells such that, for each n,

An
0 //

Fn !!B
BB

BB
BB

B Cn

Bn
Gn

==||||||||

ϕn
⇑

is an extension of symmetric categorical groups and

An

0

##

λn⇒

Fn //

Ln

��

Bn

ϕn
⇑

µn⇒

Gn //

Mn

��

Cn

Nn

��
An+1

0

;;Fn+1

// Bn+1
Gn+1

//

ϕn+1
⇓

Cn+1

is a morphism of extensions.

Theorem 4.2 Let
A•

0 //

F•   A
AA

AA
AA

A C•

B•
G•

>>}}}}}}}}

ϕ•
⇑

be an extension of complexes of symmetric categorical groups. For each n, there
is a morphism ∆n and three 2-cells Hn(ϕ•),Σn and Ψn making the following
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long sequence 2-exact in each point

Hn(A•)
Hn(F•)//

0

��
Hn(B•)

Hn(ϕ•)
⇑

Hn(G•)//

0

>>
Hn(C•)

Σn
⇓

∆n //

0

##
Hn+1(A•)

Ψn
⇑

Hn+1(F•) // Hn+1(B•)

Proof. We give the construction of the morphisms and 2-cells involved in
the statement. As far as 2-exactness is concerned, we concentrate on the 2-
exactness in Hn(C•), which is the most delicate part of the proof. In fact, we
give a first construction of ∆n and Σn. We use these constructions to show that
the factorization of Hn(G•) through the kernel of ∆n is essentially surjective.
Then we give a second construction of Hn(C•),∆n and Σn, and we use them
to show that the factorization of Hn(G•) is full.

Construction of Hn(ϕ•) : given an object (An ∈ An, an : Ln(An) → I) in
Hn(A•), if we apply Hn(F•) and Hn(G•) we obtain the following object of
Hn(C•) :

(Gn(Fn(An)) ∈ Cn, µ−1
n (Fn(An)) ·Gn+1(λ−1

n (An)) ·Gn+1(Fn+1(an)) :

Nn(Gn(Fn(An))) → Gn+1(Mn(Fn(An))) →

→ Gn+1(Fn+1(Ln(An))) → Gn+1(Fn+1(I)) ' I)

Such an object is naturally isomorphic to (I ∈ Cn, Nn(I) ' I), which is the unit
object in Hn(C•), via the morphism

Hn(ϕ•) = [I ∈ Cn−1, ϕn(An) : Gn(Fn(An)) → I ' Nn−1(I)⊗ I] .

First construction of ∆n : let (Cn ∈ Cn, cn : Nn(Cn) → I) be an object in
KerNn; since Gn : Bn → Cn is essentially surjective, there are Bn ∈ Bn and
i : Gn(Bn) → Cn. Since

(Mn(Bn), µn(Bn) ·Nn(i) · cn : Gn+1(Mn(Bn)) → Nn(Gn(Bn)) → Nn(Cn) → I)

is an object of KerGn+1 and the factorization of Fn+1 : An+1 → Bn+1 through
KerGn+1 is an equivalence, there are An+1 ∈ An+1 and j : Fn+1(An+1) →
Mn(Bn) such that Gn+1(j) · µn(Bn) · Nn(i) · cn = ϕn+1(An+1). Now we need
an arrow an+1 : Ln+1(An+1) → I. Since the factorization F ′n+2 of Fn+2 through
KerGn+2 is an equivalence, it is enough to find an arrow F ′n+2(Ln+1(An+1)) →
F ′n+2(I). This is given by

λn+1(An+1) ·Mn+1(j) · βn(Bn) : Fn+2(Ln+1(An+1)) → I ' Fn+2(I)

Finally, we put ∆n(Cn, cn) = (An+1, an+1). This is an object of Hn+1(A•) :
the condition Ln+2(an+1) = αn+1(An+1) can be checked applying the faithful
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functor Fn+3.
Consider now an arrow

[Zn−1 ∈ Cn−1, zn−1 : Cn → Nn−1(Zn−1)⊗ C ′n] : (Cn, cn) → (C ′n, c
′
n)

in Hn(C•). We look for an arrow

[Xn ∈ An, xn : An+1 → Ln(Xn)⊗A′n+1] : (An+1, an+1) → (A′n+1, a
′
n+1)

in Hn+1(A•). Since Gn−1 : Bn−1 → Cn−1 is essentially surjective, there are
Yn−1 ∈ Bn−1 and l : Gn−1(Yn−1) → Zn−1. We get the following arrow in Cn

i · zn−1 · (Nn−1(l−1)⊗ 1) · (µ−1
n−1(Yn−1)⊗ 1) · (1⊗ (i′)−1) :

Gn(Bn) → Gn(Mn−1(Yn−1))⊗Gn(Bn) ' Gn(Mn−1(Yn−1)⊗Bn)

Since the factorization of Gn through CokerFn is an equivalence, we get the
corresponding arrow in CokerFn

[Xn ∈ An, s : Bn → Fn(Xn)⊗Mn−1(Yn−1)⊗B′n] : Bn →Mn−1(Yn−1)⊗B′n

This allows us to construct an arrow

F ′n+1(An+1) → F ′n+1(Ln(Xn)⊗A′n+1)

in KerGn+1 in the following way

Fn+1(An+1)

j

��
Mn(Bn)

Mn(s)

��
Mn(Fn(Xn)⊗Mn−1(Yn−1)⊗B′n)

'
��

Mn(Fn(Xn))⊗Mn(Mn−1(Yn−1))⊗Mn(B′n)

1⊗βn−1(Yn−1)⊗1

��
Mn(Fn(Xn))⊗Mn(B′n)

λ−1
n (Xn)⊗(j′)−1

��
Fn+1(Ln(Xn))⊗ Fn+1(A′n+1) ' Fn+1(Ln(Xn)⊗A′n+1)

Since F ′n+1 is an equivalence, we get a uniquely determined arrow xn : An+1 →
Ln(Xn) ⊗ A′n+1. Finally, we put ∆n[Zn−1, zn−1] = [Xn, xn] : the condition to
be an arrow in Hn+1(A•) can be checked applying the faithful functor Fn+2.
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First construction of Σn : let (Bn ∈ Bn, bn : Mn(Bn) → I) be an object of
Hn(B•); we put

Σn(Bn, bn) = [I ∈ An, σ(Bn, bn) : An+1 → Ln(I)]

where (An+1, an+1) = ∆n(Hn(G•)(Bn, bn)) and σ(Bn, bn) corresponds to the
arrow

j · bn : F ′n+1(An+1) = Fn+1(An+1) → I ' Fn+1(Ln(I)) = F ′n+1(Ln(I))

of KerGn+1 via the equivalence F ′n+1 : An+1 → KerGn+1. Indeed, the fact that
[I, σ(Bn, bn)] is an arrow in Hn+1(A•) can be checked applying the faithful
functor Fn+2.

2-exactness in Hn(C•) : let us call Γ the factorization of Hn(G•) through
Ker∆n. We are going to prove that Γ is essentially surjective. Let

〈 (Cn ∈ Cn, cn : Nn(Cn) → I),

[Cn ∈ An, cn : An+1 → Ln(Cn)] : (An+1, an+1) = ∆n(Cn, cn) → I 〉

be an object of Ker∆n. Using the notations introduced in the first construction
of ∆n, we construct the following object of Hn(B•) :

(Fn(C
∗
n)⊗Bn, τ = (λ−1

n (C
∗
n)⊗ 1) · (Fn+1(c∗n)⊗ 1) · ((j−1)∗ ⊗ 1) :

Mn(Fn(C
∗
n)⊗Bn) 'Mn(Fn(C

∗
n))⊗Mn(Bn) →Mn(Bn)∗ ⊗Mn(Bn) ' I)

and the needed isomorphism

Γ(Fn(C
∗
n)⊗Bn, τ) → 〈 (Cn, cn), [Cn, cn] 〉

is given by

[I ∈ Cn−1, ϕn(C
∗
n)⊗ i : Gn(Fn(C

∗
n)⊗Bn) ' Gn(Fn(C

∗
n))⊗Gn(Bn) → Cn]

Second description of Hn(C•) : since (Fn, ϕn, Gn) is an extension, Cn is
equivalent to the cokernel of Fn, and we get the following description of Hn(C•).
An object is a pair

(Bn ∈ Bn, [An+1 ∈ An+1, an+1 : Mn(Bn) → Fn+1(An+1)] ) ,

where [An+1, an+1] : Mn(Bn) → I is an arrow in CokerFn+1, such that there
exists tn+2 : Ln+1(An+1) → I making commutative the following diagram

Mn+1(Mn(Bn))
Mn+1(an+1) //

βn(Bn)

��

Mn+1(Fn+1(An+1))

λ−1
n+1(An+1)

��
I ' Fn+2(I) Fn+2(Ln+1(An+1))

Fn+2(tn+2)
oo
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(note that such an arrow tn+2 is necessarily unique because Fn+2 is faithful).
An arrow (Bn, [An+1, an+1]) → (B′n, [A

′
n+1, a

′
n+1]) is a class of pairs

(Bn−1 ∈ Bn−1, [An ∈ An, an : Bn → Fn(An)⊗Mn−1(Bn−1)⊗B′n] ) ,

where [An, an] : Bn → Mn−1(Bn−1) ⊗ B′n is an arrow in CokerFn, such that
there exists an : An+1 → Ln(An) ⊗ A′n+1 making commutative the following
diagram

Mn(Bn)
Mn(an)

++WWWWWWWWWWWWWWWWWWWWWWWWWW

an+1

��
Fn+1(An+1)

Fn+1(an)

��

Mn(Fn(An)⊗Mn−1(Bn−1)⊗B′n)

'
��

Fn+1(Ln(An)⊗A′n+1)

'
��

Mn(Fn(An))⊗Mn(Mn−1(Bn−1))⊗Mn(B′n)

λ−1
n (An)⊗βn−1(Bn−1)⊗1

��
Fn+1(Ln(An))⊗ Fn+1(A′n+1) Fn+1(Ln(An))⊗Mn(B′n)

1⊗a′n+1

oo

(once again the arrow an is necessarily unique because Fn+1 is faithful). Finally,
two parallel pairs (Bn−1, [An, an]) and (B′n−1, [A

′
n, a

′
n]) are identified if there are

Bn−2 ∈ Bn−2, An−1 ∈ An−1, an−1 : Bn−1 → Fn−1(An−1)⊗Mn−2(Bn−2)⊗B′n−1

and an−1 : A′n → An ⊗ Ln−1(An−1) such that the following compositions are
equal

Bn

an

��
Fn(An)⊗Mn−1(Bn−1)⊗B′n

1⊗Mn−1(an−1)⊗1

��
Fn(An)⊗Mn−1(Fn−1(An−1)⊗Mn−2(Bn−2)⊗B′n−1)⊗B′n

1⊗λ−1
n−1(An−1)⊗βn−2(Bn−2)⊗1

��
Fn(An)⊗ Fn(Ln−1(An−1))⊗Mn−1(B′n−1)⊗B′n

'
��

Fn(An ⊗ Ln−1(An−1))⊗Mn−1(B′n−1)⊗B′n
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Bn

a′n
��

Fn(A′n)⊗Mn−1(B′n−1)⊗B′n

Fn(an−1)⊗1⊗1

��
Fn(An ⊗ Ln−1(An−1))⊗Mn−1(B′n−1)⊗B′n

Second construction of ∆n : using the second description of Hn(C•), we can
define the functor

∆n : Hn(C•) → Hn+1(A•)

on objects by

∆n(Bn, [An+1, an+1]) = (An+1, tn+2 : Ln+1(An+1) → I)

and on arrows by

∆n[Bn−1, [An, an]] = [An, an : An+1 → Ln(An)⊗A′n+1] .

Second description of Hn(G•) : we have to adapt the description of the
functor

Hn(G•) : Hn(B•) → Hn(C•)

to the second description of Hn(C•). The image of an object

(Bn ∈ Bn, bn : Mn(Bn) → I)

of Hn(B•) is the object

(Bn ∈ Bn, [I ∈ An+1, bn : Mn(Bn) → I ' Fn+1(I)] )

(as arrow tn+2 one takes the canonical isomorphism Ln+1(I) ' I ) and the
image of an arrow

[Yn−1 ∈ Bn−1, yn−1 : Bn →Mn−1(Yn−1)⊗B′n] : (Bn, bn) → (B′n, b
′
n)

of Hn(B•) is the arrow

[Yn−1, [I ∈ An, yn−1 : Bn →Mn−1(Yn−1)⊗B′n ' Fn(I)⊗Mn−1(Yn−1)⊗B′n]] .

Second construction of Σn : using the second description of the functors ∆n

and Hn(G•), the 2-cell Σn is the identity 2-cell.
2-exactness in Hn(C•) : we are going to prove that Γ: Hn(B•) → Ker∆n is

full. For this, observe that an object in Ker∆n is a pair

〈(Bn, [An+1, an+1]) ∈ Hn(C•), [Xn, xn] : (An+1, tn+2) → I ∈ Hn+1(A•)〉

and an arrow inKer∆n is an arrow [Bn−1, [An, an]] inHn(C•) (with its an) such
that there are Pn−1 ∈ An−1 and pn−1 : An ⊗X ′

n → Ln−1(Pn−1) ⊗Xn making
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commutative a certain diagram. Consider now two objects (Bn, bn), (B′n, b
′
n) in

Hn(B•) and an arrow

[Bn−1, [An, an]] : Γ(Bn, bn) → Γ(B′n, b
′
n)

in Ker∆n. We put Yn−1 = Fn−1(Pn−1) ⊗ Bn−1 and we define yn−1 by the
following composition

Bn

an

��
Fn(An)⊗Mn−1(Bn−1)⊗B′n

Fn(pn−1)⊗1⊗1

��
Fn(Ln−1(Pn−1))⊗Mn−1(Bn−1)⊗B′n

λn−1(Pn−1)⊗1⊗1

��
Mn−1(Fn−1(Pn−1))⊗Mn−1(Bn−1)⊗B′n

'
��

Mn−1(Fn−1(Pn−1)⊗Bn−1)⊗B′n

Then [Yn−1, yn−1] : (Bn, bn) → (B′n, b
′
n) is an arrow in Hn(B•). Finally, to check

that Γ[Yn−1, yn−1] = [Bn−1, [An, an]], we put Bn−2 = I, An−1 = Pn−1, an−1 = 1
and an−1 = pn−1.

Construction of Ψn : given an object

(Bn ∈ Bn, [An+1 ∈ An+1, an+1 : Mn(Bn) → Fn+1(An+1)] )

in Hn(C•), if we apply ∆n and Hn+1(F•) we obtain the following object of
Hn+1(B•) :

(Fn+1(An+1) ∈ An+2, λ
−1
n+1(An+1) · Fn+2(tn+2) :

Mn+1(Fn+1(An+1)) → Fn+2(Ln+1(An+1)) → Fn+2(I) ' I )

Such an object is naturally isomorphic to (I ∈ Bn+1,Mn+1(I) ' I), which is
the unit object in Hn+1(B•), via the morphism

Ψn(Bn, [An+1, an+1]) = [Bn ∈ Bn, a−1
n+1 : Fn+1(An+1) →Mn(Bn)] .

�

Remark 4.3 At this point, the reader probably wonders why we define the
cohomology categorical groups of a complex using the relative kernels and rel-
ative cokernels, instead of the usual kernels and cokernels. The reason is the
construction of the functor ∆n involved in the previous theorem: such a functor
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does not exist if we define cohomology using the usual kernel and cokernel. To
make clear the problem, imagine to define Hn(C•) using the usual kernel and
cokernel, so that an object in Hn(C•) is just an object of KerNn. Now, given
an object

(Cn ∈ Cn, cn : Nn(Cn) → I)

in KerNn, we look for an object

∆n(Cn, cn) = (An+1, an+1 : Ln+1(An+1))

in KerLn+1. Since Gn : Bn → Cn is essentially surjective, there are an object
Bn ∈ Bn and an arrow bn : Gn(Bn) → Cn, so that

(Mn(Bn), µn(Bn) ·Nn(bn) · cn : Gn+1(Mn(Bn)) → I)

is an object in KerGn+1. Since (Fn+1, ϕn+1, Gn+1) is 2-exact, there are an
object An+1 ∈ An+1 and an arrow

xn+1 : (Fn+1(An+1), ϕn+1(An+1)) → (Mn(Bn), µn(Bn) ·Nn(bn) · cn)

in KerGn+1. It remains to find an arrow

an+1 : Ln+1(An+1) → I

in An+2. Since (Fn+2, ϕn+2, Gn+2) is 2-exact, it is enough to find an arrow

τ : (Fn+2(Ln+1(An+1)), ϕn+2(Ln+1(An+1))) → (Fn+2(I), ϕn+2(I))

in KerGn+2. We could take as τ the following composition

λn+1(An+1) ·Mn+1(xn+1) · βn(Bn) :

Fn+2(Ln+1(An+1)) →Mn+1(Fn+1(An+1)) →Mn+1(Mn(Bn)) → I ' Fn+2(I) .

Now, to check that τ is an arrow in KerGn+2 amounts to check the commuta-
tivity of the following diagram

Nn+1(Nn(Cn))
Nn+1(cn) //

γn(Cn)
&&LLLLLLLLLLL

Nn+1(I)

I

'

;;wwwwwwwww

which precisely means that (Cn, cn) is indeed an object of the relative kernel
Ker(Nn, γn).
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5 Examples and applications

5.1 Complexes of abelian groups

First of all, let us point out that, when the complex of symmetric categorical
groups is in fact a complex of abelian groups, then we get the usual cohomology
groups applying π0 and π1 to the cohomology categorical groups. More precisely,
consider a complex of abelian groups

A• = A0
l0 // A1

l1 // A2
l2 // . . . ln−1 // An

ln // An+1
ln+1 // . . .

with cohomology groups Hn(A•) = Ker(ln)/Im(ln−1). We can construct two
complexes of symmetric categorical groups:

A•[0] = A0[0]
l0[0] // A1[0]

l1[0] // A2[0] . . .

A•[1] = A0[1]
l0[1] // A1[1]

l1[1] // A2[1] . . .

Proposition 5.1 With the previous notations, we have

1. π0(Hn(A•[0])) = Hn(A•) = π1(Hn+1(A•[0]))

2. π0(Hn(A•[1])) = Hn+1(A•) = π1(Hn+1(A•[1]))

Proof. We check only part 1 because the proof of part 2 is similar. If we
specialize the description of Hn(A•) given in Section 3 to the case of A• = A•[0],
we have that the objects are the elements of Ker(ln), and a pre-morphism
an → a′n is an element xn−1 ∈ An−1 such that an = ln−1(xn−1) + a′n. It is now
clear that π0(Hn(A•[0])) = Hn(A•). �

5.2 Takeuchi-Ulbrich cohomology

Consider a complex of symmetric categorical groups

A• = A0
L0 //

0

88A1
α0
⇓

L1 // A2 . . .

Each object Xn−1 ∈ An−1 gives rise to an object (Ln−1(Xn−1), αn−1(Xn−1)) ∈
Ker(Ln, αn). The isomorphism classes of these objects constitute a subgroup of
the group of connected components π0(Ker(Ln, αn)). From [15, 16], we recall
the following definition.

Definition 5.2 With the previous notations, the n-th Takeuchi-Ulbrich coho-
mology group of the complex A• is the quotient group

Hn
U (A•) = π0(Ker(Ln, αn))/〈 [Ln−1(Xn−1), αn−1(Xn−1)] 〉Xn−1∈An−1
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Proposition 5.3 With the previous notations, we have group isomorphisms

π0(Hn(A•)) ' Hn
U (A•) ' π1(Hn+1(A•))

Proof. Explicitly, π0(Ker(Ln, αn))/〈 [Ln−1(Xn−1), αn−1(Xn−1)] 〉Xn−1∈An−1

is the group of equivalence classes of pairs (An ∈ An, an : Ln(An) → I) such that
Ln+1(an) = αn(An). Two pairs (An, an) and (A′n, a

′
n) are equivalent if there is

Xn−1 ∈ An−1 such that (An, an) and (Ln−1(Xn−1), αn−1(Xn−1)) ⊗ (A′n, a
′
n)

are isomorphic in Ker(Ln, αn). This amounts to ask that there is xn−1 : An →
Ln−1(Xn−1)⊗A′n making commutative the following diagram

Ln(An)

an

��

Ln(xn−1) // Ln(Ln−1(Xn−1)⊗A′n)

'
��

I ' I ⊗ I Ln(Ln−1(Xn−1))⊗ Ln(A′n)
αn−1(Xn−1)⊗a′n

oo

If we look now at the description of Hn(A•) given in Section 3, it is clear that
the previous description corresponds to π0(Hn(A•)). �

Since the functor
π0 : SCG → Abelian Groups

sends 2-exact sequences into exact sequences (and π1 also, see [19]), from The-
orem 4.2 and Proposition 5.3 we get the following corollary.

Corollary 5.4 Let

A•
0 //

F•   A
AA

AA
AA

A C•

B•
G•

>>}}}}}}}}

ϕ•
⇑

be an extension of complexes of symmetric categorical groups. There is a long
exact sequence of abelian groups

. . . // Hn
U (A•) // Hn

U (B•) // Hn
U (C•) // Hn+1

U (A•) // . . .

5.3 Ulbrich exact sequence

If B is a symmetric categorical group, we can construct a canonical extension

π1(B)[1] 0 //

##G
GGGG

GGGG
π0(B)[0]

B

;;wwwwwwwww

=

where π1(B)[1] → B is just the inclusion, and B → π0(B)[0] sends an object
on its isomorphism class (see [1]). Starting from a complex B• of symmetric
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categorical groups and repeating the previous construction at each degree, we
obtain an extension of complexes

π1(B•)[1] −→ B• −→ π0(B•)[0]

and we can apply Theorem 4.2. Using Proposition 5.1 and Proposition 5.3 to
calculate π0 of the 2-exact sequence of cohomology categorical groups, we get
the following corollary, which is the main general result contained in [17].

Corollary 5.5 Let B• be a complex of symmetric categorical groups. There is
a long exact sequence of abelian groups

. . .Hn+1(π1(B•)) // Hn
U (B•) // Hn(π0(B•)) // Hn+2(π1(B•)) . . .

5.4 Hattori-Villamayor-Zelinsky exact sequence

If C is any (symmetric) monoidal category, the Picard categorical group Pic(C)
is the (symmetric) categorical group of invertible objects and isomorphisms in C.
In particular, if R is a commutative ring with unit, Pic(R) is by definition Pic(R-
mod). It follows that π0(Pic(R)) is the usual Picard group of R, and π1(Pic(R))
is the group of units of R. Moreover, each ring homomorphism f : R → S
induces a monoidal functor R-mod→ S-mod and then a morphism of symmetric
categorical groups (denoted with the same name) f : Pic(R) → Pic(S).

Starting from the ring homomorphism f : R→ S, we can construct the n-th
tensor power

S⊗n = S ⊗R S ⊗R . . .⊗R S.
Moreover, for each n, we have n+ 1 face homomorphisms

fi : S⊗n −→ S⊗n+1

determined by fi(s1⊗ . . .⊗sn) = s1⊗ . . .⊗si⊗1⊗si+1⊗ . . .⊗sn . The induced
morphisms of symmetric categorical groups

fi : Pic(S⊗n) −→ Pic(S⊗n+1)

can be pasted together to obtain a complex Pic(S⊗•) :

. . . Pic(S⊗n−1)
Ln−1 // Pic(S⊗n)

Ln // Pic(S⊗n+1) . . .

where Ln is a kind of alternating tensor product:

Ln(X) = f1(X)∗ ⊗ f2(X)⊗ f3(X)∗ ⊗ . . . .

If we apply Corollary 5.5 to the complex Pic(S⊗•), we obtain the Hattori-
Villamayor-Zelinsky sequence [9, 18], that is the U-Pic-exact sequence asso-
ciated with the ring homomorphism f : R → S (notations of Theorem 4.14 in
[18], but ours Hn(S/R,U) and Hn(S/R, P ic) are their Hn−1 )

. . .Hn+1(S/R,U) → Hn
U (S/R) → Hn(S/R, P ic) → Hn+2(S/R,U) . . .

(see also Theorem 6.1.3 in [2]).
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5.5 Takeuchi exact sequence

If C is a symmetric monoidal category with stable coequalizers, a new symmetric
monoidal category Bim(C) can be obtained by taking as objects C-monoids and
as arrows isomorphism classes of bimodules. The Brauer categorical group of C
is by definition

Br(C) = Pic(Bim(C))

(see [19]). If R is a commutative ring with unit, we put Br(R) = Br(R-mod).
One has that π0(Br(R)) is the usual Brauer group of R and π1(Br(R)) is the
Picard group of R. Once again, a ring homomorphism f : R → S induces a
morphism of symmetric categorical groups Br(R) → Br(S).Working in the same
way as in the previous subsection, we get a complex of symmetric categorical
groups Br(S⊗•) :

. . . Br(S⊗n−1)
Ln−1 // Br(S⊗n)

Ln // Br(S⊗n+1) . . .

If we apply Corollary 5.5 to the complex Br(S⊗•), we obtain the Takeuchi
sequence [13], that is the Picard-Brauer exact sequence associated with the ring
homomorphism f : R→ S (notations of Theorem 6.4.2 in [2])

. . .Hn+1(S/R, P ic) → Hn
U (S/R,A) → Hn(S/R,Br) → Hn+2(S/R, P ic) . . .

5.6 Simplicial cohomology, I

Given a simplicial set X• with degeneracies

δi : Xn+1 → Xn, i = 0, . . . , n+ 1

and a symmetric categorical group A, following [11, 4] we can construct a cosim-
plicial complex AX• of symmetric categorical groups and strict homomorphisms:

- AXn is the symmetric categorical group of functors from the discrete
groupoid Xn to A, under pointwise tensor product;

- the codegeneracies are given by composition with the degeneracies

di = − · δi : AXn → AXn+1 ; i = 0, . . . , n+ 1 .

Now, by taking alternating tensor product we get a complex of symmetric cat-
egorical groups C(AX•) :

. . . AXn−1
Ln−1 // AXn

Ln // AXn+1 . . .

with Ln(H) = d0(H)⊗ d1(H)∗ ⊗ d2(H)⊗ . . .
The cohomology categorical groups of this complex are denoted by Hn(X•,A).
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Since a discrete groupoid X is “projective” with respect to essentially sur-
jective functors, any extension

A 0 //

F ��?
??

??
??

C

B
G

??�������

ϕ

⇑

in SCG gives rise to a new extension

AX
0 //

−·F !!C
CC

CC
CC

C CX

BX
−·G

=={{{{{{{{

−·ϕ
⇑

By Theorem 4.2, we get the following corollary.

Corollary 5.6 Let

A 0 //

F ��?
??

??
??

C

B
G

??�������

ϕ

⇑

be an extension of symmetric categorical groups, and fix a simplicial set X•.
There is a long 2-exact sequence of symmetric categorical groups

. . .→ Hn(X•,A) → Hn(X•,B) → Hn(X•,C) → Hn+1(X•,A) → . . .

Applying the functor π0 : SCG → Abelian Groups to the previous 2-exact se-
quence, we get the long exact sequence of abelian groups obtained in [4], Propo-
sition 2.4.

5.7 Simplicial cohomology, II

Let D be a category. As simplicial set X•, we can take the nerve Ner(D) of D.

Proposition 5.7 Let D be a category and A a symmetric categorical group.
There is an equivalence of symmetric categorical groups

HomCat(D,A) ' H0(Ner(D),A) .

Proof. Indeed, an object of H0(Ner(D),A) is a pair (A0, a0), where A0 is
a map from the objects of D to those of A, and a0 associates to any arrow
f : X → Y in D an arrow a0(f) : A0(X) ⊗ A0(Y )∗ → I. To such an arrow
canonically corresponds an arrow ã0(f) : A0(X) → A0(Y ), and the condition
L1(a0) = α0(A0) gives that the pair (A0, ã0) is a functor from D to A. (In fact,
the condition L1(a0) = α0(A0) means that ã0 preserves the composition. This
implies that it preserves also the identity arrows, because A is a groupoid.) �
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If D is a category and A a categorical group, the groupoid Tors(D,A) of D-
torsors under A has been studied in [5]. A D-torsor under A is a Grothendieck
cofibration p : E → D such that, for any X ∈ D, the fibre category EX is
equivalent to A via a given action of A on E. The arrows in Tors(D,A) are the
A-equivariant D-functors. This groupoid is a 2-groupoid adding as 2-cells the
A-equivariant D-homotopies. If A is symmetric, the next proposition provides
the classifying groupoid of Tors(D,A) with a structure of symmetric categorical
group.

Proposition 5.8 Let D be a category and A a symmetric categorical group.
There is an equivalence of groupoids

cl(Tors(D,A)) ' H1(Ner(D),A) .

Proof. We limit our proof to the construction of the morphism

H1(Ner(D),A) → cl(Tors(D,A))

The objects of H1(Ner(D),A) are the systems (Af , tg,f ) consisting of

- for any morphism f : X → Y of D, an object Af ∈ A, and

- for any pair of composable morphisms X
f // Y

g // Z in D, a mor-
phism tg,f : Af ⊗Ag → Afg in A

which satisfy a cocycle condition. So, an object of H1(Ner(D),A) can be identi-
fied with a 2-cocycle in D with coefficients in A (see [5]). Thus any object (A, t)
of H1(Ner(D),A) defines a pseudo-functor and, following the Grothendieck con-
struction, has canonically associated a cofibration P : E(A,t) → D. In Theorem
4.9 in [5] it is proved that E(A,t) is in fact a D-torsor under A.
A pre-arrow ϕ : (A, t) → (A′, t′) in H1(Ner(D),A) is a system ϕ = (ϕX , ϕf )
consisting of

- for any object X ∈ D, an object ϕX ∈ A, and

- for any morphism f : X → Y in D, a morphism ϕf : Af ⊗ϕY → ϕX ⊗A′f
in A

which makes certain diagrams commutative. A pre-arrow ϕ : (A, t) → (A′, t′)
defines an A-equivariant D-functor Eϕ : E(A,t) → E(A′,t′) which sends an object
(B ∈ A, X ∈ D) ∈ E(A,t) to (B ⊗ ϕX , X).
Two pre-arrows ϕ,ϕ′ : (A, t) → (A′, t′) of H1(Ner(D),A) are identified if there
is a collection of morphisms ν = {νX : ϕX → ϕ′X | X ∈ D} making a certain
diagram commutative. It is easy to get an homotopy Eν : Eϕ → Eϕ′ from such
a collection ν. �
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Corollary 5.9 Let

A 0 //

F ��?
??

??
??

C

B
G

??�������

ϕ

⇑

be an extension of symmetric categorical groups, and fix a category D. There is
a 2-exact sequence of symmetric categorical groups

HomCat(D,A) // HomCat(D,B) // HomCat(D,C)

rrffffffffffffffffffffffff

cl(Tors(D,A)) // cl(Tors(D,B)) // cl(Tors(D,C))

If D = D[1] for D a group and A = A[1] for A an abelian group, then
π0(cl(Tors(D,A))) = Extcen(D,A), the group of equivalence classes of cen-
tral extensions of D by A (Example 3.9 in [5]). So, applying the functor π0

to the previous 2-exact sequence, we get an exact sequence of abelian groups
involving the groups of central extensions.

5.8 Simplicial cohomology, III

In [3], the nerve Ner2(D) of a categorical group D has been introduced. Let us
recall that Ner2(D) is the 3-coskeleton of the following truncated simplicial set:

- Ner2(D)0 = {0},

- Ner2(D)1 = Obj(D),

- Ner2(D)2 = {(x,D0, D1, D2) ∈Mor(D)×Obj(D)3 | x : D0 ⊗D2 → D1},

- Ner2(D)3 is the set of commutative diagrams in D of the form

D00 ⊗D03 ⊗D23
1⊗x3 //

x0⊗1

��

D00 ⊗D13

x1

��
D02 ⊗D23 x2

// D11

Proposition 5.10 Let D be a categorical group and A a symmetric categorical
group. There is an equivalence of symmetric categorical groups

HomCG(D,A) ' H1(Ner2(D),A) .

Proof. Let us restrict ourselves to the description of objects. An object of
H1(Ner2(D),A) is a system (AD, ax) consisting of

- for any object D ∈ D, an object AD ∈ A, and
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- for any morphism x : D0 ⊗D2 → D1 in D, a morphism ax : AD0 ⊗AD2 →
AD1 in A such that, for all (x0, x1, x2, x3) ∈ Ner2(D)3, the following dia-
gram commutes

AD00 ⊗AD03 ⊗AD23

ax0⊗1

��

1⊗ax3 // AD00 ⊗AD13

ax1
��

AD02 ⊗AD23 ax2

// AD11

Thus, we have a monoidal functor A : D → A defined by A(D) = AD, with
canonical morphisms given by a1D0⊗D2

: AD0 ⊗AD2 → AD0⊗D2 . �

Finally, if the categorical group D is symmetric, it is possible to refine again
its nerve to take into account the symmetric structure. We refere to [3] for a
detailed description of the nerve Ner3(D) of a symmetric categorical group D.

Proposition 5.11 Let D and A be symmetric categorical groups. There is an
equivalence of symmetric categorical groups

HomSCG(D,A) ' H2(Ner3(D),A) .

6 The kernel-cokernel lemma

In this section, we obtain the kernel-cokernel (or “snake” lemma) for symmetric
categorical groups as a particular case of the long cohomology sequence of The-
orem 4.2. We will then apply the lemma to get a low-dimensional cohomology
sequence involving derivations of categorical groups.

6.1 The kernel-cokernel lemma for symmetric categorical
groups

We start with two general lemmas on symmetric categorical groups.

Lemma 6.1 Consider the following diagram in SCG

KerF

0

  

ψ⇒

eF //

L

��

A

εF
⇑

ϕ⇒

F //

M

��

B

N

��
KerG

0

>>eG
// C

G
//

εG
⇓

D
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where L and ψ are induced by the universal property of KerG (so that ψ,ϕ, εF
and εG are compatible).

1. If N is full and faithful, then the left-hand square is a bi-pullback;

2. If, moreover, M is full (faithful) (essentially surjective), then L is full
(faithful) (essentially surjective).

Proof. 1. From [10], Proposition 5.2, recall that N is full and faithful iff for
all G ∈ SCG, the functor HomSCG(G, N) is full and faithful. Using this fact,
the proof is a (long) argument on bi-limits which holds in any 2-category.
2. It follows from the first part, using the stability under bi-pullback of the
involved classes of morphisms (see Proposition 5.2 in [1]). �

Lemma 6.2 Consider the following diagram in SCG

A

0

!!

ψ⇒

F //

L

��

B

πF
⇑

ϕ⇒

PF //

M

��

CokerF

N

��
C

0

==G
// D

PG

//

πG
⇓

CokerG

where N and ϕ are induced by the universal property of CokerF (so that ψ,ϕ, πF
and πG are compatible).

1. If L is full and essentially surjective, then the right-hand square is a bi-
pushout;

2. If, moreover, M is full (faithful) (essentially surjective), then N is full
(faithful) (essentially surjective).

Proof. Dual of the previous one: by Proposition 5.3 in [10], L is full and
essentially surjective iff for all G ∈ SCG, the functor HomSCG(N,G) is full and
faithful; the stability under bi-pushout is established in [1], Proposition 5.1. �
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Fix now the following diagram in SCG

A

0

  

λ⇒

F //

L

��

B

ϕ

⇑

µ⇒

G //

M

��

C

N

��
A′

0

>>F ′
// B′

G′
//

ϕ′

⇓

C′
(5)

where (F,ϕ,G) and (F ′, ϕ′, G′) are 2-exact sequences, G is essentially surjective
and F ′ is faithful. We assume also that ϕ,ϕ′, λ and µ are compatible (as at the
beginning of Section 4).

Proposition 6.3 (The kernel-cokernel lemma) There are a morphism and
two 2-cells in SCG

∆: KerN → CokerL Σ: G ·∆ ⇒ 0 Ψ: ∆ · F ′ ⇒ 0

making the following sequence 2-exact in each point

KerM

ϕ

⇓ G %%KKKKKKKKKK
0 // CokerL

Ψ
⇓ F ′ &&MMMMMMMMMM

0 // CokerN

KerL

F

99ttttttttt

0
// KerN

Σ
⇑

∆

99rrrrrrrrrr

0
// CokerM

ϕ′
⇑

G′

88pppppppppp

Proof. Consider the factorization of F as a full and essentially surjective
functor F1 followed by a faithful functor F2 (Proposition 2.1 in [10]). Consider
also the factorization of G′ as an essentially surjective functor G1 followed by a
full and faithful functor G2 (Proposition 2.3 in [10]

A
α′⇐

F1 //

L

��

I
α′′⇒

F2 //

H
xx

B
β′⇐M

��

G //

β′′⇒

C

N

��

K

xx
A′

F ′
// B′

G1

// I′
G2

// C′

Since F1 is orthogonal to F ′ (Proposition 4.3 in [10]) and G is orthogonal to
G2 (Proposition 4.6 in [10]), we get the fill-in H,α′, α′′ and K,β′, β′′ as in the
previous diagram. Moreover, since F1 is full and essentially surjective, there is
a unique 2-cell ψ : F2 ·G⇒ 0 such that F1 ·ψ = ϕ ; since G2 is full and faithful,
there is a unique 2-cell ψ′ : F ′ ·G1 ⇒ 0 such that ψ′ ·G2 = ϕ′. In this way, we
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have constructed a new diagram in SCG

I

0

  

α′′⇒

F2 //

H

��

B

ψ

⇑

(β′)−1
⇒

G //

M

��

C

K

��
A′

0

>>F ′
// B′

G1

//

ψ′

⇓

I′
(6)

Composing with F1 and G2, we can check the compatibility of the 2-cells in (6)
using that of the 2-cells in (5). Moreover, (F2, ψ,G) is 2-exact (and then it is
an extension) because, by Lemma 6.2, the cokernel of F2 is equivalent to the
cokernel of F. Analogously, (F ′, ψ′, G1) is 2-exact because, by Lemma 6.1, the
kernel of G1 is equivalent to the kernel of G.
Now, adding zero-morphisms and canonical 2-cells, we can turn the morphism of
extensions (6) into an extension of complexes. The only non trivial cohomology
categorical groups of these complexes are the (usual) kernels and cokernels of
H,M and K. Therefore, Theorem 4.2 gives us the following 2-exact sequence

KerH // KerM // KerK

sshhhhhhhhhhhhhhhhhhhhh

CokerH // CokerM // CokerK

Observe now that, by Lemma 6.1, KerK and KerN are equivalent, and, by
Lemma 6.2, CokerH and CokerL are equivalent. Moreover, by Lemma 6.1
again, the comparison KerL → KerH is full and essentially surjective, so
that the 2-exactness of KerH → KerM → KerK implies the 2-exactness
of KerL → KerM → KerK. In the same way, by Lemma 6.2 the compari-
son CokerK → CokerN is full and faithful, so that CokerH → CokerM →
CokerN is 2-exact. Finally, we have proved the 2-exactness of

KerL // KerM // KerN

sshhhhhhhhhhhhhhhhhhhhh

CokerL // CokerM // CokerN .

�

6.2 Derivations of categorical groups

To end, we explain how the low-dimensional cohomology sequence obtained in
[7], Theorem 6.2, is a special case of the 2-exact sequence of Proposition 6.3. For
detailed definitions about derivations of categorical groups, we refer to [7, 8].
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Fix a categorical group G and a symmetric G-module B with action

· : G× B → B .

A derivation is a functor D : G → B together with a natural and coherent family
of isomorphisms

δX,Y : D(X)⊗X ·D(Y ) → D(X ⊗ Y ) .

Derivations and their morphisms give rise to a groupoid Der(G,B), which is a
symmetric categorical group under pointwise tensor product. (Observe that, in
general, if the G-module B is only braided, the categorical group Der(G,B) is
no longer braided.) This construction plainly extends to a 2-functor from the
2-category of symmetric G-modules and equivariant morphisms to SCG. More-
over, for any symmetric G-module B, there is an “inner derivation” morphism

I : B → Der(G,B) I(B) : G → B I(B)(X) = X ·B ⊗B∗

whose kernel and cokernel are denoted by H0(G,B) and H1(G,B) and called
the low-dimensional cohomology categorical groups of G with coefficients in B.
Now, if F : A → B is an equivariant morphism of symmetric G-modules, its
equivariant structure induces a 2-cell in SCG

A F //

I
��

λ

⇓

B

I
��

Der(G,A)
−·F

// Der(G,B)

Finally, if
B

G

��?
??

??
??

ϕ

⇓

A
0

//

F

??�������
C

is an extension of symmetric G-modules, by Proposition 3.4 in [8] we get a
diagram in SCG

A F //

I
��

0

&&

λ⇒

B G //

I
��

ϕ

⇑

µ⇒

C

I
��

Der(G,A)
−·F

//

0

77
Der(G,B)

−·G
//

−·ϕ
⇓

Der(G,C)

33



with (− · F,− · ϕ,− · G) 2-exact and − · F faithful. Since it is straightforward
to check the compatibility of λ, µ, ϕ and − · ϕ, as a corollary of Proposition 6.3
we get the 2-exact cohomology sequence

H0(G,A) → H0(G,B) → H0(G,C) → H1(G,A) → H1(G,B) → H1(G,C) (7)

If G is a discrete categorical group, and A,B and C are discrete G-modules, then
applying π0 to the previous sequence we recover the familiar exact sequence of
low-dimensional cohomology groups. Several other particular cases of interest
are discussed in [7]. The non symmetric analogue of the 2-exact sequence (7) is
studied in [6].
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