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Abstract. We define the cohomology categorical groups of a com-
plex of symmetric categorical groups, and we construct a long 2-
exact sequence from an extension of complexes. As special cases,
we obtain Ulbrich cohomology of Picard categories and the Hattori-
Villamayor-Zelinsky sequence associated with a ring homomorphism.
Applications to simplicial cohomology with coefficients in a symmet-
ric categorical group, and to derivations of categorical groups are also
discussed.
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1 Introduction

In the late seventies, Villamayor and Zelinsky [18] and, independently, Hattori
[9], discovered a long exact sequence connecting Amitsur cohomology groups of
a commutative algebra with coefficients U (the group of units) and Pic (the
Picard group). The search of a better understanding of the Hattori-Villamayor-
Zelinsky sequence lead to a series of works by Takeuchi and Ulbrich culminating
with a cohomology theory for Picard categories [13, 14, 15, 16, 17].

The aim of this work is to revisit the previous results using recent tech-
niques developed in higher dimensional homological algebra. In fact, we will
derive Hattori-Villamayor-Zelinsky sequence and Ulbrich cohomology as special
instances of general results on the homology of symmetric categorical groups.

The plan of the paper is the following:

Sect. 2 The kernel and the cokernel of a morphism between symmetric categor-
ical groups have been studied in [10, 19]. Here we refine these notions,
introducing kernel and cokernel relative to a natural transformation ¢, as
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in the following diagram

Ker(F, ) A C Coker(p,G)

Using relative kernels and cokernels, we define the cohomology categori-
cal groups of a complex of symmetric categorical groups. As for abelian
groups, there are two possible definitions, giving equivalent cohomology
categorical groups.

An extension of (symmetric) categorical groups is a diagram

A—2 ¢
\ f /
F G
B
which is 2-exact in the sense of [10, 19] and such that F' is faithful and G is
essentially surjective (see [1, 12]). Following the lines of [11], we associate

a long 2-exact sequence of cohomology categorical groups to any extension
of complexes of symmetric categorical groups.

We specialize the previous result to get Ulbrich cohomology and Hattori-
Villamayor-Zelinsky exact sequences. We discuss also simplicial cohomol-
ogy with coefficients in a symmetric categorical group.

In [7], a six term 2-exact sequence involving the low-dimensional cohomol-
ogy of a categorical group G with coefficients in a symmetric G-module
is constructed. We obtain this sequence as a special case of the kernel-
cokernel lemma for symmetric categorical groups, which is a special case
of the long cohomology sequence obtained in Section 4.

Relative kernel and cokernel

A (symmetric) categorical group is a (symmetric) monoidal groupoid in which
each object is invertible, up to isomorphism, with respect to the tensor prod-
uct. We write CG for the 2-category of categorical groups, monoidal functors,
and monoidal natural transformations (which always are natural isomorphisms);
SCG is the 2-category of symmetric categorical groups, monoidal functors com-
patible with the symmetry, and monoidal natural transformations. For basic
facts on (symmetric) categorical groups, we refer to [10, 19] and the references
therein. As far as notations are concerned, if G is a (symmetric) categorical
group, we write mo(G) for the (abelian) group of its connected components,
and 71 (G) for the abelian group of automorphisms of the unit object, that is



m(G) = G(I,I). If G is a group, we write G[0] for the discrete categorical group
having the elements of G as objects. If G is abelian, we write G[1] for the cate-
gorical group with just one object and having the elements of G as arrows (if G
is not abelian, G[1] is just a groupoid). If X is an object of a categorical group
G, we denote by X* a fixed dual of X. (Note: composition is always written
diagrammatically.)

2.1 The relative kernel
Given a morphism F: A — B in CG, the notation for its kernel, see [10, 19], is

A

eF F
€F
[

KerF —————B

We consider now two composable morphisms F' and G in CG, such that
the composite is naturally equivalent to the zero functor, and we construct the
relative kernel as in the following diagram

Ker(F,¢) A B C (1)
€(F,¢)
\”.U//
0

The relative kernel Ker(F, ) is in CG (in SCG if F,G and ¢ are in SCG), and
it can be described as follows:

- an object is a pair (A € A ja: FA — I) such that the following diagram
commutes

- an arrow f: (A,a) — (A',d) is an arrow f: A — A’ such that the follow-
ing diagram commutes




- the faithful functor e(p ) is defined by e(p)(A,a) = A, and the natural
transformation €z o) by €(r) (4, a) = a.

The natural transformation €(g,) is compatible with ¢, in the sense that the
following diagram commutes

e(F,p) P

e(rp) I G —=2 &(Fyp) 0

E(F’SD)-G\H/ ﬂcan
0-G 0

can

The relative kernel is a bi-limit, in the sense that it satisfies the following
universal property (and it is determined by this property, up to equivalence):
given a diagram in CG

with ¢ compatible with ¢, there is a factorization
(B'":K— Ker(F,p), ': E'-e(py) = E)
in CG of (&,v) through (e(r,y), €(r,e)), that is the following diagram commutes

” /,F
B epg F——2s p. F
E/'e(F,wﬂ ﬂw
E' -0 0

can

and, if (E”,4") is another factorization of (E,1) through (e(r,),€(r,)), then
there is a unique 2-cell e: E' = E” such that

CE(F,p)

EI . e(F,L,D) :}E” . e(F,(p)
E

commutes. The relative kernel is also a standard homotopy kernel, in the sense
that it satisfies the following universal property (and it is determined by this
property, up to isomorphism): in the situation of diagram (2), there is a unique
E'": K — Ker(F,p) in CG such that E' - e(p,) = E and E - €(p ) = 9.

To prove the previous universal properties is a simple exercise. The next
proposition expresses the kind of injectivity measured by the relative kernel
(compare with the similar results stated in [10, 19] for the usual kernel).



Proposition 2.1 With the notations of diagram (1).
1. m(Ker(F,¢)) =0 if and only if F is faithful;

2. mo(Ker(F,¢)) =0 if and only if F is o-full (this means full with respect
to arrows g: FAy — FAg such that G(g) - ¢4, = ©a,)-

Proof. 1) We know from [10, 19] that 71 (KerF) = 0 if and only if F' is faith-
ful. Moreover, the comparison between Ker(F, ) and KerF is full and faithful,
so that it induces an isomorphism between 71 (Ker(F, ¢)) and 71 (KerF).

2) Let (4, a) be an object of Ker(F,¢). The arrow a- Fr: FA— T — FI is
such that G(a - Fy) - o1 = pa. If F is p-full, there exists a: A — I such that
F(a) = a- Fy. This means that « realizes an isomorphism between (A, a) and
the unit object of Ker(F, ).

Conversely, if g: FA; — FAj is such that G(g) - w4, = ¥a,, then the
following is an object of Ker(F,y)

(Al ®@ A, g®1: F(A ® A}) ~ FA, @ FA, — FAy @ FAS ~ 1)
If mo(Ker(F,p)) = 0, there is a morphism h: (4; ® A5, g® 1) — (I,F; ') in
Ker(F, ). Now, if we call f: A — As the following composition
Am A @l AL@AS® A "2 10 Ay ~ Ay
we have that F(f) =g. O

A direct consequence of the universal property (as a bi-limit) of the relative
kernel is the following cancellation property.

Proposition 2.2 In the situation of diagram (1), consider the following dia-
gram in CG

Ker(F, )
H e(Fp)
4
K 5 A

If o and €(p,p) are compatible, then there is a unique 2-cell a: H = 0 such that
Q- e(pp) = O

Proof.  This is because (H,«) and (0,can: 0-e(p,,) = 0) provide two factor-
izations of (0,can: 0- F = 0) through the relative kernel. O

To finish, let us observe that the usual kernel is a special case of the relative
one. Indeed, given a morphism F': A — B in CG, we can consider the canonical
natural isomorphism

and the relative kernel Ker(F,can) is nothing but the usual kernel KerF. In
particular, can-full just means full.



2.2 The relative cokernel

Given a morphism G: B — C in SCG, the notation for its cokernel, see [10, 19],

is
C
ZEIN
TG
4
B CokerG

0

The picture for the relative cokernel is the following one (everything is in

SCG):

The relative cokernel Coker(p, G) can be described as follows:
- objects are those of C;
- pre-arrows are pairs (B, f): X - Y with BeBand f: X - GBR®Y;

- an arrow is a class of pre-arrows, two pre-arrows (B, f),(B’, f): X =Y
are equivalent if there is A € A and a: B — F(A) ® B’ such that the
following diagram commutes

X GB®Y
f’i J{Ga@l
GB ®Y G(FA®B)®Y

:i lz

I@GB/@)YWG(FA)@GB,@Y

- the essentially surjective functor P, gy and the natural transformation
T(p,) are defined as for the usual cokernel.

Once again, the natural transformation 7, ) is compatible with ¢, in the sense
that the following diagram commutes

v Pp,a)

F-G-Peo 0- Pyo
F.W(%G)\H/ ﬂ/can
F.0 0

can



Like the relative kernel, the relative cokernel is both a bi-limit and a standard
homotopy cokernel with respect to diagrams in SCG of the following kind

A B C P K (4)
I

where v is compatible with ¢ in the obvious sense. We leave to the reader
to state the universal properties and the cancellation property for the relative
cokernel.

In the next proposition, we fix the kind of surjectivity measured by the
relative cokernel.

Proposition 2.3 With the notations of diagram (3).
1. mo(Coker(p,@)) =0 if and only if G is essentially surjective;

2. w1 (Coker(p,G)) = 0 if and only if G is p-full (this means that, given
h: GBy — GBs, there is A € A and g: Bi — FA ® By such that h =

G(g) - (pa®1gB,) )

Proof. 1) From [10, 19], we know that my(CokerG) = 0 if and only if
G is essentially surjective. Moreover, the comparison between CokerG and
Coker(p, Q) is full and essentially surjective, so that it induces an isomorphism
between 7o(CokerG) and mo(Coker(p, G)).

2) Let [B € B,b: I — GB®I]: I — I be a morphism in Coker(p,G).
The arrow b gives rise to an arrow h: GI ~ [ - GB® I ~ GB in C. If G is
@-full, there is A € A and ¢g: I — FA ® B such that h = G(g) - (pa ® 1lgp).
The pair (4, g) attests that the morphism [B, b] is equal to the identity on I in
Coker(p, G).

Conversely, let g: GB; — GBs be a morphism in C. We get the following
morphism in Coker(y, G)

TrG'(Bl)71 GB PG(h) GB TI'G(Bz)
1 2

If 1 (Coker(p,G)) = 0, the previous morphism is equal to the identity. This
means that there is A € A and a: By — FA® B such that G(a)- (pa®1) = h.
O

The usual cokernel is a particular case of the relative cokernel. Indeed,
given a morphism G: B — C in SCG, its cokernel is the relative cokernel
Coker(can, @) as in the following diagram



Once again, can-full just means full.

2.3 2-exactness and relative 2-exactness

Let us recall from [10, 19] the notion of 2-exactness. Consider a sequence
(F,,G) in SCG together with the canonical factorizations through the ker-
nel and the cokernel
0
©
///’__ﬂ—_\\
A £ B = C

KerG —— CokerF' ~ KerG' —— CokerF

We say that the sequence (F, p, G) is 2-ezact if the functor F” is full and essen-

tially surjective on objects or, equivalently, if the functor G’ is full and faithful.

This is also equivalent to say that CokerF’ (or KerG') is equivalent to 0.
Consider now the following diagram in SCG

N—t——py—Fsp— % sc—

with a compatible with ¢ and ¢ compatible wit . By the universal property of
the relative kernel Ker(G,~), we get a factorization (F”,¢") of (F, ) through
(e(@)» €(c,y))- By the cancellation property of e ), we have a 2-cell @ as in
the following diagram

L F G

A/

>
&
@

<=9l
=%

0 €(G.v)

Ker(G,y) ——— Coker(a, F')



The dual construction gives rise to the following diagram

A F B G C M C

=

led

Ker(G',5) ——— Coker(a, F)

A direct calculation shows that Coker(a, F') ~ Ker(G',7). We say that the
sequence (L, a, F, o, G,~v, M) is relative 2-exact if the functor F”’ is essentially
surjective and @-full or, equivalently, if the functor G’ is faithful and J-full. This
is also equivalent to say that Coker(a, F') (or Ker(G',7)) is equivalent to 0.

Since the comparison Ker(G,v) — KerG is full and faithful, 2-exactness

always implies relative 2-exactness. To make clear the difference between 2-
exactness and relative 2-exactness, let us consider two basic examples.

Example 2.4

3

1. Counsider the following sequence in SCG

0—2p Lo "5 CokerF

together with can: 0-F = 0 and np: F- Pr = 0. It is always 2-exact in B.
It is 2-exact in A if and only if F' is full and faithful. Moreover, it is relative
2-exact in A if and only if F' is faithful. Indeed, mo(Ker(F,nr)) = 0, so
that any functor F' is 7 p-full.

. Consider the following sequence in SCG

KerG —2 IB%GCO 0

together with eg: eq -G = 0 and can: G -0 = 0. It is always 2-exact
in B. It is 2-exact in C if and only if G is full and essentially surjective.
Moreover, it is relative 2-exact in C if and only if G is essentially surjective.
Indeed, 71 (Coker(can, G)) = 0, so that any functor G is eg-full.

The cohomology of a complex

From [11, 13], recall that a complex of symmetric categorical groups is a diagram
in SCG of the form

L() L1 L2 Ln—l Ln Ln+1

Ao A, Apy s

A, = Ag Ay



together with a family of 2-cells {a,: Ly, - Ly41 = 0},>0 such that, for all n,
the following diagram commutes

n—1'Cn

L
Lnfl : Ln : Ln+1

anl-LnJrl\H/ ﬂcan

0- Ln—i—l 0

can

To define the n-th cohomology categorical group of the complex A,, we use
the following part of the complex

0 0

an_2 an

i T

Ly_2 Ly_1 L., Lpg1
A77,72 —_— > Anfl A&n AnJrl An+2
an_1

U
0

and we repeat the construction given in 2.3: by the universal property of the
relative kernel Ker(L,, o), we get a factorization (L), _;,a/,_1) of (Ln—1,p-1)
through (e(z,.a,) €(Ln.,a,))- BY the cancellation property of ez, 4,), we have a

2-cell @2 as in the following diagram

Ln72 Lnfl Ln
An—Z An—l An An—i—l

Ker(Ly, o) ———— Coker(@,—2, L, ;)

Definition 3.1 With the previous notations, we define the n-th cohomology
categorical group of the complex A, as the following relative cokernel

H™(As) = Coker(q,_o, L., ).

Note that, as in Section 2.3, there is a dual construction of H"(A,) starting with
the relative cokernel Coker(ay,—2, L,—1) and ending with a convenient relative
kernel. The resulting categorical groups are equivalent. Note also that, to get
H°(A,) and H'(A,), we have to complete the complex A, on the left with two
zero-morphisms and two canonical 2-cells

0 0 Lo

0 0 Ag

Av..., can:0-0=0, can:0-Ly =0

We give now an explicit description of H™(A,) :

10



- an object of H™(A,) is an object of the relative kernel Ker(L,, a,), that
is a pair
(An S Ana ap - Ln(An) - I)
such that L,41(an) = an(4,);
- a pre-arrow (A,,a,) — (A4’ ,al) is a pair
(Xn—l € An—hxn—l: An - Ln—l(Xn—l) ® A/n)

such that the following diagram commutes

Ln(wnf )
An) e s Ln(Ln—l(Xn—l) ® A;’L)

iz

I Ln(Ln—l(Xn—l)) ®Ln(‘4{n)
a/ﬂT ianl(an)@)l
(A

n) = I'® Ln(A7)

Ly

—~

- an arrow is a class of pre-arrows; two parallel pre-arrows
(Xn717xn71)7(X’;L71’m;lfl): (An,an) — (A;w ;z)
are equivalent if there is a pair
(Ph—2€Ap_o9,ppn2: Xpn-1— Lpo(Pr2)® X/ _)

such that the following diagram commutes

An i Lnfl(anl) & A;L
anl(an)@l
L,1(X]_;)®A, Ly 1(Ln—2(Pn2) ® X;,_1) ® A},
I®L, (X, _|)® A, Ly 1(Lp—2(Pr—2)) ® Lp_1(X)_,) ® Al

o /)

op—2(Pp_2)®1®1

Remark 3.2 From the previous description, it is evident that
mo(H"(As)) = mi (H" 1 (As))

This will be useful in Section 5 to make some proofs shorter.

11



Let us look now at the functoriality of H™. A morphism F,: A, — B, of
complexes in SCG is pictured in the following diagram

0
Cp—1
T
Lyp_1 L,
Ans A, Ansr ...
Fnll )\"Jl Fnl Alf J{Fni»l
B, B B -
" M " M, ot
Bp—1
{
0

where the family of 2-cells {\,: L,, - Fr41 = F, - M, },,>0 makes commutative
the following diagram

Lyn_1-An An—1-Mn
anl'Fn+1H/ ﬂFnl'ﬁnl
0- Fn+1 can 0 an Fn—l -0

Such a morphism induces, for each n, a morphism of symmetric categorical
groups H"(F,): H"(A,) — H"(B,). Its existence follows from the universal
property of the relative kernels and cokernels involved. It can be described
explicitly: given an object (A, € Ay, an: L,(An) — I) in H"(A,), we have

H"(Fo)(An,an) = (Fn(An) € By, )‘Zl(An) “Fota(an):
M, (Fr(An)) = Fopi(Ln(An)) — Fopa (1) = 1)

The fact that (F,,(A,), A\, (A) - Fnii1(ay,)) is an object of the relative kernel

r'n

Ker(M,, (3,) depends on the condition on the family {A,}. Given an arrow
(X 1€h, 1,00 1: Ap — Ly 1(Xp 1)@ ALl (Ap,an) — (AL, al)
in H™(A,), we have
H"(Fo)[Xn-1,Tn1] = [Fno1(Xn-1) € By, Fr(@n-1) - An-1(Xn—1) @ 1):

Fo(An) = Fo(Lp1(Xn-1) @ A7) =~
~ Fo(Ln—1(Xp-1)) ® Fr(AL) — My_1(Fre1(Xn—1)) @ Fy(A))]

12



4 The long cohomology sequence

Recall that an extension of symmetric categorical groups is a diagram in SCG

which is 2-exact, F' is faithful and G is essentially surjective (see [1, 12]). Equiv-
alently, an extension is a diagram in SCG of the form

0 0

can can

0- A B C 0

which is relative 2-exact in A,B and C. (Indeed, 2-exactness and relative 2-
exactness are equivalent conditions in B, because Ker(G,can) ~ KerG and
can-full means full. Now, if the factorization of G through CokerF is full and
faithful, the relative 2-exactness in A of (0, can, F,¢,G) is equivalent to the
relative 2-exactness in A of (0, can, F, 7p, Pr), that is, by Example 2.4, to the
faithfulness of F. The argument for the essential surjectivity of G is dual.)

A morphism of extensions is pictured in the following diagram

0
3
m
A—7F B < C
Ll N Mi s lN
! !/ !
A B -—C
o’
U

0

where the 2-cells make commutative the following diagram

F, Nal
F.-GNe——2 e p. . —25 | .
w-Nﬂ ﬂbw'

O.N can O can LQO

13



Definition 4.1 An extension of complexes in SCG is a diagram

0

N

A,

C.

where

A, —2>B, - C,

are morphisms of complexes, and pe = {p,: F,, - Gy, = 0},>0 is a family of
2-cells such that, for each n,

is a morphism of extensions.

Theorem 4.2 Let
0

N

be an extension of complezes of symmetric categorical groups. For each n, there
is a morphism A, and three 2-cells H™(ps), Xr, and V,, making the following

A,

Ce

14



long sequence 2-exact in each point

0 0
i T
n n n+1
H"(A.)wH"(B.)H (Gs )H"((C ) A” Hn'H(A.) H4(F')>Hn+l(3.)
Zn
[
0

Proof. We give the construction of the morphisms and 2-cells involved in
the statement. As far as 2-exactness is concerned, we concentrate on the 2-
exactness in H™(C,), which is the most delicate part of the proof. In fact, we
give a first construction of A,, and ¥,,. We use these constructions to show that
the factorization of H™(G,) through the kernel of A,, is essentially surjective.
Then we give a second construction of H*(C,), A,, and %, and we use them
to show that the factorization of H"(G,) is full.

Construction of H™(pe) : given an object (A, € Ap,an: Ly(A,) — I) in
H"(A,), if we apply H"(F,) and H"(G,) we obtain the following object of
H™(C,):

(Gn(Fn(An)> e C,, Mv?l(Fn(An)) “Gr ()‘;1<An)) : Gn+1(Fn+1(an)) :

N (Gn(Fn(An))) = Gryr (M (Fo(An))) —
- Gn+l(Fn+1 (Ln<An))) - Gn+1( n+1( )) I)

Such an object is naturally isomorphic to (I € C,,, N,,(I) ~ I), which is the unit
object in H™(C,), via the morphism

H"(po) =1 € Cpo1,0n(Ap): Go(Fr(4y)) = I~ Np1(I) @1].

First construction of A, : let (Cy, € Cp,cn: No(Cr) — I) be an object in
KerN,; since G, : B,, — C,, is essentially surjective, there are B, € B, and

i: Gn(Bn) — C,. Since
(M (Bn);s ttn(Bn) - N (i) - ¢t Gry1(My(Br)) — Nu(Gn(Br)) — Nu(Cr) — 1)

is an object of KerG,4+1 and the factorization of Fj,1: A,,+1 — B, 41 through
KerGp41 is an equivalence, there are 4,11 € A,y and j: Frp1(Apt1) —
M, (By,) such that G, +1(j) - pn(Bn) - Np(7) - ¢n = ©n+1(Ans1). Now we need
an arrow apn41: Lyy1(Any1) — 1. Since the factorization F),_ 5 of F;, o through
KerG, 2 is an equivalence, it is enough to find an arrow Fj,  5(Lnt1(An41)) —

v +o(I). This is given by

2 (Bn): Foso(Lng1(Antr)) — I = Foyo(I)

) B
Finally, we put A, (Cp,cn) = (Ant1,ans1). This is an object of H"T1(A,) :
the condition Ln+2(an+1) = ap+1(Any1) can be checked applying the faithful

)‘n+1(An+1) n+1<

15



functor F 3.
Consider now an arrow

[anl € (Cnfly Zn—1° Cn - anl(anl) 0 C:l] (Cna Cn) - (Cy/ly C;l)
in H"(C,). We look for an arrow
! !

[(Xn € A,y Apyr — Ln(Xn) ® An+1]: (Ant1,an41) — (A{rz+17an+1)

in H"*1(A,). Since G,,_1: B,_1 — C,_; is essentially surjective, there are
Yoo1€Bhoq1 and I: Go—1(Yi-1) — Z,—1. We get the following arrow in C,

i zp1 - (Npa (T @ 1) - (2 (Yao) @ 1) - (1@ () 71):

Gn(Bn) i Gn(Mnfl(Ynfl)) ® Gn(Bn) =~ Gn(Mnfl(Ynfl) X Bn)

Since the factorization of G, through CokerF, is an equivalence, we get the
corresponding arrow in C'okerF,,

(X, € Ay, s: By — Fo(X,) @ My, 1(Yy—1) @ Bl): By, — My,_1(Y,—1) ® B),

This allows us to construct an arrow
i (Anyr) = Fp o (Ln(Xn) ® A7 4y)
in KerG, 41 in the following way
Fn+1(A7L+1)

J
M"L(Bn)
M, (s)
Mn(Fn(Xn) Y Mn—l(Yn—l) Y Bg)

~

My, (Fr(Xp)) @ My (Myp—1(Yn-1)) ® My (B},)
1®8n—1(Yn—1)®1
M (F(Xn)) @ M (By,)

AN (X)eE) !

Frop1(Ln (X)) ® Fn+1(A:L+1) ~ Fop1(Ln(Xn) ® A;«L+1)
Since F}, ,; is an equivalence, we get a uniquely determined arrow x,: Ap11 —

L,(X,)® Aj . Finally, we put A,[Z,_1,2,—1] = [Xn, 2] : the condition to
be an arrow in H"T1(A,) can be checked applying the faithful functor F, .

16



First construction of X, : let (B, € B,,b,: M,(B,) — I) be an object of
H™(B,); we put

Yn(Bnybn) =[I € Ap,o(Bp,bn): Apy1 — Lp(1)]

where (An41,0n+1) = Ap(H™(Ge)(Bn,by)) and o(Bp,by,) corresponds to the

arrow
Jbn: Fr/z+1(An+1) = Fn+1(An+1) —I~F,n (Ln(])) = Fr/wrl(Ln(I))

of KerGp41 via the equivalence F}, | : A1 — KerGy 1. Indeed, the fact that
[I,0(Bp,by)] is an arrow in H"T(A,) can be checked applying the faithful
functor Fj,42.

2-exactness in H™(C,) : let us call T the factorization of H"(G,) through
KerA,,. We are going to prove that I' is essentially surjective. Let

<(On € Cy,cn: Nn(cn) - I)’

[6n € A,,Cy: An+1 - Ln(én)] (An+1a an+1) = An(cna Cn) - I>

be an object of KerA,,. Using the notations introduced in the first construction
of A, we construct the following object of H"(B,) :

(Fa(Cp) ® Buym = (AH(CL) @ 1) - (Fupa (@) @ 1) - (7)) @ 1):
M, (F,,(C) ® Bp) ~ M, (F,(C.,)) ® My(By) — My, (B,)* ® M, (By) ~I)
and the needed isomorphism
T(F.(C,) ® Bn,7) = ((Chycn), [Cn,Tnl)
is given by
[ € Cror,0(Ch) @iz Gu(Fo(CT) @ By) = G (F(Cy)) ® Gu(By) — Cyl

Second description of H"(C,) : since (F,,¢n,Gr) is an extension, C,, is
equivalent to the cokernel of F,,, and we get the following description of H"(C,).
An object is a pair

(Bn S Bna [AnJrl € An+1; An41-: Mn(Bn) - n+1(An+1)] ) )

where [A,11,an41]: My(Bp) — I is an arrow in CokerF,, 11, such that there
exists tpi2: Lny1(Any1) — I making commutative the following diagram

My, (an )
Mn+1(Mn(Bn)) s Mn+1(Fn+1(An+1))
ﬁnuan)l lx;ilmnm
I~F, o] Eryo(Lnyi(An
+2(I) EST t2(Lnt1(Ant1))
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(note that such an arrow t, o is necessarily unique because F,, .o is faithful).
An arrow (B, [Ant1, ant1]) — (B, [A), 11, a;,41]) is a class of pairs

(anl € anla [An € Anaan: Bn - Fn(An) & Mnfl(anl) & B;] ) )

where [4,,,a,]: By, — My_1(Bp-1) ® By, is an arrow in CokerF,, such that
there exists @p: Apt1 — Ln(An) ® A),; making commutative the following
diagram

M, (B)
W\
An+41
Froy1(Angr) M, (F,(A,) ® M,_1(B,_1) ® Bl)
Frii(an) lw
Fo1(Ln(An) @ AL Ly) M, (Fo(Ap)) ® My (My_1(Bn_1)) ® My, (B',)
= iknl(An)wn_l(Bn_l)@

Fn+1(Ln(An)) ® Fn+1(A;L+1) <~ n+1(Ln(An)) ® Mn(B:z)

1®a, 44

(once again the arrow @, is necessarily unique because Fj, 11 is faithful). Finally,
two parallel pairs (By,—1, [An, as]) and (B),_q, [A],, al]) are identified if there are
B, 2€B, 2,40 1€A, 1,04, 1: By1 — Fn—l(An—l) ®Mn—2(Bn—2) ®B;1_1
and @,—1: A, — A, ® L,_1(A,—1) such that the following compositions are
equal

B,

Fy(An) @ My—1(Bn-1) ® By,
1®Mp—1(an—1)®1

Fu(An) @ My (Fo1(An-1) ® Ma—s(Bn-2) ® B,_,) ® B,
1®)‘;11(An—1)®ﬁn—2(Bn_2)®1

Fn(An) ® Fn(Ln—l(An—l)) ® Mn—l(B;z—l) ® B;z

~

Fn(An ® Lnfl(Anfl)) ® Mnfl(B;L—l) ® B;z
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Fn(A;z) ® Mn—l(B;L—l) ® B’il
Fn(anl)®1®1l
Fn(An ® Lnfl(Anfl)) ® Mnfl(B;L—l) ® B;z

Second construction of A, : using the second description of H"(C,), we can
define the functor
A,: H"(C,) — H™ 1 (A,)

on objects by

An(Bn, [Ant1; ania]) = (Ang1s tngz: Lnyi(Anga) — 1)
and on arrows by

An[Bn-1, [An; an]] = [An,@n: Angy — Ln(An) @ A7, 4]

Second description of H™"(G,) : we have to adapt the description of the
functor
H"(G,): H"(B,) — H"(C,)

to the second description of H™(C,). The image of an object
(Bn, € By, by M, (By) — 1)
of H"(B,) is the object
(B €B,, [ € Apy1,bn: Mp(Bp) = I~ Foi1(1)])

(as arrow t,4o one takes the canonical isomorphism L,11(I) ~ I) and the
image of an arrow

[Yn—l €EBy 1,Yn—1: By — Mn—l(yn—l) 02y B;L]: (Bnabn) - (B/ b, )

of H™(B,) is the arrow
[Yn—h [I €An,Yn—1: By — Mn—l(Yn—l) ® B;L = Fn(I) & Mn—l(yn—l) ® B;H .

Second construction of %, : using the second description of the functors A,
and H"(G,), the 2-cell ¥, is the identity 2-cell.

2-exactness in H™(C,) : we are going to prove that I': H"(B,) — KerA, is
full. For this, observe that an object in KerA,, is a pair

<(Bm [An+17 an+1]) € H"<(C0)> [Xm xn}: (An+1,tn+2> —1e HH—H(AO»

and an arrow in KerA,, is an arrow [By,_1, [An, ay]] in H"(C,) (with its @, ) such
that there are P,y € A, and p,—1: A, @ X, — Lp_1(Py—1) ® X,, making

19



commutative a certain diagram. Consider now two objects (By, by), (B, b)) in
H"(B,) and an arrow

[Bn—la [Ana an]] : F(B'm bn) - F(B;u b;l)

in KerA,,. We put Y,,_; = F,,_1(P,—1) ® B,—1 and we define y,_1 by the
following composition

B,

Fn(An) ® M —1(Bn—1) & B;l
Frn(pn-1)®1®1
Fn(Lnfl(Pnfl)) & Mnfl(anl) ® B;l
An—1(Pn-1)®1®1

Mnfl(anl(Pnfl)) & Mnfl(anl) by B;I

~

Mnfl(anl(Pnfl) & anl) ® B;L

Then [Yy—1,Yn—1]: (Bn,bn) — (BL,b.,) is an arrow in H™ (B, ). Finally, to check

n»-n
that F[Ynflaynfl] = [anla [Anaan]]a we put B, 2= I,An,1 = Pnfla an—1 =1
and a,_1 = Pn—1-
Construction of ¥,, : given an object

(Bn € B,, [An+1 S AYL-‘,—ly An41: Mn(Bn) - 7L+1(A'IL+1)] )

in H"(C,), if we apply A, and H""(F,) we obtain the following object of
H"1(B,) :

(Fat1(Ant1) € Anga, AL (Ang) - Faga(tnga):

Mn+1(Fn+1(An+l))_> n+2(Ln+l(An+l))_’ n+2(1) )

~ ]
Such an object is naturally isomorphic to (I € By,11, My,11(I) ~ I), which is
the unit object in H"*!(B,), via the morphism

\I’n(Bna [An+17 a'n-i-l]) - [Bn S Bn; a;,il: Fn-l—l(An—i-l) - Mn(Bn)] .

O
Remark 4.3 At this point, the reader probably wonders why we define the
cohomology categorical groups of a complex using the relative kernels and rel-

ative cokernels, instead of the usual kernels and cokernels. The reason is the
construction of the functor A,, involved in the previous theorem: such a functor
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does not exist if we define cohomology using the usual kernel and cokernel. To
make clear the problem, imagine to define H"(C,) using the usual kernel and
cokernel, so that an object in H"(C,) is just an object of KerN,. Now, given
an object

(Ch €Cpyen: No(Cp) — 1)
in KerN,, we look for an object
An(cnacn) = (An+laan+1: Ln+1(An+1))

in KerL,41. Since G,,: B,, — C,, is essentially surjective, there are an object
B, € B, and an arrow b,,: G,,(B,) — C,, so that

(Mn(Bn)7 ,U/n(Bn) : Nn(bn) " Cpt Gn-‘rl (Mn(Bn)) - I)

is an object in KerG,41. Since (Fp41, Ynt1, Gny1) Is 2-exact, there are an
object A,41 € Apqq and an arrow

Tnt1: (Frng1(Angr)s ons1(Ang1)) = (Mn(Bn), pn(Bp) - No(bn) - cn)
in KerGy41. It remains to find an arrow
ant1: Lypg1(Angr) — 1
in A, 2. Since (Fp 42, ¢n+2, Gnyz2) is 2-exact, it is enough to find an arrow
7: (Fota(Lnt1(Ans1)), env2(Lng1(Angr))) = (Fnga(D), eni2(1))
in KerG,12. We could take as 7 the following composition
Ant1(Ang1) - Mpg1(2ng1) - Bn(Bn):

Frta(Lnt1(Ant1)) = Mpi1(Fri1(Ant1)) = Mpp1(Mn(Bp)) — I ~ Fpia(1).

Now, to check that 7 is an arrow in KerG,, ;2 amounts to check the commuta-
tivity of the following diagram

Ny, (Cn)
Nyt 1(Nn(Cr)) s Npy1(1)

VN /

1

which precisely means that (C,c,) is indeed an object of the relative kernel
Ker(Np,vn)-



5 Examples and applications

5.1 Complexes of abelian groups

First of all, let us point out that, when the complex of symmetric categorical
groups is in fact a complex of abelian groups, then we get the usual cohomology
groups applying 7y and 7; to the cohomology categorical groups. More precisely,
consider a complex of abelian groups

1 lo ln_1 In lnt1

Ap An+14>"'

Ae= Ag—2> 4y Ay
with cohomology groups H™(A,) = Ker(l,)/Im(l,—1). We can construct two
complexes of symmetric categorical groups:

lo[0] 11[0]

Al0] = Ap[0]

Ay[0] Asf0] ...

lo[1] 11 [1]

A1) = Aol Aul1] Asl1] ...

Proposition 5.1 With the previous notations, we have
1. mo(H(AWO]) = H(A4) = m (H™ (A4 [0]))
2. mo(H™(Au[1])) = H""(Aq) = m(H"*(Ad[1]))

Proof. We check only part 1 because the proof of part 2 is similar. If we
specialize the description of H™(A,) given in Section 3 to the case of A, = A,4[0],
we have that the objects are the elements of Ker(l,), and a pre-morphism
an — a), is an element x,_; € A,_; such that a,, = l,,—1(xp—1) + al,. It is now

clear that mo(H™(Ae[0])) = H™(A,). O

5.2 Takeuchi-Ulbrich cohomology
Consider a complex of symmetric categorical groups

Lo Ll
A Ay ...

@

4
0

A, = Ag

Each object X,,_1 € A, gives rise to an object (Ly—1(Xn-1),@n-1(Xn-1)) €
Ker(Ly, ay). The isomorphism classes of these objects constitute a subgroup of
the group of connected components 7o (Ker(Ly,ay)). From [15, 16], we recall
the following definition.

Definition 5.2 With the previous notations, the n-th Takeuchi-Ulbrich coho-
mology group of the complex A, is the quotient group

Hij(Ae) = mo(Ker(Ln,an))/{[Ln-1(Xn-1), an-1(Xn-1)])x, _1€a,
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Proposition 5.3 With the previous notations, we have group isomorphisms
mo(H"(As)) = Hij(As) =~ mi (H"(AL))

Proof.  Explicitly, mo(Ker(Ln,an))/{[Ln-—1(Xn-1),0n—1(Xn-1)])x,,_1ea,_1
is the group of equivalence classes of pairs (A4,, € A, a,: L,(A,) — I) such that
Lyy1(an) = an(Ay). Two pairs (A, a,) and (A),,al) are equivalent if there is

Xn—1 € A1 such that (A,,a,) and (Ly—1(Xn-1),@n-1(Xn-1)) ® (45,,a’,)

are isomorphic in Ker(Ly,, a,). This amounts to ask that there is z,_1: A, —
L,—1(Xp—1) ® A], making commutative the following diagram

Ln Tpn—1
I~Ial Ln(Ln-1(Xn-1)) ® Ln (A7)

an—1(Xn_1)®al,
If we look now at the description of H™(A,) given in Section 3, it is clear that
the previous description corresponds to mo(H™(A,)). O

Since the functor
mo: SCG — Abelian Groups

sends 2-exact sequences into exact sequences (and 7y also, see [19]), from The-
orem 4.2 and Proposition 5.3 we get the following corollary.

A, 0 C
?
Fo Ge
B,

be an extension of complezes of symmetric categorical groups. There is a long
exact sequence of abelian groups

Corollary 5.4 Let

= Hpj(As) — Hp(Ba) —— Hj(Ca) — Hy ™ (Ag) — -+

5.3 Ulbrich exact sequence

If B is a symmetric categorical group, we can construct a canonical extension

4>7T0

\/

where 71 (B)[1] — B is just the inclusion, and B — m(B)[0] sends an object
on its isomorphism class (see [1]). Starting from a complex B, of symmetric
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categorical groups and repeating the previous construction at each degree, we
obtain an extension of complexes

m1(Be)[1] — Be — mo(B4)[0]

and we can apply Theorem 4.2. Using Proposition 5.1 and Proposition 5.3 to
calculate 7y of the 2-exact sequence of cohomology categorical groups, we get
the following corollary, which is the main general result contained in [17].

Corollary 5.5 Let B, be a complex of symmetric categorical groups. There is
a long exact sequence of abelian groups

. H™ (71 (B,)) — HE(Bs) — H"(mo(Be)) — H"2(7m1(B,)) ...

5.4 Hattori-Villamayor-Zelinsky exact sequence

If C is any (symmetric) monoidal category, the Picard categorical group Pic(C)
is the (symmetric) categorical group of invertible objects and isomorphisms in C.
In particular, if R is a commutative ring with unit, Pic(R) is by definition Pic(R-
mod). Tt follows that mo(Pic(R)) is the usual Picard group of R, and 7 (Pic(R))
is the group of units of R. Moreover, each ring homomorphism f: R — S
induces a monoidal functor R-mod — S-mod and then a morphism of symmetric
categorical groups (denoted with the same name) f: Pic(R) — Pic(S).

Starting from the ring homomorphism f: R — S, we can construct the n-th
tensor power

S®¥" = SRR SQp... AR S.

Moreover, for each n, we have n 4+ 1 face homomorphisms
fir 88" — gEntl

determined by fi(51®...®8,) =$1®...05,018 841 ®...®s, . The induced
morphisms of symmetric categorical groups

fi: Pic(S®™) — Pic(S®"T1)

can be pasted together to obtain a complex Pic(S®*) :

L n )
o Pic(89n1) — > Pie(S®M) — Pic(S®"+L) ...
where L, is a kind of alternating tensor product:

Ly(X)=fi(X)"® fo(X)® f3s(X)"®....

If we apply Corollary 5.5 to the complex Pic(S®®), we obtain the Hattori-
Villamayor-Zelinsky sequence [9, 18], that is the U-Pic-exact sequence asso-
ciated with the ring homomorphism f: R — S (notations of Theorem 4.14 in
[18], but ours H"(S/R,U) and H"(S/R, Pic) are their H" 1)

. H"Y(S/R,U) — H(S/R) — H™(S/R, Pic) — H""*(S/R,U) ...
(see also Theorem 6.1.3 in [2]).
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5.5 Takeuchi exact sequence

If C is a symmetric monoidal category with stable coequalizers, a new symmetric
monoidal category Bim(C) can be obtained by taking as objects C-monoids and
as arrows isomorphism classes of bimodules. The Brauer categorical group of C
is by definition

Br(C) = Pic(Bim(C))

(see [19]). If R is a commutative ring with unit, we put Br(R) = Br(R-mod).
One has that mo(Br(R)) is the usual Brauer group of R and m(Br(R)) is the
Picard group of R. Once again, a ring homomorphism f: R — S induces a
morphism of symmetric categorical groups Br(R) — Br(.5). Working in the same
way as in the previous subsection, we get a complex of symmetric categorical
groups Br(S®*):

Lp_1

. Br(S®) Br(SE") — "> Br(SOn+1) ..

If we apply Corollary 5.5 to the complex Br(S®®), we obtain the Takeuchi
sequence [13], that is the Picard-Brauer exact sequence associated with the ring
homomorphism f: R — S (notations of Theorem 6.4.2 in [2])

...H""Y(S/R, Pic) — H}}(S/R,A) — H"(S/R, Br) — H"*?(S/R, Pic)...

5.6 Simplicial cohomology, I
Given a simplicial set X, with degeneracies
0;: Xpa1 — Xy, i1=0,...,n+1

and a symmetric categorical group A, following [11, 4] we can construct a cosim-
plicial complex AX¢ of symmetric categorical groups and strict homomorphisms:

- A%X» is the symmetric categorical group of functors from the discrete
groupoid X,, to A, under pointwise tensor product;

- the codegeneracies are given by composition with the degeneracies

di=—-8;: A% - AXnr1. 1=0,...,n+1.

Now, by taking alternating tensor product we get a complex of symmetric cat-
egorical groups C(AXe):

Ly L.,
. r AXn AXnr1 L.

with L, (H) =do(H) ®@d1(H)* @ d2(H) ® ...
The cohomology categorical groups of this complex are denoted by H™(X,, A).
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Since a discrete groupoid X is “projective” with respect to essentially sur-
jective functors, any extension

0
A———C
@
f
F G
B
in SCG gives rise to a new extension

N

By Theorem 4.2, we get the following corollary.

0
A———C
®
T
NS

B
be an extension of symmetric categorical groups, and fix a simplicial set X,.
There is a long 2-exact sequence of symmetric categorical groups

Corollary 5.6 Let

— H"(Xa,A) = H"(X.,B) — H"(X,,C) — H""'(X,,4) -

Applying the functor my: SCG — Abelian Groups to the previous 2-exact se-
quence, we get the long exact sequence of abelian groups obtained in [4], Propo-
sition 2.4.

5.7 Simplicial cohomology, II
Let D be a category. As simplicial set X,, we can take the nerve Ner(D) of D.

Proposition 5.7 Let D be a category and A a symmetric categorical group.
There is an equivalence of symmetric categorical groups

Homega (D, A) ~ H(Ner(D),A).

Proof. Indeed, an object of HY(Ner(D),A) is a pair (A, ag), where Aq is
a map from the objects of D to those of A, and a(y associates to any arrow
f: X — Y in D an arrow ag(f): Ag(X) ® Ap(Y)* — I. To such an arrow
canonically corresponds an arrow ao(f): Ag(X) — Ao(Y), and the condition
Li(ap) = ap(Ap) gives that the pair (Ag, ap) is a functor from D to A. (In fact,
the condition L1 (ag) = ap(Ap) means that ag preserves the composition. This
implies that it preserves also the identity arrows, because A is a groupoid.) O
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If D is a category and A a categorical group, the groupoid Tors(D, A) of D-
torsors under A has been studied in [5]. A D-torsor under A is a Grothendieck
cofibration p: E — D such that, for any X € D, the fibre category Ex is
equivalent to A via a given action of A on E. The arrows in Tors(D, A) are the
A-equivariant D-functors. This groupoid is a 2-groupoid adding as 2-cells the
A-equivariant D-homotopies. If A is symmetric, the next proposition provides
the classifying groupoid of Tors(DD, A) with a structure of symmetric categorical
group.

Proposition 5.8 Let D be a category and A a symmetric categorical group.
There is an equivalence of groupoids

cl(Tors(D,A)) ~ H'(Ner(D),A).

Proof. We limit our proof to the construction of the morphism
H'(Ner(D),A) — cl(Tors(D, A))

The objects of H'(Ner(D),A) are the systems (A, t, ¢) consisting of

- for any morphism f: X — Y of D, an object Ay € A, and

- for any pair of composable morphisms X N y 21~z in D, a mor-
phism t, : Ay ® Ag — Apg in A

which satisfy a cocycle condition. So, an object of H(Ner(D), A) can be identi-
fied with a 2-cocycle in D with coefficients in A (see [5]). Thus any object (A, t)
of H'(Ner(D), A) defines a pseudo-functor and, following the Grothendieck con-
struction, has canonically associated a cofibration P: E(4 ;) — D. In Theorem
4.9 in [5] it is proved that E(4 ) is in fact a D-torsor under A.

A pre-arrow ¢: (A,t) — (A',¢') in H'(Ner(D),A) is a system ¢ = (¢x,¢7)
consisting of

- for any object X € D, an object px € A, and

- forgny morphism f: X — Y in D, a morphism ¢: Af ® oy — ¢x ®A'f
in

which makes certain diagrams commutative. A pre-arrow ¢: (A,t) — (A',t)
defines an A-equivariant D-functor Ey,: E(4 ) — E(a/ ) which sends an object
(BeAXeD)cEuy to (B®@ypx,X).

Two pre-arrows ¢, ¢ (A, t) — (A',t') of H'(Ner(D),A) are identified if there
is a collection of morphisms v = {vx: px — ¢’y | X € D} making a certain
diagram commutative. It is easy to get an homotopy E, : E, — E,/ from such
a collection v. t

27



Corollary 5.9 Let
A—2—>C
®
T
x %

B
be an extension of symmetric categorical groups, and fix a category D. There is
a 2-exact sequence of symmetric categorical groups

Homeat(D,A) —— Homeat (D, B) —— Homea: (D, C)

e

cl(Tors(D,A)) —— cl(Tors(D,B)) —— cl(Tors(D,C))

If D = D[1] for D a group and A = A[l] for A an abelian group, then
mo(cl(Tors(D, A))) = Exteen(D,A), the group of equivalence classes of cen-
tral extensions of D by A (Example 3.9 in [5]). So, applying the functor m
to the previous 2-exact sequence, we get an exact sequence of abelian groups
involving the groups of central extensions.

5.8 Simplicial cohomology, III

In [3], the nerve Nery(D) of a categorical group D has been introduced. Let us
recall that Nery(D) is the 3-coskeleton of the following truncated simplicial set:

- N@T‘Q D 0:{0},

10
Doy ® Do3 ® Da3 s Doy ® D13

w0®1l J/‘Tl

DQQ ® D23 Dll

X2

Proposition 5.10 Let D be a categorical group and A a symmetric categorical
group. There is an equivalence of symmetric categorical groups

Homeg(D,A) ~ H'(Nery(D), A).

Proof. Let us restrict ourselves to the description of objects. An object of
H'(Nery(D),A) is a system (Ap,a,) consisting of

- for any object D € D, an object Ap € A, and
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- for any morphism z: Dy ® Dy — D; in D, a morphism a,: Ap, ® Ap, —
Ap, in A such that, for all (xg,z1, 22, 23) € Nera(ID)s, the following dia-
gram cominutes

1®atc3

ADoo ® AD03 ® AD23 AD(JO ® AD]S
Az, ®1l Ga,
ADoz ® AD23 ADll

Thus, we have a monoidal functor A: D — A defined by A(D) = Ap, with
canonical morphisms given by a1, 4p, Apy ® Ap, — Ap,eD,- O

Finally, if the categorical group D is symmetric, it is possible to refine again
its nerve to take into account the symmetric structure. We refere to [3] for a
detailed description of the nerve Ners(D) of a symmetric categorical group D.

Proposition 5.11 Let D and A be symmetric categorical groups. There is an
equivalence of symmetric categorical groups

Homsca(D,A) ~ H*(Ners(D), A).

6 The kernel-cokernel lemma

In this section, we obtain the kernel-cokernel (or “snake” lemma) for symmetric
categorical groups as a particular case of the long cohomology sequence of The-
orem 4.2. We will then apply the lemma to get a low-dimensional cohomology
sequence involving derivations of categorical groups.

6.1 The kernel-cokernel lemma for symmetric categorical
groups
We start with two general lemmas on symmetric categorical groups.

Lemma 6.1 Consider the following diagram in SCG

0
R
RN
KerF —= A £ B
Ll 4 Mi . iN

KerG = C G D

el

Iy
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where L and v are induced by the universal property of KerG (so that 1, ¢, ep
and eg are compatible).

1. If N is full and faithful, then the left-hand square is a bi-pullback;

2. If, moreover, M is full (faithful) (essentially surjective), then L is full
(faithful) (essentially surjective).

Proof. 1. From [10], Proposition 5.2, recall that N is full and faithful iff for
all G € SCG, the functor Homgca(G, N) is full and faithful. Using this fact,
the proof is a (long) argument on bi-limits which holds in any 2-category.

2. It follows from the first part, using the stability under bi-pullback of the
involved classes of morphisms (see Proposition 5.2 in [1]). O

Lemma 6.2 Consider the following diagram in SCG

0
TRk
kRN
y P
A r B = CokerF
L l 2% M J/ £ \LN
C e D o CokerG
el
U
0

where N and ¢ are induced by the universal property of CokerF (so that ¥, o, 7p
and wg are compatible).

1. If L is full and essentially surjective, then the right-hand square is a bi-
pushout;

2. If, moreover, M is full (faithful) (essentially surjective), then N is full
(faithful) (essentially surjective).

Proof. Dual of the previous one: by Proposition 5.3 in [10], L is full and
essentially surjective iff for all G € SCG, the functor Homgca(N,G) is full and
faithful; the stability under bi-pushout is established in [1], Proposition 5.1. O
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Fix now the following diagram in SCG

where (F, ¢, G) and (F',¢’, G') are 2-exact sequences, G is essentially surjective
and F” is faithful. We assume also that ¢, ¢’, A and p are compatible (as at the
beginning of Section 4).

Proposition 6.3 (The kernel-cokernel lemma) There are a morphism and
two 2-cells in SCG

A: KerN — CokerL, Y:G-A=0 V:A-F =0
making the following sequence 2-exact in each point
KerM CokerL Coker N
it
KerL KerN CokerM

Proof. Consider the factorization of F' as a full and essentially surjective
functor Fy followed by a faithful functor F» (Proposition 2.1 in [10]). Consider
also the factorization of G’ as an essentially surjective functor G followed by a
full and faithful functor G5 (Proposition 2.3 in [10]

Fy Fy G
A > 1 B ~C
g:, " ’ K
|5 v fuoe R
AZ B’ re— .
F' Gy G2

Since F is orthogonal to F’ (Proposition 4.3 in [10]) and G is orthogonal to
G2 (Proposition 4.6 in [10]), we get the fill-in H,o/,o” and K, 3',5" as in the
previous diagram. Moreover, since F} is full and essentially surjective, there is
a unique 2-cell ¥: F5 - G = 0 such that F} -1 = ¢; since G5 is full and faithful,
there is a unique 2-cell ¢': F’ - G1 = 0 such that ¢’ - G2 = ¢’. In this way, we
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have constructed a new diagram in SCG

I B C
H\L o/ Mi Cous \LK (6)
/! / /
A - B o I
!
1
0

Composing with F} and Gs, we can check the compatibility of the 2-cells in (6)
using that of the 2-cells in (5). Moreover, (F2,%,G) is 2-exact (and then it is
an extension) because, by Lemma 6.2, the cokernel of F; is equivalent to the
cokernel of F. Analogously, (F’,v’',G1) is 2-exact because, by Lemma 6.1, the
kernel of G; is equivalent to the kernel of G.

Now, adding zero-morphisms and canonical 2-cells, we can turn the morphism of
extensions (6) into an extension of complexes. The only non trivial cohomology
categorical groups of these complexes are the (usual) kernels and cokernels of
H, M and K. Therefore, Theorem 4.2 gives us the following 2-exact sequence

KerH — KerM — KerK

CokerH — Coker M —— CokerK

Observe now that, by Lemma 6.1, Ker K and KerN are equivalent, and, by
Lemma 6.2, CokerH and CokerL are equivalent. Moreover, by Lemma 6.1
again, the comparison KerlL — KerH is full and essentially surjective, so
that the 2-exactness of KerH — KerM — KerK implies the 2-exactness
of KerL — KerM — KerK. In the same way, by Lemma 6.2 the compari-
son CokerK — CokerN is full and faithful, so that CokerH — CokerM —
CokerN is 2-exact. Finally, we have proved the 2-exactness of

KerL — KerM —— KerN

CokerL — CokerM — CokerN .

6.2 Derivations of categorical groups

To end, we explain how the low-dimensional cohomology sequence obtained in
[7], Theorem 6.2, is a special case of the 2-exact sequence of Proposition 6.3. For
detailed definitions about derivations of categorical groups, we refer to [7, 8].

32



Fix a categorical group G and a symmetric G-module B with action
- GxB—B.

A derivation is a functor D: G — B together with a natural and coherent family
of isomorphisms

Derivations and their morphisms give rise to a groupoid Der(G,B), which is a
symmetric categorical group under pointwise tensor product. (Observe that, in
general, if the G-module B is only braided, the categorical group Der(G,B) is
no longer braided.) This construction plainly extends to a 2-functor from the
2-category of symmetric G-modules and equivariant morphisms to SCG. More-
over, for any symmetric G-module B, there is an “inner derivation” morphism

I:B— Der(G,B) ZI(B):G—B I(B)(X)=X-B®B*

whose kernel and cokernel are denoted by H°(G,B) and ‘H'(G,B) and called
the low-dimensional cohomology categorical groups of G with coefficients in B.
Now, if F: A — B is an equivariant morphism of symmetric G-modules, its
equivariant structure induces a 2-cell in SCG

N
-~
=
-~
N

Der(G,B)

Finally, if

is an extension of symmetric G-modules, by Proposition 3.4 in [8] we get a
diagram in SCG
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with (— -

F,—-p,—-G) 2-exact and — - F' faithful. Since it is straightforward

to check the compatibility of A, u, ¢ and — - ¢, as a corollary of Proposition 6.3
we get the 2-exact cohomology sequence

H(G,A) — H(G,B) — H°(G,C) — H'(G,A) — H'(G,B) — H(G,C) (7)

If G is a discrete categorical group, and A, B and C are discrete G-modules, then
applying my to the previous sequence we recover the familiar exact sequence of
low-dimensional cohomology groups. Several other particular cases of interest
are discussed in [7]. The non symmetric analogue of the 2-exact sequence (7) is
studied in [6].
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