
THE SNAIL LEMMA

ENRICO M. VITALE

ABSTRACT. The classical snake lemma produces a six terms exact sequence starting
from a commutative square with one of the edge being a regular epimorphism. We
establish a new diagram lemma, that we call snail lemma, removing such a condition. We
also show that the snail lemma subsumes the snake lemma and we give an interpretation
of the snail lemma in terms of strong homotopy kernels. Our results hold in any pointed
regular protomodular category.
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1. Introduction

One of the basic diagram lemmas in homological algebra is the snake lemma (also called
kernel-cokernel lemma). In an abelian category, it can be stated in the following way :
from the commutative diagram

Ker(f)

K(α)
��

kf // A
f //

α

��

B

β

��
Ker(f0)

kf0

// A0 f0

// B0

(1)

and under the assumption that f is an epimorphism, it is possible to get an exact sequence

Ker(K(α)) // Ker(α) // Ker(β) // Cok(K(α)) // Cok(α) // Cok(β)
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If we replace “epimorphism” with “regular epimorphism” and if α, β and K(α) are proper
morphisms (Definition 2.2) the snake lemma holds also in several important non abelian
categories, like groups, crossed modules, Lie algebras, not necessarily unitary rings.
Despite its very clear formulation, the snake lemma is somehow asymmetric because of
the hypothesis on the morphism f. The aim of this paper is to study what happens if we
remove such condition. What we prove is that we can get a six terms exact sequence (the
snail sequence) starting from any commutative diagram like

A
f //

α

��

B

β

��
A0 f0

// B0

(2)

(with α and β proper if we work in a non abelian context) ; moreover, the snail sequence
coincides with the usual snake sequence whenever f is a regular epimorphism. In order
to get the snail sequence, we have to replace the kernels appearing in diagram (1) with
a different (very simple) construction, which in fact is a kind of 2-dimensional kernel of
diagram (2).

More in detail, the layout of this paper is as follows : in Section 2 we recall the snake
lemma in its general form established by D. Bourn in the context of pointed regular
protomodular categories (= homological categories, in the terminology of [3]), as well
as some other results from [2]. A general reference for protomodular categories is [3], a
more concise introduction can be found in [4] ; abelian categories as well as groups and all
the other examples quoted above are pointed regular protomodular categories. Pointed
regular protomodular categories are also the framework of Section 3, which is completely
devoted to state and prove the snail lemma, and of Section 4, where we show that the
snail lemma subsumes the snake lemma. It is worthwile to note that, in order to compare
the snail sequence and the snake sequence, we need an intermediate result (Lemma 4.1)
which is very close to the characterization of subtractive categories established in [8].
The precise relation between the snail lemma and the axiomatic for subtractive categories
will be explaineded in [9]. In Section 5 we give a precise explication of the 2-categorical
meaning of the construction involved in the snail lemma (in contrast with the construc-
tion involved in the snake lemma, which is a categorical kernel but does not satisfy any
2-dimensional universal property). Finally, in Section 6 we specialize the situation to abe-
lian categories : in this case, by duality we easily get a longer version of the snail sequence.

We use diagrammatic notation for composition : A
f // B

g // C is written f · g.

2. The snake lemma

Let A be a pointed, regular and protomodular category.
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Notation 2.1 Here is the notation we use for kernels, cokernels, and the induced mor-
phisms.

Ker(f)

K(α)
��

kf // A

α

��

f // B

β

��

cf // Cok(f)

C(β)
��

Ker(f0)
kf0

// A0 f0

// B0 cf0

// Cok(f0)

To start, we recall the snake lemma as proved by D. Bourn in [2].

Definition 2.2 A morphism α : A → A0 in A is proper if it admits a cokernel cα and the
factorization α of α along the kernel of cα is a regular epimorphism

A
α //

α ##FFFFFFFFF A0
cα // Cok(α)

Ker(cα)

kcα

;;wwwwwwwww

Snake Lemma 2.3 Consider the following commutative diagram in A and assume that
f and f0 are regular epimorphisms

Ker(f)

K(α)
��

kf // A
f //

α

��

B

β

��
Ker(f0)

kf0

// A0 f0

// B0

If α, β and K(α) are proper, then there exists a morphism d : Ker(β) → Cok(γ) such that
the following sequence is exact

Ker(K(α))
K(kf )

// Ker(α)
K(f) // Ker(β)

d // Cok(K(α))
C(kf0

)
// Cok(α)

C(f0) // Cok(β)

Observe that if the category A is abelian, then any morphism in A is proper. This is the
reason why there are no assumptions on α, β and K(α) for the snake lemma in an abelian
category.
On the way to prove the snake lemma, Bourn establishes in [2] the following facts that
we need later.

Proposition 2.4 Consider the following commutative diagram in A and assume that f
is a regular epimorphism

Ker(α)
K(f) //

kα

��

Ker(β)

kβ

��
Ker(f)

K(α)
��

kf // A
f //

α

��

B

β

��
Ker(f0)

kf0

// A0 f0

// B0
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1. If K(α) is a regular epimorphism, then K(f) is a regular epimrphism.

2. If K(α) and β are regular epimorphisms, then α is a regular epimrphism.

Proposition 2.5 A morphism f : A → B in A is a monomorphism if and only if its
kernel kf : Ker(f) → A is the zero morphism.

3. The snail lemma

In this section, A is a pointed, regular and protomodular category. Consider a commuta-
tive diagram in A

A
f //

α

��

B

β

��
A0 f0

// B0

and construct the following diagram, where :
- A0 ×f0,β B is the pullback of f0 and β,
- γ = 〈α, f〉 is the unique morphism such that γ · β ′ = α and γ · f ′

0 = f,
- kβ′ = 〈0, kβ〉 is the unique morphism such that kβ′ · β ′ = 0 and kβ′ · f ′

0 = kβ, and it is a
kernel of β ′ because β ′ is a pullback of β,
- C(β ′) is the unique morphism such that cγ · C(β ′) = β ′ · cα.

Ker(β ′) = Ker(β)

kβ

��

kβ′

yytttttttttttttttttttttttttttttttttt

A

α

��

f //

γ

''NNNNNNNNNNNN B

β

��

A0 ×f0,β B

β′

����
��

��
��

��
��

��
��

��

f ′
0

33ggggggggggggggggggggggggggg

cγ

&&MMMMMMMMMM

Cok(γ)

C(β′)

{{wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

A0 f0

//

cα

��

B0

Cok(α)
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Snail Lemma 3.1 Consider the following commutative diagram in A

Ker(γ)
K(id) //

kγ

��

Ker(α)
K(f) //

kα

��

Ker(β)

kβ

��
A

γ

��

id // A
f //

α

��

B

β

��
A0 ×f0,β B

β′
//

cγ

��

A0 f0

//

cα

��

B0

cβ

��
Cok(γ)

C(β′)
// Cok(α)

C(f0)
// Cok(β)

If α, β and γ are proper, then the following sequence is exact

Ker(γ)
K(id) // Ker(α)

K(f) // Ker(β)
kβ′ ·cγ

// Cok(γ)
C(β′) // Cok(α)

C(f0) // Cok(β)

Proof.
• Exactness in Ker(α) : obvious because K(id) : Ker(γ) → Ker(α) is a kernel of K(f) by
interchange of limits.
• Exactness in Ker(β) : first, observe that K(f) · kβ′ = kα · γ (compose with the pullback
projections) and, therefore, K(f) · kβ′ · cγ = 0. Now, to prove the exactness in Ker(β) we
use the following diagram, where π is the unique morphism such that π · k(kβ′ ·cγ) = K(f).
Observe that K(kβ′) is a monomorphism because K(kβ′) · kcγ

= k(kβ′ ·cγ) · kβ′ and k(kβ′ ·cγ)

and kβ′ are monomorphisms.

Ker(kβ′ · cγ)
k(k

β′ ·cγ)

&&NNNNNNNNNNN

K(kβ′)
~~~~

~~
~~

~~
~~

~~
~~

~~
~~

~~

Ker(α)

kα

��

K(f) //

π

33ggggggggggggggggggggggg
Ker(β)

kβ

��

kβ′

{{wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww kβ′ ·cγ

%%KKKKKKKKK

Ker(cγ)

kcγ

��

Cok(γ)

id

}}zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

z

A

α

��

f //

γ &&NNNNNNNNNNNN

γ
88pppppppppppp

B

β

��

A0 ×f0,β B

β′

����
��

��
��

��
��

��
��

��

f ′
0

33ggggggggggggggggggggggggggg

cγ

''PPPPPPPPPPPP

Cok(γ)

A0 f0

// B0
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We have to prove that π is a regular epimorphism. This follows from the fact that γ is a
regular epimorphism (because γ is proper) and the following square is a pullback.

Ker(α) π //

kα

��

Ker(kβ′ · cγ)

K(kβ′)

��

A
γ

// Ker(cγ)

To check its commutativity, compose with the monomorphism kcγ
. To check its universa-

lity, consider morphisms x : X → A and y : X → Ker(kβ′ · cγ) such that x · γ = y ·K(kβ′).
We have :

x ·α = x · γ ·β ′ = x · γ · kcγ
·β ′ = y ·K(kβ′) · kcγ

·β ′ = y · k(kβ′ ·cγ) · kβ′ ·β ′ = y · k(kβ′ ·cγ) · 0 = 0

Therefore, there exists a unique z : X → Ker(α) such that z · kα = x. The condition
z · π = y follows from z · kα = x because K(kβ′) is a monomorphism.

• Exactness in Cok(γ) : first, observe that kβ′ · cγ ·C(β ′) = kβ′ · β ′ · cα = 0. Now, to prove
the exactness in Cok(γ) we use the following commutative diagram.

Ker(cγ)

kcγ

��

K(β′)

wwooooooooooooooooooooooooo
Ker(β ′) = Ker(β)

kβ

��

kβ′

zzuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

K(cγ)

$$HHHHHHHHHHHHHHHHHHH

Ker(cα)

kcα

��1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

A
αoo

γ

>>~~~~~~~~~~~~~~~~~

α

��

f //

γ

&&MMMMMMMMMMMMM B

β

��

Ker(C(β ′))

kC(β′)

vvmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

A0 ×f0,β B

β′

����
��

��
��

��
��

��
��

��

f ′
0

33ggggggggggggggggggggggggggg

cγ

&&MMMMMMMMMM

Cok(γ)

C(β′)

{{wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

A0 f0

//

cα

��

B0

Cok(α)

We have to prove that K(cγ) is a regular epimorphism. For this, observe that γ ·K(β ′) = α
(indeed, composing with the monomorphism kcα

, both give α). Since α is proper, α is a
regular epimorphism, and therefore the equation γ · K(β ′) = α implies that K(β ′) is a
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regular epimorphism. We can conclude that K(cγ) is a regular epimorphism by applying
point 1 of Proposition 2.4 to the following diagram.

Ker(β ′)
K(cγ) //

kβ′

��

Ker(C(β ′))

kC(β′)

��
Ker(cγ)

kcγ //

K(β′)
��

A0 ×f0,β B
cγ //

β′

��

Cok(γ)

C(β′)
��

Ker(cα)
kcα

// A0 cα

// Cok(α)

• Exactness in Cok(α) : first, observe that cγ · C(β ′) · C(f0) = 0 and then, since cγ

is an epimorphism, we have C(β ′) · C(f0) = 0. Now, to prove the exactness in Cok(α)
we use the following commutative diagram, where π is the unique morphism such that
π · kC(f0) = C(β ′).

A

α

��

f //

γ

&&NNNNNNNNNNNN B

β

��

β

&&LLLLLLLLLLL

A0 ×f0,β B

β′

����
��

��
��

��
��

��
��

��

f ′
0

33gggggggggggggggggggggggggg

cγ

''OOOOOOOOOOOO
Ker(cβ)

kcβ

����
��

��
��

��
��

��
��

��

Cok(γ)

C(β′)

{{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

π

��

A0 f0

//

cα

��

B0

cβ

��

Ker(C(f0))

kC(f0)ssggggggggggggggggggggggg

Cok(α)
C(f0)

// Cok(β)

We have to prove that π is a regular epimorphism. For this, we split the construction of
the pullback A0 ×f0,β B in two steps :

A0 ×f0,β B
f ′
0 //

x

((RRRRRRRRRRRRR

β′

��

B

β

��

β

''OOOOOOOOOOOOOO

A0 ×f0,kcβ
Ker(cβ) z //

y

vvlllllllllllllll
Ker(cβ)

kcβwwooooooooooooo

A0 f0

// B0
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Since β is proper, β is a regular epimorphism, and then x also is a regular epimorphism
because it is a pullback of β. Moreover, since y · cα · C(f0) = 0, there exists a unique
t : A0 ×f0,kcβ

Ker(cβ) → Ker(C(f0)) such that y · cα = t · kC(f0). Now observe that the
following square commutes

A0 ×f0,β B
cγ //

x

��

Cok(γ)

π

��
A0 ×f0,kcβ

Ker(cβ)
t

// Ker(C(f0))

(for this, compose with the monomorphism kC(f0)). Therefore, since x is a regular epimor-
phism, to prove that π is a regular epimorphism it remains to show that t is a regular
epimorphism. This can be done using the following commutative diagrams

A0 ×f0,kcβ
Ker(cβ) z //

y

��

Ker(cβ) 0 //

kcβ

��

0

0

��
A0 f0

// B0 cβ

//

(1)

Cok(β)

(2)

A0 ×f0,kcβ
Ker(cβ)

y

��

t // Ker(C(f0))

C(f0)

��

0 // 1

0

��
A0 cα

// Cok(α)
C(f0)

//

(3)

Cok(β)

(4)

Since (1) and (2) are pullbacks, so is (1)+(2), that is, y is a kernel of f0 · cβ = cα · C(f0).
Therefore, (3)+(4) is a pullback, but also (4) is a pullback, and then (3) is a pullback.
Since cα is a regular epimorphism, this proves that t is a regular epimorphism.

4. Comparing the snake and the snail

As in the previous sections, A is a pointed, regular and protomodular category. We need
a preliminary result.

Lemma 4.1 Consider the following diagram in A

Ker(x)

kx

��
Ker(y)

ky // P
y //

x

��

Y

X

If x and kx · y are regular epimorphisms, then ky · x is a regular epimorphism.



9

Proof. Consider the unique factorization 〈x : y〉 : P → X × Y of x and y through the
product. By applying point 2 of Proposition 2.4 to the diagram

Ker(x)
kx //

kx·y

��

P

〈x:y〉

��

x // X

id

��
Y

〈0:1〉
// X × Y πX

// X

we get that 〈x : y〉 is a regular epimorphism. Consider now the following commutative
diagram

Ker(y)
ky·x //

ky

��

X

〈1:0〉

��

0 // 0

0

��
P

〈x:y〉
//

(1)

X × Y πY

//

(2)

Y

Since (2) and (1)+(2) are pullbacks, (1) also is a pullback. Therefore, ky · x is a regular
epimorphism because it is a pullback of 〈x : y〉.

We will also use the following simple fact, which holds if A is pointed and has kernels.

Lemma 4.2 Consider the following commutative diagram in A

Ker(f)

K(α)
��

kf // A
f //

α

��

B

β

��
Ker(f0)

kf0

// A0 f0

// B0

If β is a monomorphism, then the left-hand square is a pullback.

If we compare the snake sequence (Lemma 2.3) and the snail sequence (Lemma 3.1)

Ker(K(α))
K(kf )

// Ker(α)
K(f) // Ker(β)

d // Cok(K(α))
C(kf0

)
// Cok(α)

C(f0) // Cok(β)

Ker(γ)
K(id) // Ker(α)

K(f) // Ker(β)
kβ′ ·cγ

// Cok(γ)
C(β′) // Cok(α)

C(f0) // Cok(β)

we see that the only difference is that Cok(K(α)) is replaced, in the snail sequence, by
Cok(γ). Indeed, by exchange of limits, both

K(kf) : Ker(K(α)) → Ker(α) and K(id) : Ker(γ) → Ker(α)

are kernels of K(f) : Ker(α) → Ker(β).
In order to show that Cok(K(α)) and Cok(γ) are isomorphic, let us put together the
construction underlying the snake lemma and the construction underlying the snail lemma
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in the following diagram, where :
- kf ′

0
= 〈kf0, 0〉 is the unique morphism such that kf ′

0
· β ′ = kf0 and kf ′

0
· f ′

0 = 0, and it is
a kernel of f ′

0 because f ′
0 is a pullback of f0,

- C(kf ′
0
) is the unique morphism such that kf ′

0
· cγ = cK(α) · C(kf ′

0
) (such a morphism

exists because kf · γ = K(α) · kf ′
0
, as one easily cheks by composing with the pullback

projections).

Ker(f)
kf //

K(α)

��

A
f //

α

��

γ

%%JJJJJJJJJJJ B

β

��

A0 ×f0,β B

β′

����
��

��
��

��
��

��
��

�

f ′
0

44iiiiiiiiiiiiiiiiiiii

cγ

&&MMMMMMMMMM

Cok(γ)

Ker(f ′
0) = Ker(f0)

kf0

//

kf ′
0

77nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

cK(α)

��

A0 f0

// B0

Cok(K(α))

C(kf ′
0
)

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Proposition 4.3 (With the previous notation.)

1. If γ and K(α) are proper, then C(kf ′
0
) is a monomorphism ;

2. If f is a regular epimorphism, then C(kf ′
0
) is a regular epimorphism.

Proof.

Proof of 1. By Lemma 4.2, the left-hand square in the following commutative diagram is
a pullback

Ker(f)

K(α)
��

kf // A

γ

��

f // B

id

��
Ker(f ′

0) kf ′
0

// A0 ×f0,β B
f ′
0

// B

Therefore, pulling back kf ′
0

along the (regular epi, mono)-factorization of γ gives the
(regular epi, mono)-factorization of K(α). Since γ and K(α) are proper, this means that
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in the following diagram squares (1) and (2) are pullbacks.

Ker(f)
kf //

K(α)
��

(1)

A

γ

��
Ker(cK(α))

K(kf ′
0
)

//

kcK(α)

��
0

{{vvvvvvvvvvvvvvvvvvvvvvv

(2)

Ker(cγ)

kcγ

��
Ker(f ′

0) kf ′
0

//

cK(α)

��

A0 ×f0,β B

cγ

��
Ker(C(kf ′

0
))

kC(k
f ′
0
)

//

(3)

Cok(K(α))
C(kf ′

0
)

// Cok(γ)

Now we prove that (3) also is a pullback, so that 0 is a regular epimorphism and then
kC(kf ′

0
) is zero, which implies that C(kf ′

0
) is a monomorphism (Proposition 2.5). Clearly,

(3) commutes. Consider morphisms x : X → Ker(C(kf ′
0
)) and y : X → Ker(f ′

0) such that
x · kC(kf ′

0
) = y · cK(α). We have

y · kf ′
0
· cγ = y · cK(α) · C(kf ′

0
) = x · kC(kf ′

0
) · C(kf ′

0
) = x · 0 = 0

so that there exists z : X → Ker(cγ) such that z · kcγ
= y · kf ′

0
. Since (2) is a pullback,

this implies that there exists t : X → Ker(cK(α)) such that t ·K(kf ′
0
) = z and t · kcK(α)

= y.
Moreover, t · 0 · kC(kf ′

0
) = t · kcK(α)

· cK(α) = y · cK(α) = x · kC(kf ′
0
), and then t · 0 = x because

kC(kf ′
0
) is a monomorphism.

Proof of 2. Consider the following commutative diagram

A

γ
$$II

II
II

II
II

I
γ //

f

��

Ker(cγ)

kcγ

��
Ker(kf ′

0
)

kf ′
0 //

cK(α)

��

A0 ×f0,β B
f ′
0

//

cγ

��

B

Cok(K(α))
C(kf ′

0
)

// Cok(γ)

Since f is a regular epimorphism and f = γ · f ′
0 = γ · kcγ

· f ′
0, we have that kcγ

· f ′
0 is a
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regular epimorphism. Therefore, we can apply Lemma 4.1 to

Ker(cγ)

kcγ

��
Ker(kf ′

0
)

kf ′
0 // A0 ×f0,β B

f ′
0

//

cγ

��

B

Cok(γ)

and we have that kf ′
0
· cγ is a regular epimorphism. Since kf ′

0
· cγ = cK(α) · C(kf ′

0
), we can

conclude that C(kf ′
0
) is a regular epimorphism.

5. A 2-categorical explication of the snail lemma

The most economical way to explain the construction involved in the snail lemma is
by using strong homotopy kernels. Indeed, to express the universal property of a strong
homotopy kernel we only need null-homotopies. In order to formalize null-homotopies and
(strong) homotopy kernels, we adopt the following setting, introduced in [7].

Definition 5.1 A category with null-homotopies B is given by
- a category B,
- for each morphism f : A → B in B, a set N (f) (the set of null-homotopies on f),
- for each triple of composable morphisms f : A → B, g : B → C, h : C → D, a map

f ◦ − ◦ h : N (g) → N (f · g · h) , µ 7→ f ◦ µ ◦ h

(If f = idB or h = idC , we write µ ◦ h or f ◦ µ instead of f ◦ µ ◦ h.)
These data have to satisfy the following associativity condition : given morphisms

A′
f ′

// A
f // B

g // C
h // D

h′
// D′

then for any µ ∈ N (g) one has (f ′ · f) ◦ µ ◦ (h · h′) = f ′ ◦ (f ◦ µ ◦ h) ◦ h′.

Definition 5.2 Let B be a category with null-homotopies and let f : A → B be a mor-
phism in B. A triple

Ker(f), K(f) : Ker(f) → A, k(f) ∈ N (K(f) · f)

1. is a homotopy kernel of f if for any triple D, g : D → A, µ ∈ N (g · f), there exists
a unique morphism g′ : D → Ker(f) such that g′ · K(f) = g and g′ ◦ k(f) = µ

2. is a strong homotopy kernel of f if it is a homotopy kernel of f and, moreover, for
any triple D, h : D → Ker(f), µ ∈ N (h · K(f)) such that µ ◦ f = h ◦ k(f), there
exists a unique λ ∈ N (h) such that λ ◦ K(f) = µ.
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Example 5.3 To help intuition, here is an easy example. The category B is the category
Grpd∗ of groupoids with a distinguished object ∗ and pointed functors (that is, functors
preserving the object ∗). For a pointed functor f : A → B, the set N (f) is the set of
natural transformations λ : 0 → f such that λ∗ = id∗, where 0 : A → B is the constant
pointed functor. The operation f ◦ µ ◦ g is the reduced horizontal composition of natural
transformations. The strong homotopy kernel of f : A → B is the usual comma (or slice)
groupoid ∗/f whose objects are pairs (a0 ∈ A, b1 : ∗ → f(a0) ∈ B).

In the rest of this section, A is a category with pullbacks.

Notation 5.4 Let us describe the category with null-homotopies Arr(A).
- An object A is a morphism α : A → A0 in A.
- A morphism F : A → B is a pair (f, f0) of morphisms in A such that the following
diagram commutes

A

α

��

f // B

β

��
A0 f0

// B0

- Given a morphism F : A → B in Arr(A), the set of null-homotopies N (F ) is the set of
morphisms λ : A0 → B in A such that α · λ = f and λ · β = f0.
- Given three morphisms F : A → B, G : B → C, H : C → D in Arr(A), the operation
F ◦ − ◦ H : N (G) → N (F · G · H) is given by

B
g //

β

��

C

γ

��
B0

µ
==||||||||

g0
// C0

7→ A
f //

α

��

B
g // C

h // D

δ
��

A

f0·µ·h

44iiiiiiiiiiiiiiiiiiiiiiii

f0

// B0 g0
// C0 h0

// D0

The first part of the next proposition is obvious (it requires that A is pointed). It is
included in the statement just to stress the relation between snails, snakes, and kernels.

Proposition 5.5 Let F = (f, f0) : A → B be a morphism in Arr(A).

1. The construction involved in the snake sequence

Ker(f)

K(α)
��

kf // A
f //

α

��

B

β

��
Ker(f0)

kf0

// A0 f0

// B0

is the kernel of F in the category Arr(A).
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2. The construction involved in the snail sequence

A

γ

��

id // A
f //

α

��

B

β

��
A0 ×f0,β B

β′
//

f ′
0

44hhhhhhhhhhhhhhhhhhhhh

A0 f0

// B0

is the strong homotopy kernel of F in the category with null-homotopies Arr(A).

Proof. Proof of 2. (Homotopy kernel) Consider a triple D, G : D → A, µ ∈ N (G · F ) in
Arr(A)

D
g //

δ
��

A

��

f // B

β

��
D0

µ

66mmmmmmmmmmmmmmmm

g0
// A0 f0

// B0

Since µ·β = g0 ·f0, there exists a unique morphism µ : D0 → A0×f0,βB such that µ·f ′
0 = µ

and µ · β ′ = g0. We get in this way the following morphism G′ : D → K(F )

D
g //

δ
��

A

γ

��
D0 µ

// A0 ×f0,β B

Conditions G′ ·K(F ) = G and G′◦k(F ) = µ are satisfied : the first one amounts to g·id = g
and µ · β ′ = g0, and the second one amounts to µ · f ′

0 = µ. As far as the uniqueness of
the factorization G′ is concerned, given a morphism H = (h, h0) : D → Ker(F ), condition
H ·K(F ) = G means that h = g and h0 · β ′ = g0, and condition H ◦ k(F ) = µ means that
h0 · f ′

0 = µ. Therefore, h0 = µ and then H = G′.
(Strong homotopy kernel) Consider a triple D, H : D → Ker(F ), µ ∈ N (H · K(F )) in
Arr(A)

D
h //

δ
��

A

��

id // A

α

��
D0 h0

//

µ

44iiiiiiiiiiiiiiiiiiiiiiii A0 ×f0,β B
β′

// A0

satisfying the condition µ ◦ F = H ◦ k(F ), which amounts to µ · f = h0 · f ′
0. For a

null-homotopy λ ∈ N (H), the condition λ ◦ K(F ) = µ means λ · id = µ. This gives the
uniqueness of the null-homotopy λ, and it remains just to check that

D
h //

δ
��

A

γ

��
D0 h0

//

µ

99sssssssssss
A0 ×f0,β B
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is a null-homotopy. In particular, to check that µ · γ = h0, compose with the pullback
projections (and use µ · f = h0 · f ′

0 when composing with f ′
0).

Remark 5.6 We can reconsider Proposition 4.3 in the light of Proposition 5.5. For a
given morphism F = (f, f0) : A → B in Arr(A), the universal property of the strong
homotopy kernel gives a canonical comparison from the kernel of F in Arr(A) to the
strong homotopy kernel of F in Arr(A). Explicitly, the canonical comparison is given by

Ker(f)
kf //

K(α)
��

A

γ

��
Ker(f0)

kf ′
0

// A0 ×f0,β B

Now, Proposition 4.3 says that the canonical comparison is a “weak equivalence”. More
precisely, the canonical comparison induces two morphisms

K(kf) : Ker(K(α)) → Ker(γ) and C(kf ′
0
) : Cok(K(α)) → Cok(γ)

and we have that
- K(kf) always is an isomorphism for a general argument of interchange of limits,
- if γ and K(α) are proper and if f is a regular epimorphism, then C(kf ′

0
) also is an

isomorphism.

6. The complete snail lemma

From [3], Lemma 4.5.1, recall the following fact (which defines the homology of a complex).

Proposition 6.1 Let A be a pointed regular protomodular category. Consider the follo-
wing commutative diagram in A, with a · b = 0 and a : X → Y proper.

X
a //

a′ ##HH
HHH

HH
HH

Y
b //

ca ##GG
GG

GG
GG

G Z

Ker(b)
kb

;;wwwwwwwww

ca′

��

Cok(a)
b′

;;xxxxxxxxx

Cok(a′) Ker(b′)

kb′

OO

There exists a unique morphism i : Cok(a′) → Ker(b′) such that ca′ · i · kb′ = kb · ca. Mo-
reover, the morphism i is a isomorphism.
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In the rest of this section A is abelian. Consider a commutative diagram in A

A
f //

α

��

B

β

��
A0 f0

// B0

together with its factorization 〈α, f〉 through the pullback A0×f0,β B and its factorization
[f0, β] through the pushout A0 +α,f B as in the following diagram

A
f //

α

��

〈α,f〉

((QQQQQQQQQQQQQQQ B

α′

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

β

��

A0 ×f0,β B

β′

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

c〈α,f〉

��

f ′
0

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
Ker[f0, β]

k[f0,β]

��
Cok〈α, f〉 A0 +α,f B

[f0,β]
((QQQQQQQQQQQQQQ

A0

f ′

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
f0

// B0

Lemma 6.2 (With the previous notation.) There exists a unique morphism

i : Cok〈α, f〉 → Ker[f0, β]

such that c〈α,f〉 · i · k[f0,β] = β ′ · f ′ − f ′
0 · α

′. Moreover, the morphism i is an isomorphism.

Proof. Apply Proposition 6.1 to the complex

A
〈α:f〉 // A0 × B ≃ A0 + B

[f0:β] // B

where 〈α : f〉 and [f0 : β] are the factorizations of the pairs (α, f) and (f0, β) through the
product A0 × B and the coproduct A0 + B, and the unlabelled isomorphism is given by

(

idA0 0
0 −idB

)

: A0 + B → A0 × B

Corollary 6.3 Consider a morphism F = (f, f0) : A → B in Arr(A) and construct the
commutative diagram

A

〈α,f〉
��

id // A

α

��

f // B

β

��

α′
// A0 +α,f B

[f0,β]

��
A0 ×f0,β B

β′
// A0 f0

// B0 id
// B0
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1. The left-hand part is the strong homotopy kernel of F in Arr(A).

2. The right-hand part is the strong homotopy cokernel of F in Arr(A).

3. There is an exact sequence

Ker〈α, f〉 → Ker(α) → Ker(β) → H(F ) → Cok(α) → Cok(β) → Cok[f0, β]

where H(F ), the homology of F, stands for the object Ker[f0, β] ≃ Cok〈α, f〉.

Proof. Point 1 is just Proposition 5.5, and point 2 follows from point 1 by duality. As far
as point 3 is concerned, from the snail lemma and its dual we get two exact sequences
that we can past together thanks to Lemma 6.2.

Remark 6.4

1. Since the category A is abelian, Arr(A) is a 2-category, and it is easy to adapt the
proof of Proposition 5.5 to show that the strong homotopy kernel of F is also a
bikernel of F in the sense of [1]. Dually, the strong homotopy cokernel of F is also
a bicokernel.

2. Moreover, Arr(A) is biequivalent to the 2-category Grpd(A) of internal groupoids,
internal functors and internal natural transformations in A. From this point of
view, the exact sequence of Corollary 6.3 is a kind of π1-π0-sequence associated to
F, seen as an internal functor. This is the approach adopted in [10], where non
protomodular versions of the snail and of the snake lemma are discussed, in order
to get an internalization of the classical exact sequence associated to a fibration of
groupoids due to R. Brown (see [5], or [6] for the non fibrational version).
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