
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Available online at www.sciencedirect.com

Advances in Mathematics 238 (2013) 140–183
www.elsevier.com/locate/aim

Butterflies in a semi-abelian context

O. Abbad, S. Mantovania, G. Meterea,∗, E.M. Vitaleb
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Abstract

It is known that monoidal functors between internal groupoids in the category Grp of groups constitute
the bicategory of fractions of the 2-category Grpd(Grp) of internal groupoids, internal functors and internal
natural transformations in Grp, with respect to weak equivalences (that is, internal functors which are
internally fully faithful and essentially surjective on objects). Monoidal functors can be equivalently
described by a kind of weak morphisms introduced by B. Noohi under the name of butterflies. In order
to internalize monoidal functors in a wide context, we introduce the notion of internal butterflies between
internal crossed modules in a semi-abelian category C, and we show that they are morphisms of a bicategory
B(C). Our main result states that, when in C the notions of Huq commutator and Smith commutator
coincide, then the bicategory B(C) of internal butterflies is the bicategory of fractions of Grpd(C) with
respect to weak equivalences.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

A groupoid in the category of groups is a special case of strict monoidal category, tensor
product being provided by the group structure on objects and arrows. Therefore, beyond internal
functors, as arrows between groupoids in groups we can consider monoidal functors, that is,
functors between the underlying categories

F : H→ G,

equipped with a natural and coherent family of isomorphisms

F x,y : F0(x)+ F0(y)→ F0(x + y) x, y ∈ H0.

Both notions of monoidal functor and internal functor are relevant as morphisms of groupoids in
groups (just to cite an example, as a special case of monoidal functors we get group extensions,
whereas in the same case internal functors give split extensions, see Section 7, so the question of
expressing monoidal functors in an internal way arises.

Three progresses have been recently accomplished in this direction. In [40] (see also [41]
and [2]) B. Noohi has proved that the bicategory having groupoids in groups as objects and
monoidal functors as 1-cells can be equivalently described using crossed modules of groups as
objects and what he calls butterflies as arrows. Moreover, in a paper with E. Aldrovandi [2], the
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theory is pushed forward in order to include the more general situation where groups are replaced
by internal groups in a Grothendieck topos. Noohi’s butterflies (of [40]) have been studied in the
case of Lie algebras on a field in [1], and in [42], where it is proved that butterflies between
differential crossed modules (i.e. crossed modules of Lie algebras) represent homomorphisms of
strict Lie 2-algebras.

On the other hand, in [48] it has been proved that the bicategory of groupoids in groups and
monoidal functors is the bicategory of fractions of the bicategory of groupoids in groups and
internal functors with respect to weak equivalences. Once again, the same result holds replacing
groups with Lie algebras and monoidal functors with homomorphisms of strict Lie 2-algebras.
In [24], M. Dupont has proved that butterflies provide the bicategory of fractions of internal
functors with respect to weak equivalences when working internally to any abelian category.

The aim of this paper is to unify the results in [40,1,42,24] and [48]. We introduce and
study the bicategory B(C) of crossed modules and butterflies in a semi-abelian category C.
The main result is Theorem 5.6, where we prove that B(C) is the bicategory of fractions of the
bicategory of groupoids and internal functors with respect to weak equivalences. This result gives
a general answer to the specific problem recalled above: butterflies are a representation of weak
internal functors. They generalize at once monoidal functors in Grpd(Grp) and homomorphisms
in Grpd(k Lie), and they work for other 2-dimensional algebraic settings, as for groupoids of
Leibniz algebras, associative algebras, rings etc. Actually, butterflies come out of the notion of
internal profunctor, by means of a process of normalization, as described in [38], where the non-
pointed case is examined in detail. In fact, in [38] the whole story has been told in terms of
fractors (see Section 3.2): fractors are a special kind of internal profunctors corresponding to
butterflies (when C is semi-abelian) and providing the bicategory of fractions of groupoids with
respect to weak equivalences in the more general context of Barr exact categories. The case of
internal categories is treated by D. Roberts in [45] using internal anafunctors.

A few lines on the chosen context. We work internally to a semi-abelian category in which
the notions of Huq commutator [30] and Smith commutator [46] coincide. This allows us,
among other things, to use a simplified version of internal crossed modules without loosing
the equivalence with internal groupoids (see [39]). The categories of groups, Lie algebras, rings
and many other algebraic structures not only in Set, but in any Grothendieck topos satisfy this
condition (see Section 9.3), so that our context includes also that of [2].

Finally, let us give a glance to possible developments of the present work. Quite a lot
of higher dimensional group theory has been developed starting from the pioneer works of
P. Deligne [23], A. Fröhlich and C.T.C. Wall [27] on Picard categories (also called 2-groups
or categorical groups), taking monoidal functors as morphisms (see for example [47,2,25] and
the references therein). On the other hand, group theory has been the paradigmatic example
to develop in recent years semi-abelian categorical algebra (see Section 9 and the references
therein). The fact of disposing of a normalized internal notion of monoidal functor should make
it possible to join these two generalizations of group theory and to develop a kind of higher
dimensional semi-abelian categorical algebra which could cover as special cases most of the
known results on (strict) categorical groups and (strict) Lie 2-algebras.

The layout of this paper is as follows: in Section 2 we recall the equivalence between internal
groupoids and internal crossed modules, a result due to G. Janelidze (see [31]) and which holds
in any semi-abelian category; in Sections 3 and 4 we study the bicategory B(C) of butterflies in a
semi-abelian category C with “Huq = Smith”; in Section 5 we prove that B(C) is the bicategory
of fractions of internal functors with respect to weak equivalences; in Section 6 we examine the
two leading examples of groups and Lie algebras; Section 7 is a short section devoted to the
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classification of extensions which follows from Section 5; in Section 8 we specialize the main
result of Section 5 to the case where C is a free exact category; finally, Section 9 is a reminder
on protomodular and semi-abelian categories. The reader who is not familiar with semi-abelian
categories should have a glance to Section 9 before reading Section 2.

Terminology: bicategory means bicategory with invertible 2-cells.

2. Internal groupoids and internal crossed modules

An introduction to internal categories can be found in Chapter 8 of [7]. For basic facts on
2-categories and bicategories, see [5] or Chapter 7 in [7].

2.1. Internal groupoids

Let C be a category with finite limits. We use the following notation.
1. An (internal) groupoid G in C is displayed as

G1 ×c,d G1
m // G1

d //

c
// G0eoo G1

i // G1

where

G1 ×c,d G1
π2 //

π1

��

G1

d
��

G1 c
// G0

is a pullback.
2. An (internal) functor P = (p1, p0): G→ H is displayed as

G1
p1 //

d
��

c
��

H1

d
��

c
��

G0 p0
// H0

3. An (internal) natural transformation α: P ⇒ Q: G→ H is displayed as

G1
p1 //
q1

//

d
��

c
��

H1

d
��

c
��

G0
p0 //
q0

//

α||||

>>||||

H0

Internal groupoids, functors and natural transformations form a 2-category (with invertible 2-
cells) denoted by Grpd(C).

When dealing with internal structures, it is sometimes useful to use virtual objects and arrows
as if those would be internal to the category of sets. For instance, we could describe the object
G1×c,d G1 as the “set” of composable arrows

·
f // ·

g // ·

Yoneda embedding makes this precise, as explained in [10], Metatheorem 0.2.7.
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Definition 2.1. An internal functor P: G → H as above is called a discrete cofibration when
the commutative square d · p1 = p0 · d is a pullback. Dually, P is a discrete fibration when the
square c · p1 = p0 · c is a pullback.

Observe that for groupoids the notions of fibration and cofibration are equivalent.

Example 2.2. Consider the diagram

Rc
d //

c1

��
c2

��

G1

d
��

c
��

G1 d
// G0

where (Rc, c1, c2) is a kernel pair of c, and d is the morphism that sends the pair of converging
virtual arrows

x
f // y z

goo

in the composition g−1
· f : x → z. The pair (d, d) is a discrete fibration of groupoids. A similar

argument can be developed for Rd .

The following notion is due to M. Bunge and R. Paré; see [20].

Definition 2.3. Assume that the category C is regular [4]; an internal functor P: G → H is a
weak equivalence if it is

1. (internally) full and faithful, that is, the diagram

G1

d

vvnnnnnnnnnnnnnnn

p1

��

c

((QQQQQQQQQQQQQQQ

G0

p0   BB
BB

BB
BB

H1

d~~||
||

||
||

c
  BB

BB
BB

BB
G0

p0~~||
||

||
||

H0 H0

is a limit, and
2. (internally) essentially surjective on objects, that is, the composition

G0 ×p0,c H1
t2 // H1

d // H0

is a regular epimorphism, where

G0 ×p0,c H1
t2 //

t1
��

H1

c
��

G0 p0
// H0

is a pullback.
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Observe that P: G → H is (internally) full and faithful if and only if, for every groupoid A,
the functor

P · − : Grpd(C)(A, G)→ Grpd(C)(A, H)

is full and faithful in the usual sense. Moreover, a weak equivalence P is an equivalence if and
only if

G0 ×p0,c H1
t2 // H1

d // H0

is a split epimorphism.

2.2. Internal crossed modules

From now on we assume that C is a semi-abelian category in which the condition
“Huq = Smith” holds (for undefined notions and notation concerning semi-abelian categories,
the reader is addressed to Section 9).

An (internal) crossed module G in C is given by a morphism ∂: G → G0 and an action
ξ : G0♭G → G such that the diagram

G♭G

∂♭1
��

χG // G

1
��

G0♭G

1♭∂

��

ξ // G

∂

��
G0♭G0 χG0

// G0

commutes, χX being the canonical conjugation action for the object X . The commutativity of
the upper part is called the Peiffer condition, the commutativity of the lower part is called the
precrossed module condition.

A morphism P: H → G of crossed modules is given by morphisms p: H → G and
p0: H0 → G0 such that the diagram

H0♭H

ξ

��

p0♭p // G0♭G

ξ

��
H

∂

��

p // G

∂

��
H0 p0

// G0

commutes. In the following, we will refer to the upper commutative square above by saying that
the pair (p, p0) is equivariant with respect to the actions.

Internal crossed modules with their morphisms form a category denoted by XMod(C).
Remark 2.4. In an arbitrary semi-abelian category, the notion of crossed module introduced by
G. Janelidze in [31] is stronger than the one we adopt here. The notion we use (already considered
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in [31] and further studied in [37]) is equivalent to the original one thanks to the condition
“Huq = Smith”, as proved in [39].

In the following proposition we consider Grpd(C) as a category, that is, we forget natural
transformations.

Proposition 2.5 (Janelidze [31]). The categories Grpd(C) and XMod(C) are equivalent.

Proof (Sketch). Let

G1 ×c,d G1
m // G1

d //

c
// G0eoo

be a groupoid and consider the following commutative diagram, where the rows are kernel
diagrams:

G0♭G
jG0,G //

∃! ξ

��

G0 + G

[e,g]
��

[1,0] // G0

1
��

G g
// G1 c

// G0

(1)

We obtain a crossed module

G
g // G1

d // G0 , G0♭G
ξ // G.

This describes the equivalence functor

J : Grpd(C)→ XMod(C)
on objects; its extension to arrows is straightforward.

Conversely, let

G
∂ // G0 , G0♭G

ξ // G

be a crossed module and consider the semi-direct product, given by the coequalizer qξ below

G0♭G
jG0,G //

ξ ""EEEEEEEE G0 + G
qξ // G oξ G0 .

G
iG

;;wwwwwwwww

We obtain a reflexive graph

G1 = G oξ G0
d //

c
// G0 ,eoo

where c and e = qξ · iG0 are, respectively, the canonical projection from and the canonical
injection into the semi-direct product, and d is the unique morphism such that the diagram
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G
g //

∂
''PPPPPPPPPPPPPPP G oξ G0

d
��

G0
eoo

1
vvnnnnnnnnnnnnnnn

G0

commutes, with g = qξ · iG the canonical injection of G into the semi-direct product. For a
detailed proof, see [31]. �

We will refer to the functor J as the normalization functor, and to its quasi-inverse as
the denormalization functor. When no confusion arises, we will identify a groupoid with the
corresponding crossed module writing G instead of J (G), and ignoring in the same way the
quasi-inverse of J.

Remark 2.6. 1. In [26] it is mentioned that, under the equivalence Grpd(C) ≃ XMod(C), a
morphism P: H → G of crossed modules corresponds to a weak equivalence if and only if
the arrows induced on kernels and cokernels are isomorphisms:

Ker ∂
≃ //

��

Ker ∂

��
H

p //

∂

��

G

∂

��
H0

p0 //

��

G0

��
Coker ∂

≃ // Coker ∂

Such a morphism will be called a weak equivalence of crossed modules.
2. It is easy to show that a morphism P: H → G of crossed modules corresponds to a discrete

fibration of groupoids if and only if p: H → G is an isomorphism. Such morphisms will be
called discrete fibrations of crossed modules.

Notation 2.7. Here and in the following we will denote kernels of the codomain arrows with the
lower case letter of the groupoid involved, e.g. the following sequence is short exact:

G
g // G1

c // G0 .

Moreover, the composite i · g provides a kernel of the domain arrow d; we will often write g•

for i · g.

The category XMod(C) has an obvious 2-categorical structure. In fact, it suffices to translate
the notion of natural transformation for internal functors into the language of crossed modules
in order to obtain the 2-cells of XMod(C). Using protomodularity, we get the following simpler
notion, called transformation of Peiffer graphs in [37].

Definition 2.8. Consider two parallel morphisms P, Q: H ⇒ G of crossed modules. An arrow
α: H0 → G1 = Goξ G0 is a natural transformation between P and Q if d · α = p0, c · α = q0,
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and the diagram

H
∂ //

⟨p,q⟩
��

H0

α

��
G × G m0

// G1

commutes, where m0 = g♯g• is the cooperator of the arrows

G
g // G1 G

g•oo

(see Section 9.2).

Set-theoretically, m0 is the morphism that sends the pair of arrows (a: x → 0, b: y → 0) to the
composition b−1

· a: x → y; in other words, m0 performs the division a/b.

Lemma 2.9. Arrows satisfying Definition 2.8 correspond bijectively to natural transformations
between the internal functors determined by the morphisms P and Q.

Proof. Observe first that the diagram in Definition 2.8 commutes if and only if

H
p //

(i)⟨α·∂,g·q⟩
��

G

g
��

G1 ×c,d G1 m
// G1

commutes. For the proof, it suffices to compute with elements and then apply the Yoneda
embedding.

Now recall (for instance, from [7]) that a natural transformation between two internal functors
P = (p1, p0) and Q = (q1, q0): H → G is defined as a morphism α: H0 → G1 satisfying
d · α = p0, c · α = q0, and such that the diagram

H1

(i i)

⟨p1,α·c⟩ //

⟨α·d,q1⟩

��

G1 ×c,d G1

m
��

G1 ×c,d G1 m
// G1

commutes. So we have to prove that (i) commutes if and only if (i i) commutes. The “if”
part is dealt with by precomposing the diagram (i i) with the monomorphism h: H → H1.
Conversely, since the base category is protomodular, the pair (h, e) is (strongly) jointly epic,
so that (i i) commutes if and only if it commutes when precomposed both with h and e. The first
precomposition is precisely (i), the second one is trivial. �

In conclusion we have proved the following (quite tautological).

Corollary 2.10. The equivalence between Grpd(C) and XMod(C) extends to a biequivalence.

Lemma 2.11. Let (∂: H → H0, ξ : H0♭H → H) be a crossed module and consider a morphism
σ : E → H0. Consider also the pullback
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E ×σ,∂ H σ //

∂

��

H

∂

��
E σ

//

(i)

H0

1. The object E ×σ,∂ H can be equipped with a canonical action

ξ : E♭(E ×σ,∂ H)→ E ×σ,∂ H

in such a way that the pair (∂, ξ ) is a crossed module and the diagram (i) is a morphism of
crossed modules.

2. Moreover, if σ : E → H0 is a regular epimorphism, then (i) is a weak equivalence.

Proof. This is a crossed-module version of a standard fact about internal categories (see [20]),
so we just sketch the proof.
1. The canonical action ξ is the factorization of the diagram

E♭(E ×σ,∂ H)
σ♭σ //

1♭∂

��

H0♭H
ξ // H

∂

��
E♭E

χE
// E σ

// H0

(which commutes by naturality of χ and the precrossed module condition on (∂, ξ)) through the
pullback (i).
2. Since (i) is a pullback, kernels of parallel arrows are isomorphic. Henceforth, since σ and σ

are regular epimorphisms, (i) is also a pushout, so that the induced arrow Coker ∂ → Coker ∂ is
an isomorphism. By Remark 2.6, we conclude that (i) is a weak equivalence. �

3. The bicategory of butterflies

In this section, we describe the bicategory B(C) of crossed modules and butterflies in C.
3.1. Butterflies

The notion of butterfly has been introduced in the category of groups by B. Noohi in [40]; see
also [2] (a special case of butterflies was used by D. F. Holt in [29] to classify group extensions).

Definition 3.1. Let G and H be crossed modules. A butterfly from H to G is given by a
commutative diagram of the form

H
κ

��??
??

??

∂

��

G

∂

��

ι

����
��

��

E

σ����
��

��
ρ ��??

??
??

H0 G0

such that
1. ρ · κ = 0, i.e. (κ, ρ) is a complex;
2. ι = ker σ and σ = coker ι, i.e. (ι, σ ) is a short exact sequence;
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3. the diagram

E♭H
σ♭1 //

1♭κ

��

H0♭H
ξ // H

κ

��
E♭E

χE
// E

commutes, i.e. the pair (κ, ξ · (σ♭1)) is a precrossed module,
4. the diagram

E♭G
ρ♭1 //

1♭ι

��

G0♭G
ξ // G

ι

��
E♭E

χE
// E

commutes, i.e. the pair (ι, ξ · (ρ♭1)) is a precrossed module.

Given the butterflies E, E ′: H → G, a morphism of butterflies is a morphism f : E → E ′ such
that the diagrams

E

f

��

ρ

  BB
BB

BB
BB

H

κ

>>}}}}}}}}

κ ′   @@
@@

@@
@@

G0

E ′
ρ′

>>||||||||

E

f

��

σ

~~||
||

||
||

H0 G

ι

`̀@@@@@@@@

ι′��~~
~~

~~
~~

E ′
σ ′

`̀AAAAAAAA

commute.

When no confusion is expected, we denote a butterfly (E, κ, ρ, ι, σ ) from H to G simply by

E : H→ G.

Observe that, since (ι, σ ) is a short exact sequence, the situation is not as symmetrical as it may
appear at first sight. Actually ι is a mono, so the action ξ · (ρ♭1) is nothing but the conjugation
action χE restricted to the subobject G. Moreover ι can be recovered as the normalization of the
equivalence relation (Rσ , σ1, σ2), i.e. ι = σ1 · ker(σ2). Observe also that, if f : E → E ′ is a
morphism of butterflies, then in particular f is a morphism of short exact sequences, so that, by
the short five lemma (see Section 9.1), it is an isomorphism.

Remark 3.2. Conditions 3 and 4 in Definition 3.1 imply that the pairs (κ, ξ · (σ♭1)) and
(ι, ξ · (ρ♭1)) are indeed crossed modules, and that

H

∂

��

H

κ

��

1oo

H0 Eσ
oo

and
G

ι

��

1 // G

∂

��
E ρ

// G0

are morphisms of crossed modules, hence discrete fibrations by Remark 2.6.
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3.2. Fractors

Using the equivalence between crossed modules and groupoids described in Proposition 2.5,
butterflies correspond to fractors.

Definition 3.3. Let H and G be groupoids. A fractor from H to G is a diagram of the form

R

σ

����
��

��
��

�

c
��??

??
??

??
?

d

��??
??

??
??

? Rσ

σ1

����
��

��
��

�

σ2
����

��
��

��
�

ρ

��??
??

??
??

?

H1

c
��??

??
??

??
?

d

��??
??

??
??

? E

σ
����

��
��

��
�

ρ
��??

??
??

??
? G1

d

����
��

��
��

�

c
����

��
��

��
�

H0 G0

where

1. σ is a regular epimorphism, and Rσ is its kernel pair;
2. ρ coequalizes d, c: R ⇒ E ;
3. (σ , σ ) and (ρ, ρ) are discrete fibrations.

Let us explain now how to construct a fractor from a butterfly and vice-versa. Denormalizing
the morphisms of crossed modules in the diagram

H
1

~~||
||

||
|| κ

  AA
AA

AA
AA

G
ι

~~||
||

||
|| 1

  BB
BB

BB
BB

H

∂   AA
AA

AA
AA

E

σ~~}}
}}

}}
}}

ρ   AA
AA

AA
AA

G

∂~~}}
}}

}}
}}

H0 G0

one easily gets a fractor as above, where H1 = HoξH H0, G1 = GoξG G0 and R = HoξH ·σ♭1 E .
The fact that the groupoid associated with ι is isomorphic to (Rσ , σ1, σ2) is due to the fact that
ι = ker σ . Finally, ρ coequalizes d and c since the pair

H
⟨h,0⟩ // R E

eoo

is jointly (strongly) epic, by protomodularity.
Conversely, starting from a fractor as above, we get the butterfly

H

∂

��

d·⟨h,0⟩

''NNNNNNNNNNNNN Ker σ ≃ G
j

yytttttttttt

∂

��

E

σ
xxppppppppppppp

ρ
$$JJJJJJJJJJ

H0 G0
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where ⟨h, 0⟩: H → R comes from the universal property of the pullback

H1

c
��

R
σoo

c
��

H0 Eσ
oo

and the isomorphism Ker σ ≃ G is the composite of the following isomorphisms, determined by
the bottom pullback squares:

Ker σ

j
��

Ker σ2

��

≃oo ≃ // G

g
��

E

σ

��

Rσ

σ2

��

σ1oo ρ // G1

c
��

H0 Eσ
oo

ρ
// G0

Remark 3.4. Given a fractor as in Definition 3.3, one can consider also the kernel pair of the
map σ , and perform the construction below, where the dashed arrows are suitably obtained by
the universal property of the kernel pair Rσ :

Rσ

σ 1

����
��

��
��

�

σ 2
����

��
��

��
�

c
��?

?
?

?
?

d

��?
?

?
?

?

R

σ

����
��

��
��

�

c
��??

??
??

??
?

d

��??
??

??
??

? Rσ

σ1

����
��

��
��

�

σ2
����

��
��

��
�

ρ

��??
??

??
??

?

H1

c
��??

??
??

??
?

d

��??
??

??
??

? E

σ
����

��
��

��
�

ρ
��??

??
??

??
? G1

d

����
��

��
��

�

c
����

��
��

��
�

H0 G0

.

One finds out that the central square is a double groupoid over E . More precisely, it is a
centralizing double groupoid, as defined by D. Bourn in [15], since (σ , σ ) is a discrete fibration.
Together with the two other squares, this gives rise to a particular profunctor H # G of
groupoids, independently studied by D. Bourn in [15] (profunctors were introduced by J.
Bénabou with the name of distributeurs [6], an internal version can be found in [35]). Indeed,
the correspondence between butterflies and fractors described above is part of a biequivalence
between the bicategory of butterflies and a suitable sub-bicategory of the bicategory of
profunctors, as explained in [38].

3.3. Identity butterflies

The canonical fractor associated with a groupoid gives the identity butterfly associated with a
crossed module. In order to construct explicitly the identity butterfly on a crossed module G, we
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consider the groupoid associated with G, as in the proof of Proposition 2.5

G1 = G oξ G0
d //

c
// G0eoo .

Following Example 2.2, one can associate with G the fractor

Rc

d

����
��

��
��

c2
��??

??
??

?? c1

��??
??

??
??

Rd
d1

����
��

��
��

d2����
��

��
�� c

��??
??

??
??

G1

c
��??

??
??

?? d

��??
??

??
??

G1

d
����

��
��

��

c
��??

??
??

??
G1

d

����
��

��
��

c
����

��
��

��

G0 G0

The corresponding butterfly, by means of the normalization process described in Section 3.2, is
called the identity butterfly of the crossed module G. Actually it acts as an identity with respect to
the composition that will be introduced in Section 3.4. It is represented explicitly in the diagram
below:

G

∂

��

g

!!CC
CC

CC
CC

G

∂

��

g•

}}{{
{{

{{
{{

G1

d}}||
||

||
||

c
!!BB

BB
BB

BB

G0 G0

In fact, in this paper we will use as identity butterfly the isomorphic contravariant version of
the one above:

G

∂

��

g•

!!CC
CC

CC
CC

G

∂

��

g

}}{{
{{

{{
{{

G1

c
}}||

||
||

||

d !!BB
BB

BB
BB

G0 G0

the isomorphism being realized by the inverse map i : G1 → G1. This choice does not affect
the computations, and it is coherent with the normalization of a groupoid via the kernel of the
codomain.

Remark 3.5. The fact that we can choose between these two butterflies for the identity is just an
instance of the following more general fact, which will be useful in proving Theorem 5.6.

Let a crossed module ∂: G → G0 be given, and let us consider the canonical identity butterfly
(G1, g•, d, g, c). For any other (isomorphic) groupoid representation of the crossed module
∂: G → G0, we obtain, via normalization, a butterfly
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G

∂

��

ḡ•

  BB
BB

BB
BB

G

∂

��

ḡ

~~||
||

||
||

G1

c̄~~}}
}}

}}
}}

d̄   AA
AA

AA
AA

G0 G0

isomorphic to the canonical one.

3.4. Composition of butterflies

Let us consider the butterflies E and E ′:

H E // G E ′ // K

We are going to define their composition. To this end, let us consider the diagram
Q

ρ′·s

��

σ ·r

��

E ×ρ,σ ′ E ′

q

OO

r

����
��

��
��

��
��

��
��

s

��7
77

77
77

77
77

77
77

7

H

⟨κ,0⟩
55lllllllllllllll

∂

��

κ

  AA
AA

AA
AA

G

⟨ι,κ ′⟩

OO

ι
zzttttttttttt

κ ′ %%JJJJJJJJJJJ

∂

��

K

⟨0,ι′⟩
iiRRRRRRRRRRRRRRRR

ι′

}}||
||

||
||

∂

��

E

σ
~~~~

~~
~~

~~

ρ
$$IIIIIIIIII E ′

σ ′zztttttttttt

ρ′   BB
BB

BB
BB

H0 G0 K0

where
- E ×ρ,σ ′ E ′ is the pullback of ρ and σ ′, with projections r and s, so that

s · ⟨κ, 0⟩ = 0, r · ⟨0, ι′⟩ = 0, r · ⟨κ, 0⟩ = κ,

s · ⟨0, ι′⟩ = ι′, r · ⟨ι, κ ′⟩ = ι, s · ⟨ι, κ ′⟩ = κ ′,

- (Q, q) is the cokernel of ⟨ι, κ ′⟩,
- σ · r and ρ′ · s are defined by σ · r · q = σ · r, ρ′ · s · q = ρ′ · s.

Lemma 3.6. With the previous notation, the diagram
H

∂

��

q·⟨κ,0⟩

&&NNNNNNNNNNNNN K
q·⟨0,ι′⟩

xxppppppppppppp

∂

��

Q

σ ·r
xxppppppppppppp

ρ′·s &&NNNNNNNNNNNNN

H0 K0

is a butterfly from H to K. It defines the composition of E and E ′.
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Proof. We check that the previous diagram is indeed a butterfly from H to K.

Commutativity of wings and condition 3.1.1 are easy to check.
Condition 3.1.2: first observe that σ · r is a regular epimorphism (because σ and σ ′ are), so

that it is enough to show that q · ⟨0, ι′⟩ is the kernel of σ · r . Since ι′ is the kernel of σ ′ and r is a
pullback of σ ′, ⟨0, ι′⟩ is the kernel of r. Consider now the commutative diagram

G

ι

��

G
1oo

⟨ι,κ ′⟩

��
E

σ

��
(i)

E ×ρ,σ ′ E ′

q

��

roo K = Ker r
⟨0,ι′⟩oo

f
��

H0 Q
σ ·r

oo Ker (σ · r)oo

where f is induced by the universal property of Ker (σ · r). It suffices to prove that (i) is a
pullback. Indeed, if (i) is a pullback, then f is an isomorphism and, therefore, q · ⟨0, ι′⟩ is the
kernel of σ · r . Since q and σ are regular epimorphisms and ι is the kernel of σ, to show that (i) is
a pullback is equivalent to showing that ⟨ι, κ ′⟩ is the kernel of q. Since ⟨ι, κ ′⟩ is a monomorphism
(because ι is), to prove that ⟨ι, κ ′⟩ is a kernel (of its cokernel q) is equivalent to proving that
⟨ι, κ ′⟩ is closed under conjugation in E ×ρ,σ ′ E ′ (see [34,37]). The action of E ×ρ,σ ′ E ′ on G is
given by

(E ×ρ,σ ′ E ′)♭G
r♭1 // E♭G

ρ♭1 // G0♭G
ξ // G

or, equivalently, by

(E ×ρ,σ ′ E ′)♭G
s♭1 // E ′♭G

σ ′♭1 // G0♭G
ξ // G .

To prove the normality of ⟨ι, κ ′⟩ in E ×ρ,σ ′ E ′, it is enough to prove that the diagram

(E ×ρ,σ ′ E ′)♭G
r♭1 //

1♭⟨ι,κ ′⟩

��

E♭G
ρ♭1 // G0♭G

ξ // G

⟨ι,κ ′⟩

��
(E ×ρ,σ ′ E ′)♭(E ×ρ,σ ′ E ′)

χ
// E ×ρ,σ ′ E ′

commutes. For this, compose with the pullback projections r and s and use the naturality of χ

and, respectively, condition 3.1.3 on ι and condition 3.1.4 on κ ′.

Condition 3.1.3: since

q♭1: (E ×ρ,σ ′ E ′)♭H → Q♭H

is a (regular) epimorphism (see [37]), condition 3.1.3 follows from the commutativity of the
whole diagram below
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(E ×ρ,σ ′ E ′)♭H
q♭1 //

1♭⟨κ,0⟩
��

Q♭H
σ ·r♭1 // H0♭H

ξ // H

⟨κ,0⟩
��

(E ×ρ,σ ′ E ′)♭(E ×ρ,σ ′ E ′)
χ

//

q♭q
��

E ×ρ,σ ′ E ′

q

��
Q♭Q

χ
// Q

The lower rectangle commutes by naturality of χ . For the commutativity of the upper rectangle,
compose with the pullback projections: composed with s, both composites become zero; as far
as r is concerned, use condition 3.1.3 on κ.

Condition 3.1.4: same argument as for condition 3.1.3. �

Proposition 3.7. We have a bicategory
B(C)

with internal crossed modules as objects, butterflies as 1-cells, and morphisms of butterflies as
2-cells.

Proof. Compositions of butterflies and identity butterflies have been described in Sections 3.4
and 3.3. The rest of the proof is long but straightforward. �

Observe that in the identity butterfly (Section 3.3) both diagonals are short exact sequences.
Butterflies with this property are called flippable (see [40]).

Proposition 3.8. A flippable butterfly E : H → G is an equivalence in the bicategory B(C). A
quasi-inverse E∗: G→ H is obtained by switching the two wings of E .

Proof. By symmetry, it is sufficient to compute E · E∗, by taking the kernel pair Rσ of σ and
then the cokernel of ⟨κ, κ⟩:

Rσ

σ1

����
��
��
��
��
��
��

σ2

��0
00

00
00

00
00

00
0

H

⟨κ,κ⟩

OO

κ
~~||

||
||

||

κ
  BB

BB
BB

BB

E

σ   AA
AA

AA
AA

E

σ~~}}
}}

}}
}}

H0

Keeping in mind Section 3.2, consider the (isomorphic) kernels in the right discrete fibration
in the fractor corresponding to E :

H

1
��

⟨κ,κ⟩ // Rσ

σ1

��
σ2

��

ρ̄ // G1

d
��

c
��

H κ
// E ρ

// G0

The horizontal rows are exact, and this concludes the proof. �
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4. Butterflies and morphisms of crossed modules

In order to prove that B(C) is the bicategory of fractions of Grpd(C) with respect to weak
equivalences (Theorem 5.6), we have to construct a homomorphism of bicategories

F : Grpd(C)→ B(C).
This task will be completed only in Section 5.3, since we have to provide first some necessary
constructions.

4.1. Split butterflies

A preliminary step consists in associating a split butterfly with any morphism of crossed
modules.

Definition 4.1. A butterfly E : H→ G is split when the short exact sequence

H0 E
σoo G

ιoo

is split, that is, when there exists s: H0 → E such that σ · s = 1H0 .
A morphism of split butterflies is simply a morphism of butterflies, so that it need not commute

with sections.

Let P: H→ G be a morphism of crossed modules. We are going to construct a split butterfly
EP : H→ G. For this, consider the pullback

EP
p //

σP

��

G1

c
��

H0 p0
// G0

If ξ : G0♭G → G is the action corresponding to the split epi c: G1 → G0, it is easy to show that

H0♭G
p0♭1 // G0♭G

ξ // G

is the action corresponding to the split epi σP : EP → H0.

Lemma 4.2. The diagram

H

∂

��

⟨∂,i ·g·p⟩

((RRRRRRRRRRRRRRRR G
⟨0,g⟩

vvlllllllllllllllll

∂

��

EP

σP
vvllllllllllllllll

d·p
((RRRRRRRRRRRRRRRR

H0 G0

is a split butterfly EP : H→ G .

Proof. Commutativity of the two wings is obvious.
Condition 3.1.1: one computes d · p · ⟨∂, i · g · p⟩ = d · i · g · p = c · g · p = 0 · p = 0.

Condition 3.1.2: the top-right to bottom-left diagonal is a split extension, since it is the pullback
of a split extension.
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Condition 3.1.3: To check the commutativity of

EP♭H
σP ♭1 //

1♭⟨∂,i ·g·p⟩
��

H0♭H
ξ // H

⟨∂,i ·g·p⟩
��

EP♭EP χE P

// EP

compose with the pullback projections σP : EP → H0 and p: EP → G1. When composing with
σP , use the naturality of χ and the precrossed module condition on H. When composing with
p, the commutativity of the resulting diagram easily reduces to condition 3.1.3 on the identity
butterfly on G.

Condition 3.1.4: to check the commutativity of

EP♭G

1♭⟨0,g⟩
��

(d·p)♭1 // G0♭G
ξ // G

⟨0,g⟩
��

EP♭EP χE P

// EP

compose once again with the pullback projections. �

We have just seen that every morphism P: H → G yields a split butterfly, namely EP . Also
the converse is true. Indeed, let

H
κ

  BB
BB

BB
BB

∂

��

G

∂

��

ι

~~||
||

||
||

E

σ~~}}
}}

}}
}

ρ   AA
AA

AA
AA

H0

s
>>}}}}}}}

G0

be a split butterfly. If we precompose the commutative diagram of condition 3.1.3 with the arrow
s♭1: H0♭H → E♭H , we get the commutativity of

H0♭H
ξ //

s♭κ
��

H

κ

��
E♭E

χE
// E

From the universal property of the semi-direct product (see [31], Theorem 1.3), we obtain a
unique arrow κ making commutative the diagram

H
h //

κ
  AA

AA
AA

AA
H1

κ

��

H0
eoo

s
}}||

||
||

||

E
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The requested morphism P: H → G is the one corresponding to the following internal functor
(notation as in Definition 3.3, ∆ is the diagonal):

H1

d
��

c
��

κ // E

σ

��

⟨1,s·σ ⟩ // Rσ

σ2

��

ρ // G1

c
��

i // G1

d
��

c
��

H0

e

OO

1
// H0

s

OO

s
// E

∆

OO

ρ
// G0

e

OO

1
// G0

e

OO

(following [21], Proposition 2.1, it suffices to check that this is a morphism of reflexive graphs
and, for this, use the dotted arrows).

4.2. Reduced composition

Given a morphism Q: K → H of crossed modules and a butterfly E : H → G, we can turn
Q into a split butterfly EQ : K → H as in Section 4.1, and then compose EQ with E using
composition of butterflies described in Section 3.4. We describe here a somehow easier way to
calculate E · EQ , which will be called reduced composition and denoted by E ·rc Q. Starting
from the situation described below,

K
q //

∂

��

H

∂

��

κ

  BB
BB

BB
BB

G
ι

~~||
||

||
||

∂

��

E

σ~~}}
}}

}}
}

ρ   AA
AA

AA
AA

K0 q0
// H0 G0

we consider the pullback

E ′
q ′ //

σ ′

��

E

σ

��
K0 q0

// H0

(2)

and the arrows ⟨0, ι⟩: G → E ′ and ⟨∂, κ · q⟩: K → E ′. Then E ·rc Q is given by

K
⟨∂,κ·q⟩

((RRRRRRRRRRRRRRRR

∂

��

G
⟨0,ι⟩

vvlllllllllllllllll

∂

��

E ′

σ ′

vvmmmmmmmmmmmmmmmm

ρ·q ′
((QQQQQQQQQQQQQQQQ

K0 G0

and it coincides with the butterfly E · EQ (see the next lemma). In particular, if IH: H→ H is the
identity butterfly (Section 3.3), then IH ·rc Q is precisely the split butterfly EQ as in Section 4.1.
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Lemma 4.3. With the previous notation, E · EQ = E ·rc Q.

Proof. Let us consider the following picture, where all the squares are pullbacks and moreover,
the down-right square is the discrete fibration of Remark 3.4:

K0 ×q0 ,c H1 ×d,σ E

r

����
��

��
��

�
φ

��??
??

??
??

?

EQ

σQ

����
��

��
��

�
q

��??
??

??
??

? R

σ

����
��

��
��

��

d
��??

??
??

??
??

c

��?
?

?
?

?

K0

q0
��??

??
??

??
??

H1

c
����

��
��

��
��

d
��??

??
??

??
??

c

��?
?

?
?

? E

σ

����
��

��
��

��

H0 H0

.

By commutativity of limits, the topmost object is the limit over the W-shaped diagram
{q0, c, d, σ }, whence the notation adopted. The pullback (2) in Section 4.2 determines a unique

ω: K0×q0 ,c H1×d,σ E → E ′ = K0×q0 ,σ E

such that q ′ · ω = c · φ and σ ′ · ω = σQ · r . Now we can consider the diagram

G

⟨0,ι⟩

��
(i)

G

⟨0,0,ι⟩

��

1oo

E ′

(i i)σ ′

��

K0 ×q0 ,c H1 ×d,σ Eωoo

r
��

(i i i)

H
⟨0,h,κ⟩oo

1
��

K0 EQσQ
oo H

⟨0,h⟩
oo

.

By composing with pullback projections, one easily shows that (i) and (i i i) commute, so that all
the squares are commutative. Then, since r is a regular epimorphism, by Theorem 9.1, (i i) is a
pullback square, hence ω is a regular epimorphism and it has the same kernel as σQ . Moreover,
since ker σQ = ⟨0, h⟩, (i i i) proves that ker ω = ⟨0, h, κ⟩.

So far, we proved the following technical lemma.

Lemma 4.4. The sequence

H
⟨0,h,κ⟩ // K0 ×q0 ,c H1 ×d,σ E ω // E ′

is exact.
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Now we can finally prove that E · EQ = E ·rc Q. To this end, let us consider the following
diagram

E ′

ρ·q ′

		

σ ′

��

K0 ×q0 ,c H1 ×d,σ E

ω

OO

r

����
��

��
��

��
��

��
��

d·φ

��8
88

88
88

88
88

88
88

8

K

⟨∂,i ·h·q,0⟩
44iiiiiiiiiiiiiiiiiii

���
�
�
�
�
�
�

⟨∂,i ·h·q⟩

%%KKKKKKKKKKK H

⟨0,h,κ⟩

OO

⟨0,h⟩yyssssssssss

κ
%%KKKKKKKKKKK

���
�
�
�
�
�
� G

⟨0,0,ι⟩
jjUUUUUUUUUUUUUUUUUUU

ι

yysssssssssss

���
�
�
�
�
�
�

EQ

σQ
yytttttttttt

d·q %%JJJJJJJJJJ E

σ
yyttttttttttt

ρ
%%JJJJJJJJJJJ

K0 H0 G0

The two butterflies are, from left to right, the split butterfly EQ : K → H corresponding to
the morphism Q, and E : H → G. What we are to show is that the above diagram yields the
composition of the two. In fact, the resulting butterfly would be precisely E ·rc Q, as desired.

By composition of pullbacks, the square d · q · r = σ · d · φ above is a pullback, and
by Lemma 4.4, ω is the cokernel of ⟨0, h, κ⟩. Moreover σ ′ is (the only morphism) such that
σ ′ · ω = σQ · r and ρ · q ′ is (the only one) such that ρ · q ′ · ω = ρ · d · φ, and this concludes the
proof. �

The following statement will help us in defining the embedding of crossed modules into
butterflies.

Proposition 4.5. Reduced composition gives an action of crossed module morphisms on
butterflies. This means that, for morphisms P: K′ → K, Q: K → H and butterflies E : H →
G, F : G→ G′, we have:

1. (F · E) ·rc Q ∼= F · (E ·rc Q),

2. E ·rc (Q · P) ∼= (E ·rc Q) ·rc P,

3. E ·rc I ∼= E .

Proof (Sketch). The proof of 3 is trivial, that of 2 is straightforward. The proof of 1 can be easily
deduced from the particular case

1∗. F ·rc Q ∼= F · (I ·rc Q)

where I is the identity butterfly on the domain of F. Actually one computes

(F · E) ·rc Q ∼= (F · E) · (I ·rc Q) ∼= F · (E · (I ·rc Q))

∼= F · ((E · I ) ·rc Q) ∼= F · (E ·rc Q).

Hence we are to prove 1∗ holds, but since I ·rc Q = EQ , this is precisely the content of the proof
of the consistency of reduced composition described in Section 4.2. �
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5. Butterflies are fractions

In this section we prove the main result of the paper, but first it is necessary to introduce the
fractions the title refers to.

As for the case of groups (see [40]), given a butterfly, it is possible to construct a span of
morphisms, one being a weak equivalence. By denormalizing, this yields a fraction of internal
functors.

5.1. Bicategories of fractions

Categories of fractions have been introduced by P. Gabriel and M. Zisman in [28] in order
to give a simplicial construction of the homotopy category of CW-complexes. In order to
study toposes locally equivalent to toposes of sheaves on a topological space, in [44] D. Pronk
generalized Gabriel–Zisman notion introducing bicategories of fractions.

Imitating the usual universal property of the category of fractions, it is clear how to state the
universal property of the bicategory of fractions of a bicategory B with respect to a class Σ of
1-cells [44]: the bicategory of fractions of B with respect to Σ is a homomorphism of bicategories

PΣ :B→ B[Σ−1
]

universal among all homomorphisms F :B → A with F(S) an equivalence for all S ∈ Σ . This
means that, for every bicategory A,

− · PΣ : Hom(B[Σ−1
],A)→ HomΣ (B,A)

is a biequivalence of bicategories, where a homomorphismF :B→ A lies in HomΣ (B,A) when
F(S) is an equivalence for all S ∈ Σ .

The real challenge with bicategories of fractions is to find an explicit, manageable description
of B[Σ−1

]. A first general result in this direction, established in [44], states that, if Σ satisfies
some suitable conditions (has a “right calculus of fractions”), then the bicategory of fraction
exists and can be described as follows: the objects of B[Σ−1

] are those of B and the 1-cells
of B[Σ−1

] are spans of 1-cells in B with the backward leg in Σ (this is a non-straightforward
generalization of a well-known result from [28]).

In order to prove that butterflies provide the bicategory of fractions of Grpd(C) with respect to
weak equivalences, we will use the following result. (The numeration “BFn” is meant to remind
“Bicategory of Fractions”.)

Proposition 5.1 (Pronk [44]). Let Σ be a class of 1-cells in a bicategory B. Assume that Σ has
a right calculus of fractions and consider a homomorphism of bicategories F :B→ A such that

BF0. F(S) is an equivalence for all S ∈ Σ ;
BF1. F is surjective up to equivalence on objects;
BF2. F is full and faithful on 2-cells;
BF3. For every 1-cell F in A there exist 1-cells G and W in B with W in Σ and a 2-cell

F(G)⇒ F · F(W ).

Then the (essentially unique) extensionF :B[Σ−1
] → A

of F through PΣ is a biequivalence.
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5.2. From butterflies to fractions

Before showing how a butterfly turns into a fraction, we need one more property of butterflies.

Lemma 5.2. Consider a butterfly E : H→ G. The arrows

κ : H → E ← G : ι

cooperate (see Section 9.2), that is, there exists a unique arrow ϕ = κ♯ι such that the diagram

H
⟨1,0⟩ //

κ
##GGGGGGGGG H × G

ϕ

��

G
⟨0,1⟩oo

ι
{{wwwwwwwww

E

commutes.

Proof. The fact that κ and ι cooperate is equivalent to the fact that the composition

G ⊗ H δ // G + H
[ι,κ] // E

is the zero morphism (see for example [37], where the symbol � is used), where δ is the diagonal
of the pullback

G ⊗ H

δ1
��

δ2 // G♭H

jG,H

��
H♭G

jH,G

// G + H

The equation [ι, κ] · δ = 0 follows from the commutativity of

G ⊗ H

δ

��

δ1 // H♭G
jH,G // G + H

[0,1] // H ≃ 0♭H

!♭1
��

H0♭H

ξ

��
H

κ

��
G + H

[ι,κ]
// E

which can be reduced to the commutativity of

E♭H

jE,H

��

σ♭1 // H0♭H
ξ // H

κ

��
E + H

[1,κ]
// E
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which itself follows from condition 3.1.3 using the equality

χE = [1, 1] · jE,E : E♭E → E + E → E . �

Remark 5.3. The fact that κ and ι cooperate may be used as a starting point for creating many
non-trivial examples of butterfly: one starts by considering two cooperating normal subobjects
and then computes their respective cokernels.

We established in Lemma 5.2 that the two crossed modules κ and ι cooperate. More is
true:

Proposition 5.4. Consider a butterfly E : H → G. The cooperator ϕ of κ and ι is a crossed
module, for a suitable action ξ , and the diagram

H

∂

��

H × G
πHoo

ϕ

��

πG // G

∂

��
H0

(i)

Eσ
oo

ρ
//

(i i)

G0

is a span of crossed modules,

H [E]
(πH ,σ )oo (πG ,ρ) // G

with (πH , σ ) being a weak equivalence.

Proof. The commutativity of (i) and (i i) can be proved by precomposing with the jointly
epimorphic pair

⟨1, 0⟩ : H → H × G ← G : ⟨0, 1⟩.

Moreover, (i) is a pullback because it is commutative and the regular epimorphisms πH and σ

have the same kernel (use Theorem 9.1). Therefore, we can apply Lemma 2.11 to (i) getting
that ϕ is a crossed module and that (i) is a weak equivalence of crossed modules. The action
ξ that makes ϕ a crossed module is the unique morphism such that πH · ξ = ξ · (σ♭πH ) and
ϕ · ξ = χE · (1♭ϕ), see Lemma 2.11.

It remains to show that (i i) is a morphism of crossed modules, i.e. that the diagram

E♭(H × G)

ξ

��

ρ♭πG // G0♭G

ξ

��
H × G

(i i i)

πG
// G

commutes. For this, we need a different description of ξ . Let us consider the following
diagram:
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H × G
πG //

πH

��

h̄

{{v
v

v
v

v
(iv)

G

��

ι
~~}}

}}
}}

}}

R
c̄ //

σ̄

��

E

σ

��

H //

h

{{wwwwwwwww
0

~~}}
}}

}}
}}

H1 c
// H0

All the squares of solid lines are pullbacks, so that there exists a unique (dashed) h̄ such that all
the squares commute and are pullbacks. Observe now that, since h: H → H1 is a normal mono,
there exists a unique χ ′: H1♭H → H such that

H1♭H

1♭h
��

χ ′ // H

h
��

H1♭H1 χ
// H1

commutes. From this fact, it follows easily that also

R♭(H × G)
χ ′·(σ♭πH ) //

χ ·(1♭h)

��

H

h
��

R
σ

// H1

commutes. By the universal property of the pullback of σ and h, we get a unique morphism x
such that

R♭R

χ

��

R♭(H × G)

x
��

1♭hoo σ♭πH // H1♭H

χ ′

��
R

(v)

H × G
h

oo
πH

// H

commutes. The action ξ factorizes through x as follows:

E♭(H × G)
ξ //

e♭1 ''OOOOOOOOOOO H × G

R♭(H × G)

x

88qqqqqqqqqqq

To check the commutativity of the previous triangle, compose with the pullback projections

E H × G
ϕoo πH // H .
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When composing with ϕ, use the equality ϕ = d ·h and the left-hand square in the definition of x .
When composing with πH , use the right-hand square in the definition of x and the commutativity
of

H0♭H
ξ //

e♭1 $$IIIIIIIII H

H1♭H
χ ′

<<yyyyyyyy

(this last equation is easy to verify: compose with the monomorphism h and use the definition of
χH1 , see diagram (1) of Proposition 2.5).

We are ready to prove the commutativity of diagram (i i i): compose with the monomorphism
ι: G → E and, according to our second description of ξ , replace ξ by x · (e♭1). We get the
following commutative diagram

E♭(H × G)
1♭πG //

1♭h %%LLLLLLLLLL

e♭1

��

E♭G

1♭ι

��		
		

		
		

		
		

		
		

ρ♭1

��

E♭R
1♭c

""FFFFFFFF

1♭(iv)

R♭(H × G)
1♭h //

x

��

R♭R
c♭c //

χ

��

E♭E

χ

��

G0♭G

ξ

��

R
c //

(v)

E

(iv)

H × G

h

88rrrrrrrrrrr

πG
// G

ι

ddHHHHHHHHHH

where the top-left triangle commutes because c ·e = 1, the central square commutes by naturality
of χ , and on the right it commutes by condition 3.1.4. �

5.3. The universal homomorphism

Combining the equivalence

J : Grpd(C)→ XMod(C)
of Proposition 2.5 with the construction of the split butterfly EP associated with a morphism P
(see Section 4.1), we are ready to define a homomorphism of bicategories

F : Grpd(C)→ B(C).
On objects and on 1-cells we define

F(H) = J (H), F(P: H→ G) = (E J (P): J (H)→ J (G)).

The composition and the identity structural isomorphisms are defined by means of the properties
described in Proposition 4.5, by identifying the behavior of F on 1-cells with the action of the
(reduced) composition with the identity butterfly (see Remark 5.5).
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It remains to define F on 2-cells. Let α: P ⇒ Q: H → G be a natural transformation; there
exists a unique morphism α such that the diagram

E J (P)
σP //

α

%%LLLLLLLLLL

p

&&

H0

α

%%JJJJJJJJJJJ

G1 ×c,d G1
π2 //

π1

��

G1

d
��

G1 c
// G0

commutes. Using this morphism, we define F(α): E J (P)→ E J (Q) as the unique morphism such
that the diagram

E J (P)
α //

F(α)

%%LLLLLLLLLL

σP

&&

G1 ×c,d G1

m

$$JJJJJJJJJJ

E J (Q)
q //

σQ

��

G1

c
��

H0 Q0

// G0

commutes.
Set-theoretically, the map F(α) sends the pair

(y, f : x → p0(y)) ∈ E J (P)

to the pair

(y, α(y) · f : x → q0(y)) ∈ E J (Q).

Remark 5.5. Equivalently,F : Grpd(C)→ B(C) can be obtained as the composite of J : Grpd(C)
→ X Mod(C) with the embedding B: X Mod(C) → B(C) which is the identity on objects
and acts on hom-categories by the reduced composition with the identity butterfly
IG ·rc− : X Mod(C)(H, G)→ B(C)(H, G).

Theorem 5.6. The homomorphism

F : Grpd(C)→ B(C)

satisfies the universal property of the bicategory of fractions of Grpd(C) with respect to the class
Σ of weak equivalences.

Proof. Since the class Σ has a right calculus of fractions (Propositions 5.5 and 5.2 in [48]), we
have to prove that F satisfies conditions BF0–BF3 of Proposition 5.1.
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BF0: Consider a weak equivalence of groupoids and the corresponding morphism P: H→ G
of crossed modules:

H

∂

��

p // G

∂

��
H0 p0

// G0

As recalled in Remark 2.6 the arrows induced on kernels and cokernels are isomorphisms. As a
first step, we show that the previous diagram is a pullback. For this, consider the regular epi-mono
factorizations of the vertical arrows:

H
p //

∂1
��

G

∂1
��

I (H)
I (p) //

∂2
��

I (G)

∂2
��

H0 p0
// G0

By Theorem 9.1, the upper square is a pullback because the two regular epimorphisms ∂1 have
isomorphic kernels. As far as the lower square is concerned, observe that ∂2: I (H) → H0 is
normal (precrossed module condition in Section 2.2) and, therefore, it is the kernel of its cokernel.
Using this fact, and the fact that the arrow between cokernels is a monomorphism, it is easy to
check that the lower square satisfies the universal property of the pullback.

Now, we want to show that the split butterfly EP : H→ G associated with the above morphism
of crossed modules, as in Section 4.1, is an equivalence. Following Proposition 3.8, it is enough
to show that EP is flippable. For this, consider the diagram

H

h
��

p // G

g•

��

H1

⟨d,i ·p1⟩

��
EP

σP

��

p // G1

c
��

H0 p0
// G0

The whole rectangle is precisely P: H → G, so that it is a pullback. The lower square also
is a pullback (see Section 4.1), hence the upper square is a pullback. From this and from the
fact that g• is the kernel of d: G1 → G0, we immediately get that ⟨d, i · p1⟩ · h is a kernel of
d · p: EP → G0. Finally, d · p is a regular epimorphism by definition of essential surjectivity
(see Definition 2.3) and, therefore, it is the cokernel of its kernel.

BF1: Since F on objects is the composite

Grpd(C)→ XMod(C)→ B(C)
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with the first step being an equivalence and the second one being the identity on objects, condition
BF1 is clearly satisfied.

BF2: We are to prove thatF : Grpd(C)→ B(C) is full and faithful on 2-cells. To this end, let us
consider two parallel morphisms of crossed modules P, Q: H ⇒ G and an arrow f : EP → EQ
between the corresponding split butterflies (see Section 4.1), i.e. the following four triangles
commute:

H
(i)

(i i)

⟨∂,g•·p⟩ //

⟨∂,g•·q⟩

��

EP

f
}}||

||
||

||
||

d·p

��
EQ

d·q
// G0

EP

σP

��

f

!!BB
BB

BB
BB

BB
G

⟨0,g⟩oo

⟨0,g⟩

��

(iv)

(i i i)

H0 EQσQ
oo

Consider also the arrow π given by the universal property of the pullback EP :

H0
e //

1

''

π

!!BB
BB

BB
BB

H1 p1

��
EP

σP

��

p // G1

c
��

H0 p0
// G0

Define

α f : H0
π // EP

f // EQ
q // G1 .

It is easy to check that d ·α f = p0 and c ·α f = q0: just use commutativity of (i i) and (i i i) above.
To prove that α is natural requires some computations. Following Definition 2.8, the naturality
of α is the same as the commutativity of the diagram

H
∂ //

⟨p,q⟩
��

H0
π // EP

f // EQ

q
��

G × G m0
// G1

where m0 = g♯g• is the cooperator of g and g•. To show the commutativity of this diagram, we
present it as the outer rectangle of the diagram

H
π ·∂ //

⟨1,p⟩ ''PPPPPPPPPPPPP

⟨q,p⟩

��

EP
f //

(v) (vi)

(vi i)

(vi i i)

EQ

q

��

H × G

ϕP

OO

ϕQ

77pppppppppppp

(g•·q)♯ g
NNNN

''NNNNN
q×1wwnnnnnnnnnnnn

G × G
τ

// G × G m0
// G1
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where the maps ϕP and ϕQ are the cooperators relative to the butterflies EP and EQ (see
Lemma 5.2), and τ is the twisting isomorphism G × G → G × G. The commutativity of (vi),
(vi i) and (vi i i) is easily obtained by uniqueness of cooperators, by means of the precompositions
with canonical morphisms

H
⟨1,0⟩ // H × G G

⟨0,1⟩oo .

Observe that in proving the commutativity of (vi) we use precisely the commutativity of (i) and
(iv) above. In fact, (1, f ) is precisely the morphism of the spans (determined by the butterflies
EP and EQ) corresponding to f . Finally we show that (v) commutes, by composing with
pullback projections σP and p. Composing with σP yields

σP · π · ∂ = ∂ = ∂ · πH · ⟨1, p⟩ = σP · ϕP · ⟨1, p⟩,

where the last equality is just the weak equivalence (πH , σP ): ϕP → ∂ in the span of crossed
modules corresponding to EP (see Proposition 5.4). Before composing with p, observe that the
following diagram is commutative

G
e·∂ //

⟨1,1⟩ ""FF
FF

FF
FF

F G1

G × G

m0

;;wwwwwwwww

This can be easily deduced from the very definition of m0 as the cooperator of g and g•

(this equation is one of the axioms defining a Peiffer graph, see [37]). Hence our computation
yields:

p · π · ∂ = e · p0 · ∂ = e · ∂ · p = m0 · ⟨p, p⟩ = m0 · τ · ⟨p, p⟩

= m0 · τ · (p × 1) · ⟨1, p⟩ = p̄ · ϕp · ⟨1, p⟩.

The third equality holds by the commutativity of the diagram above, the last one is obtained by
observing that each of the morphisms m0 · τ · (p × 1) and p · ϕP are the cooperator of g• · p
and g.

BF3: We want to prove that the diagram in B(C)

[E]
E(πH ,σ )

~~||
||

||
|| E(πG ,ρ)

  BB
BB

BB
BB

H
E

// G

commutes (up to a 2-cell). On a side we want to construct the butterfly E(πG ,ρ). This can be
obtained as usual by the reduced composition (see Section 4.2) with the identity IG ·rc(πG , ρ). In
fact, we will compute I E

G ·rc(πG , ρ), where I E
G is a butterfly (isomorphic to the identity butterfly,

see Remark 3.5) more suitable to deal with the pullback projections involved in the proof. We
define I E

G = (ḡ•, d, ḡ, c), where ḡ = i · ρ̄ ·⟨0, ι⟩ is a kernel of c with d · ḡ = ∂ , as in the following
diagram, where (i · ρ̄, ρ) is a discrete fibration (see Definition 3.3 and the related diagram).
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G

⟨0,ι⟩

��

G

ḡ
��

Rσ

i ·ρ̄ //

σ2

��
σ1

��

G1

d
��

c
��

E

∆

OO

ρ
// G

e

OO

So let us compute I E
G ·rc(πG , ρ) =

H × G
πG //

⟨ϕ,ḡ•·πG ⟩

##GG
GG

GG
GG

G

ϕ

��

G

∂

��

ḡ•

!!BB
BB

BB
BB

G
ḡ

}}||
||

||
||

∂

��

Rσ

σ1

{{wwwwwwwww

i ·ρ // G1

c
}}||

||
||

||

d !!BB
BB

BB
BB

E ρ
// G0 G0

=

H × G

ϕ

��

⟨ϕ,ḡ•·πG ⟩

##GG
GG

GG
GG

G G

⟨0,ι⟩
||

|

}}|||

∂

��

Rσ

σ1
{{wwwwwwwww

d·i ·ρ !!BB
BB

BB
BB

E G0

where the diagram ρ · σ1 = c · i · ρ is a pullback as recalled above.
On the other side we compute E ·rc(πH , σ ) =

H × G
πH //

⟨ϕ,κ·πH ⟩

##GG
GG

GG
GG

G

ϕ

��

H

∂

��

κ

  AA
AA

AA
AA

G
ι

~~}}
}}

}}
}}

∂

��

Rσ

σ1

{{wwwwwwwww

σ2 // E

σ
~~~~

~~
~~

~~

ρ
  @@

@@
@@

@@

E σ
// H0 G0

=

H × G
⟨ϕ,κ·πH ⟩

##GG
GG

GG
GG

G

ϕ

��

ϕ

��

G

⟨0,ι⟩

}}||
||

||
||

∂

��

Rσ

σ1
{{wwwwwwwww

ρ·σ2 !!BB
BB

BB
BB

E G0

We have to prove that these two butterflies are isomorphic. In fact, we will see that they coincide.
This is obvious for the top-right to bottom-left diagonals. Concerning the other diagonals, since
ρ · σ2 = d · i · ρ̄, we only have to prove the equality ⟨ϕ, κ · πH ⟩ = ⟨ϕ, ḡ• · πG⟩, i.e. that the
compositions with i · ρ̄ are equal. It is sufficient to precompose with ⟨1H , 0⟩ and ⟨0, 1G⟩. The
first one gives

i · ρ̄ · ⟨ϕ, κ · πH ⟩ · ⟨1H , 0⟩ = i · ρ̄ · ⟨κ, κ⟩ = i · ρ̄ ·∆E · κ = e · ρ · κ = 0
= i · ḡ · πG · ⟨1H , 0⟩ = i · ρ̄ · ⟨ϕ, ḡ• · πG⟩ · ⟨1H , 0⟩,

the second one gives

i · ρ̄ · ⟨ϕ, κ · πH ⟩ · ⟨0, 1G⟩ = i · ρ̄ · ⟨ι, 0⟩ = ρ̄ · τ · ⟨ι, 0⟩ = ρ̄ · ⟨0, ι⟩

= i · i · ρ̄ · ⟨0, ι⟩ = i · ḡ = i · ρ̄ · ⟨ϕ, ḡ• · πG⟩ · ⟨0, 1G⟩,

where τ is the twist isomorphism of Rσ . In both these computations, the first and last equalities
hold by the universal property of the kernel pair Rσ , the other equalities are immediate. �

Remark 5.7. The construction given in the proof of condition BF3 above yields a recipe to
obtain a crossed module morphism corresponding to a split butterfly. Let us consider the span



Author's personal copy

172 O. Abbad et al. / Advances in Mathematics 238 (2013) 140–183

associated with the split butterfly E = (κ, ι, σ, ρ), and suppose we have chosen a section s of the
split epimorphism σ . Then, since the left leg of the corresponding span is a pullback diagram,
we can pull the section s back along ϕ, and get the morphism (s, s) of crossed modules which,
moreover, is a section of (πH , σ ). The situation is summarized in the diagram below:

H
s //

∂

��

H × G
πH

oo

ϕ

��

πG // G

∂

��
H0

s //
Eσ

oo
ρ

// G0

We can compose the isomorphism E · E(πH ,σ )
∼= E(πG ,ρ) with the morphism (s, s) and get:

E ∼= E ·rc(πH , σ ) · (s, s) ∼= E · E(πH ,σ ) ·rc(s, s) ∼= E(πG ,ρ) ·rc(s, s) ∼=
∼= IG ·rc(πG , ρ) · (s, s) ∼= IG ·rc(πG · s, ρ · s) ∼= E(πG ·s,ρ·s),

i.e. the morphism (πG · s, ρ · s) is associated with the (split) butterfly E . Notice the arbitrary
choice of the section s: if two different sections are chosen, the associated morphisms of crossed
modules are isomorphic.

Remark 5.8. If C is a category with finite limits (not necessarily semi-abelian), Theorem 5.6
may fail. In this more general case, internal categories may differ from internal groupoids and
the bicategory of fractions

Cat(C)[Σ−1
]

may still admit a (more involved) explicit description: it is the bicategory of internal anafunctors.
This has been proved independently by M. Dupont in [24], where the base category C is assumed
to be regular, and by D. Roberts in [45], where essential surjectivity is intended relatively to a
Grothendieck topology on C, and internal categories (not only internal groupoids) are considered.

6. Butterflies and weak morphisms of internal groupoids

From [48], we know that, when C is the category of groups, then Grpd(C)[Σ−1
] is the 2-

category of groupoids, monoidal functors and monoidal natural transformations (and a similar
result holds when C is the category of Lie algebras). In this section we show explicitly how
to construct the “weak morphism” associated with a butterfly in the cases of groups and Lie
algebras, and we give an indication of how to recover a butterfly from a weak morphism – indeed
the technique can be adapted to other semi-abelian varieties of universal algebra, in order to
define a notion of weak morphism.

6.1. The technique

Let us consider a butterfly E = (E, κ, ρ, ι, σ ) in a semi-abelian variety C of universal algebra,
and let U : C → S be a forgetful functor with S = Set∗ or S = kVect, k being any field. The key
properties we are using are that the axiom of choice holds in S, and that the functor U preserves
finite limits and sends regular epimorphisms in regular (hence split) epimorphisms.

Let s be a section of U (σ ) and assume that s preserves 0 (i.e., the unique 0-ary operation,
see [17]).



Author's personal copy

O. Abbad et al. / Advances in Mathematics 238 (2013) 140–183 173

H
κ

  BB
BB

BB
BB

∂

��

G

∂

��

ι

~~||
||

||
||

E

σ~~}}
}}

}}
}

ρ   AA
AA

AA
AA

H0

s
>>}

}
}

}
G0

We want to show how E yields a weak morphism of groupoids FE : H→ G.
The functor U preserves finite limits, so that it extends to a 2-functor between the 2-categories

of internal groupoids. Now, with the butterfly E , it is associated a span in Grpd(C)

H [E]Soo R // G ,

with the left leg being a weak equivalence (see Proposition 5.4). More explicitly:

H1

d
��

c
��

(H × G) oξ EπH oσoo πGoρ //

d
��

c

��

G1

d
��

c
��

H0 Eσ
oo

ρ
// G0

By applying U to this construction, S turns into an equivalence in Grpd(S). Actually, S being
a (surjective) equivalence means that σ is a regular epimorphism and S is fully faithful, i.e. the
following diagram is a pullback:

(H × G) oξ̄ E πH oσ //

⟨d,c⟩
��

H1

⟨d,c⟩
��

E × E
σ×σ

// H0 × H0

Now, since U preserves pullbacks, U (S) is still fully faithful. Moreover, being U (σ ) a split
epimorphism, U (S) is an internal equivalence, whose weak inverse U (S)∗ can be computed by
pulling back the section s × s of U (σ × σ) = U (σ )×U (σ ) in the diagram above.

The composition FE = U (R) · U (S)∗ (which is an internal functor in Grpd(S)) is a good
candidate for a weak morphism in Grpd(C), with the coherence conditions encoded in the
butterfly. To simplify notation, in Sections 6.2 and 6.3 we assume that G is a subobject of E
and ι: G → E is the inclusion map.

6.2. Case study: groups

Let C = Grp, and U : Grp→ Set∗ be the forgetful functor.
Under the equivalence between crossed modules and groupoids, the crossed module ∂: G →

G0 gives rise to the groupoid in groups

G1

d //

c
// G0eoo ,
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where G1 is the semi-direct product G o G0, with structure maps (additive notation)

c: (g, x) → x, d: (g, x) → ∂g + x, e: x → (0, x).

Following the lines described in the previous section, we get the monoidal functor FE =

(F0, F1, F2), where:

F0 = ρ · s: H0 → G0; x → ρ(s(x));

F1: H o H0 → G o G0; (h, x) → (−κ(h)+ s(∂(h)+ x)− s(x), ρ(s(x)));

F2: H0 × H0 → G o G0; (x, y) → (s(x)+ s(y)− s(x + y), ρ(s(x + y))).

Notice that, since

∂(s(x)+ s(y)− s(x + y))+ ρ(s(x + y)) = ρ((s(x)+ s(y)− s(x + y)))

+ ρ(s(x + y)) = ρ(s(x))+ ρ(s(y)),

F2(x, y) is to be interpreted as an arrow F x,y
2 : F0(x) + F0(y) → F0(x + y), namely the

monoidal structure isomorphism. In fact, F = (F0, F1, F2) is a normalized monoidal functor,
i.e. F0(0) = 0, because s and ρ preserve 0.

Finally, we give a glance at the construction of a butterfly from a (normalized) monoidal
functor of (strict) categorical groups. Consider a functor F = (F0, F1): H → G with monoidal
structure isomorphisms F x1,x2

2 : F0(x1) + F0(x2) → F0(x1 + x2). Define P0 by the following
pullback in Set

P0
F //

σ

��

G1

c
��

H0 F0

// G0

and put ρ = d · F : P0 → G0. Despite the fact that F0 is not a group homomorphism, it can be
proved that P0 is a group and σ and ρ are group homomorphisms (see [48], Proposition 6.3).
Moreover, ker σ = ker c (here we use that F0(0) = 0). Finally, given the commutative diagram

H
F1·i ·h //

d·h
��

G1

c
��

H0 F0

// G0

the canonical arrow κ from H to the pullback P0 is also a group homomorphism (this follows
immediately from the naturality of the monoidal structure of F). This way we get the required
butterfly (P0, κ, ρ, ι, σ ).

6.3. Case study: Lie algebras

A groupoid in kLie, the category of Lie algebras over a fixed field k, is called a strict Lie
2-algebra in [3]. Weak morphisms of Lie 2-algebras are called homomorphisms. Now we
consider the forgetful functor U : kLie→ kVect. As for the case of groups, it extends to internal
groupoids.
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Recall that a crossed module in kLie is called a differential crossed module (see [3]). This is
given by the following data: a morphism of Lie algebras ∂: G → G0 and an (external) action
·: G0 → Der(G), such that, for any g1, g2, g ∈ G and x ∈ G0,

∂(x · g) = [x, ∂(g)] (precrossed module condition),

∂(g1) · g2 = [g1, g2] (Peiffer identity).

Thanks to the equivalence of both internal actions and external actions with the category of
points in kLie, the definition of crossed module given above is equivalent to the internal one
given in [31]. We describe explicitly the construction of the groupoid associated with the crossed
module ∂:

G1 = G o G0

d //

c
// G0eoo ,

where the semi-direct product G o G0 is the vector space U (G) ⊕ U (G0) endowed with the
bracket operation defined by

[(g1, x1), (g2, x2)] = ([g1, g2] + x1 · g1 − g2 · x2, [x1, x2]),

and the structural maps of the groupoid are defined:

c((g, x)) = x, d((g, x)) = ∂(g)+ x, e(x) = (0, x).

With notation as above, we can define FE with the technique described in Section 6.1. Indeed
the construction of F0 and F1 only uses the additive structure of Lie algebras, so that they are
defined precisely as in the case of groups. On the other side, F2 involves the bracket operations,
and, applying the same technique as in the case of groups, one obtains

F2: (x, y) → ([s(x), s(y)] − s([x, y]), ρ(s[x, y])).

7. Classification of extensions

In this section we assume that C has split extension classifiers (see [9,11], and Section 9),
as it happens, for instance, in the category of groups (where the split extension classifier [G]
associated with an object G is the group Aut(G) of automorphisms of G) or of Lie algebras
(where [G] is the Lie algebra Der(G) of derivations of G).

Consider two objects H and G in C. Let D(H) = (0 → H) be the discrete crossed module
on H and

A(G) = (IG : G → [G], ev: [G]♭G → G)

the crossed module associated with [G] (that is, the crossed module corresponding to the action
groupoid, see [14]). The following lemma generalizes Example 13.4 of [40].

Lemma 7.1. The groupoid

Ext(H, G)

of extensions of the form G → E → H is isomorphic to the groupoid

B(C)(D(H),A(G)).

Such an isomorphism restricts to split extensions and split butterflies.
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Proof. Let us start with a butterfly D(H)
E // A(G) :

0
!

  @@
@@

@@
@@

!

��

G
ι

}}||
||

||
||

IG

��

E

σ
��~~

~~
~~

~~

ρ   BB
BB

BB
BB

H [G]

We are going to prove that ρ is uniquely determined. Since ι is normal in E , there exists a unique
action χ ′ such that

E♭G
χ ′ //

1♭ι

��

G

ι

��
E♭E

χE
// E

commutes. Following Remark 3.2, the right wing of the butterfly determines a discrete fibration
of groupoids. Hence the diagram

G oχ ′ E

(i)

pE //

1oρ

��

E

ρ

��

oo

G oev [G]
p[G] //

[G]oo

is a pullback, i.e. χ ′ = ev · (ρ♭1), and ρ is univocally determined by the universal property
of [G].

Conversely, consider a short exact sequence

G
ι // E

σ // H .

By the universal property of [G], we get a unique ρ such that diagram (i) above is a pullback, so
that χ ′ = ev · (ρ♭1). It remains to show that the short exact sequence (ι, σ ), equipped with ρ, is
a butterfly from D(H) to A(G). Condition 3.1.4 follows by the commutativity of the following
diagram:

E♭G
1♭ι //

χ ′

##HHHHHHHHH

ρ♭1
��

E♭E
χE

!!CC
CC

CC
CC

[G]♭G ev
// G ι

// E

while Condition 3.1.3 is trivial. As far as the commutativity of the right wing is concerned, since
both ρ · ι and IG classify the same split extension, by the universal property we conclude that
they are equal. �

Combining the previous isomorphism of groupoids with Theorem 5.6, we get a very general
classification of extensions:

Ext(H, G) ≃ B(C)(D(H),A(G)) ≃ Grpd(C)[Σ−1
](D(H),A(G)).
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Putting together this classification and the results stated in Section 6, we can conclude that:

1. Group extensions with kernel G and cokernel H are classified by monoidal functors from
D(H) to A(G);

2. Lie algebra extensions with kernel G and cokernel H are classified by homomorphisms of Lie
2-algebras from D(H) to A(G).

Example 7.2. From the classical cohomological classification of group extensions (see Section
8 of Chapter 4 in [36], for instance) we know that with an extension

G
κ // E

σ // H

and a chosen set-theoretical section s of σ , we can associate two set-theoretical functions

F0: H → Aut(G), F0(x)(g) = s(x)+ g − s(x),

f : H × H → G, f (x, y) = s(x)+ s(y)− s(x + y),

such that for any x, y, z in H the equations

F0(x)( f (y, z))+ f (x, y + z) = f (x, y)+ f (x + y, z), (3)
F0(x) · F0(y) = IG( f (x, y)) · F0(x + y), (4)

hold, where, for an element g of G, IG(g) is the corresponding inner automorphism of G.
Now we can define two set-theoretical functions F1 and F2 as follows:

F1: H → G o Aut(G) F1(x) = (0, F0(x)),

F2: H × H → G o Aut(G) F2(x, y) = ( f (x, y), F0(x + y)).

The functions F0, F1 and F2 are a special case of those described in Section 6.2 and form a
monoidal functor

FE = (F0, F1, F2): D(H)→ A(G).

Indeed, condition (3) expresses the coherence of the monoidal structure isomorphism with the
associativity of D(H) and A(G), and condition (4) expresses the fact that the pair (F0, F1)

commutes with the domain maps of D(H) and A(G).
Let us insist on the fact that the map F0 is not in general a homomorphism and IG · f

measures precisely how much F0 deviates from being a homomorphism. The map F0 is actually
a homomorphism when the section s is a homomorphism (this is the case of split extensions), or
when the kernel G is abelian. In this last case, Eq. (3) is nothing but a cocycle condition, while
Eq. (4) amounts to the fact that F0 is a homomorphism.

8. The free exact case

When C is the category of groups, the main result of [40] is not stated in terms of bicategory
of fractions, but it is stated as an equivalence of groupoids

B(C)(H, G) ≃ XMod(C)(K, G),

where K is the crossed module of groups obtained from H by pulling back ∂: H → H0 along
a surjective homomorphism K0 → H0, with K0 being a free group. The same is done for Lie
algebras in [1]. The aim of this section is to generalize the previous equivalence to the case when
the semi-abelian category C is also free exact.
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Recall from [22] that C is free exact if it has enough regular projective objects. This means
that, for every object X in C, there exists a regular epimorphism x : X ′ → X with X ′ regular
projective. All semi-abelian varieties of universal algebra are of this kind. In particular, groups
and Lie algebras are free exact semi-abelian categories.

Let C be a groupoid and s0: X0 → C0 be a regular epimorphism, with X0 regular projective.
Consider the limit

X1

d

vvnnnnnnnnnnnnnnn

s1

��

c

((PPPPPPPPPPPPPPP

X0

s0   BB
BB

BB
BB

C1

d~~}}
}}

}}
}}

c
  BB

BB
BB

BB
X0

s0~~}}
}}

}}
}}

C0 C0

.

The internal graph d, c: X1 ⇒ X0 inherits a structure of groupoid from that of C. Moreover, the
internal functor S = (s1, s0): X→ C is a weak equivalence (it is full and faithful by construction
of s1, and it is essentially surjective, because s0 is a regular epimorphism). Finally, observe that,
since X0 is regular projective, the groupoid X is Σ -projective: every weak equivalence with
codomain X is, in fact, an equivalence. We call S: X→ C a Σ -projective replacement of C.

Proposition 8.1. Let C and D be groupoids and fix a Σ -projective replacement S: X→ C. There
is an equivalence of groupoids

B(C)(J (C), J (D)) ≃ Grpd(C)(X, D).

Proof. Since S: X → C is a weak equivalence, F(S): J (X) → J (C) is an equivalence (see
condition BF0 in the proof of Theorem 5.6). Therefore, F(s) induces an equivalence

B(C)(J (C), J (D)) ≃ B(C)(J (X), J (D)).

Moreover, since X0 is regular projective, all extensions of the form X0 ← E ← D split, and
then all butterflies from J (X) to J (D) split:

B(C)(J (X), J (D)) = B(C)(J (X), J (D))split.

Finally, following Section 4.1, we have

B(C)(J (X), J (D))split ≃ Grpd(C)(X, D). �

Remark 8.2. To end this section, we sketch a general argument on bicategories of fractions
which subsumes Proposition 8.1.

Let Σ be a class of 1-cells in a bicategory B with a right calculus of fractions. Assume that:

1. Σ satisfies the 2⇒ 3 property: let F : C→ D and G: D→ E be 1-cells in B; if two of F, G
and G · F are in Σ , then the third one is in Σ .

2. Every 1-cell W : C → D of Σ is full and faithful, that is, for any object A, the functor
B(A, W ):B(A, C)→ B(A, D) is full and faithful.

3. For every object C in B, there exists S: X→ C in Σ , with X a Σ -projective object.
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Then, if we fix objects C and D and a 1-cell S: X→ C as in 3, the functor assigning to a 1-cell
F : X→ D the span

X
S

����
��

��
�

F

��??
??

??
?

C D

yields an equivalence of groupoids

B(X, D) ≃ B[Σ−1
](C, D).

9. A reminder on semi-abelian categories

The general context where the theory of internal crossed modules and weak maps takes place,
is that of semi-abelian categories with an additional assumption: equivalence relations centralize
each other in the sense of Smith if and only if the corresponding normal monomorphisms
commute in the sense of Huq. In the following, the basic notions are recalled and the notation is
fixed, for the reader’s convenience.

9.1. Protomodular and semi-abelian categories

Semi-abelian categories were introduced in 2002 [33], and they represent the state-of-the-art
in the long-lasting investigations whose aim is to provide an abstract categorical setting for non
(necessarily) commutative pointed algebraic structures, such as groups, rings or Lie algebras.

A category is semi-abelian when it is pointed (i.e. 0 = 1), with finite coproducts, protomodu-
lar [12] and exact (in the sense of Barr).

Pointed protomodular categories can be characterized as pointed, finitely complete categories
where the split short five lemma holds: given a diagram

K
k //

h
��

A

f
��

p // B
s

oo

g
��

K ′
k′

// A′
p′ //

B ′
s′

oo

where k and k′ are kernels of p and p′ respectively, f · k = k′ · h, g · p = p′ · f and f · s = s′ · g,
the morphism f is an isomorphism if h and g are.

Recall that a category is exact (in the sense of Barr [4]) when it is regular, and internal
equivalence relations are effective, i.e. kernel pairs. Finally a regular category is a finitely
complete category where effective equivalence relations have pullback stable coequalizers.

The protomodularity condition can be reformulated when the category C is pointed regular.
This is stated in the following useful characterization (see Theorem 2.3 in [16] or Theorem 4.2
in [19]).

Theorem 9.1. Let C be a regular pointed category. Then C is protomodular if and only if the
following property holds: in any commutative diagram
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Ker p k //

h
��

A

f
��

p //

(i)

B

g

��
Ker p′

k′
// A′

p′
// B ′

if p is a regular epi, then h is an iso if and only if the square (i) is a pullback.

9.2. The “Huq = Smith” condition

In order to introduce the so-called “Huq = Smith” condition, we first recall the notions of
commuting subobjects and of centralizing each other equivalence relations.

Two subobjects

G
g // E H

hoo

commute in the sense of Huq (see [30,18]) if they cooperate as morphisms, i.e. if there exists a
(unique) morphism ϕ (called the cooperator of g and h) such that the diagram

G
⟨1,0⟩ //

g
&&NNNNNNNNNNNNN G × H

ϕ

���
�
� H

h
wwppppppppppppp

⟨0,1⟩oo

E

commutes.
Suppose that the maps g and h are normal monomorphisms, i.e. kernels. Then the denormal-

ized version of the above notion is that of centralizing each other equivalence relations. A pair of
equivalence relations on a common object E

R
r0 //

r1
// EeRoo eS // S

s1
oo

s0oo

centralize each other (in the sense of Smith, see [46,43]) when there exists a (unique) morphism
Φ such that the diagram

R
⟨1,eS ·r1⟩ //

r0
''OOOOOOOOOOOOOO R ×r1,s0 S

Φ
���
�
� S

s1
wwoooooooooooooo

⟨eR ·s0,1⟩oo

E

commutes.
It is a well known fact that, when two equivalence relations centralize each other, then their

normalizations commute (see [18]). The converse does not hold in general, not even in semi-
abelian categories (see [13] for a counterexample, due to G. Janelidze, in the semi-abelian
category of digroups). Nevertheless it does hold in several important algebraic contexts, as,
for instance, pointed strongly protomodular categories (see [18], Section 6) and pointed action
accessible categories (see [37]). As a matter of fact, for internal structures in (many) pointed
varieties of universal algebra, this is quite a crucial notion and it recaptures the feeling that a
local behavior near the identity element determines a global behavior. Furthermore, it has been
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acknowledged in [32] that this property is a candidate to become an axiom for “good” semi-
abelian categories. We will refer to it as the “Huq = Smith” property.

Remark 9.2. Two morphisms cooperate if their images do, and this happens precisely when their
commutator is trivial, for a suitable notion of commutator. The categorical version of Smith’s
commutator has been introduced by M.C. Pedicchio in [43]. Unfortunately, the description of the
several aspects of the commutator theory involved would take us far beyond our purposes. The
interested reader may refer to [37], and the bibliography therein.

9.3. Butterflies in a Grothendieck topos

Butterflies were originally defined by B. Noohi for crossed modules of groups [40], but the
author himself, in [2] with E. Aldrovandi, extends the construction to crossed modules of internal
groups in any Grothendieck topos S of sheaves over a site (S, J ), with subcanonical topology J .

The present setting generalizes the one of [2]. In fact more is true: our results apply to
any pointed strongly protomodular algebraic theory in a Grothendieck topos. To see this, it is
necessary to recollect some results from the literature.

First, in [10], Example 4.6.3 shows that if T is a pointed protomodular algebraic theory, and
C is a regular (exact) category, then the category AlgT(C) of models of T in C is homological
(exact homological). Hence, if C is exact, the missing condition for AlgT(C) to be semi-abelian
is its finite cocompleteness.

Indeed, the category of models of an algebraic theory in an elementary topos E is finitely
cocomplete, if (i) the topos has a Natural Number Object, and (i i) the theory is finitely presented.
Back to the situation considered here, for a Grothendieck topos E , condition (i) holds, and
condition (i i) can be dropped (see [10] again, the discussion after the cited example), so that
AlgT(E) is semi-abelian.

Concerning the condition “Huq = Smith”, strongly protomodular semi-abelian (i.e. strongly
semi-abelian) categories have this property, and we know from [8] that for a strongly
protomodular (not necessarily pointed) theory T, and a finitely complete category E , the category
of models AlgT(E) is still strongly protomodular. This is clearly the case for a Grothendieck
topos E .

In conclusion, we can state that not only our constructions and results apply to the situation
described in [2], but also in the context of internal Lie algebras, internal rings and other strongly
semi-abelian theories defined in a Grothendieck topos E .

9.4. Internal object actions

Several notions of actions exist in many algebraic contexts. Most of them share the
disadvantage of not being defined intrinsically, but by means of set-theoretical maps satisfying
certain properties. From an algebraic-categorical point of view, this is not convenient, since those
maps are difficult to deal with. This issue has been fixed by the notion of internal action [16,9],
that expresses its full classifying power in the context of semi-abelian categories.

Let C be a finitely complete pointed category with coproducts. Then, for any object B in C,
one can define a functor “Ker” from the category of split epimorphisms (points) over B into C:

Ker : PtB(C)→ C,
A

p
��

B

s

OO
→ Ker p.
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This has a left adjoint:

B+ (−) : C → PtB(C), X →

B + X

[1,0]
��

B

iB

OO
.

The monad corresponding to this adjunction is denoted by B♭(−): C → C, and, for any object A
of C, we obtain a kernel diagram:

B♭A
jB,A // B + A

[1,0] // B .

The B♭(−)-algebras are called internal B-actions in C. In the case of groups, the object B♭A
is the group generated by the formal conjugates of elements of A by elements of B, i.e. by the
triples of the kind (b, a, b−1), with b ∈ B and a ∈ A.

For any object A of C, one can define a canonical conjugation action of A on A itself given
by the composition:

χA : A♭A
jA,A // A + A

[1,1] // A .

In the category of groups, the morphism χA is the internal action associated with the usual
conjugation in A: the realization morphism [1, 1] of above makes the formal conjugates of A♭A
computed effectively in A.

Finally, observe that conjugation actions are components of a natural transformation
χ : (−)♭(−)⇒ IdC .
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