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Abstract. The categorical structure of H2 is shown to be a par-
ticular instance of the cokernel of a morphism between symmetric
categorical groups.

Introduction

The aim of this note is to show how natural is the use of categorical groups in
homological algebra. For this, we give two simple examples concerning classical
results on group-extensions. Let us sketch the first example.

Let A and C be two groups, A abelian. A classical theorem in homological
algebra asserts that the group of isomorphism classes of extensions of A by C

with a fixed operator ϕ : C → Aut(A) is isomorphic to H2
ϕ(C, A), the second

cohomology group of C with coefficients in A [10]. This theorem has been made
more precise by establishing a categorical equivalence between the category of
extensions and a certain category whose objects are 2-cocycles [9]. We will show
that this category is not an ad hoc construction, but it is the cokernel, performed
in the 2-category of symmetric categorical groups, of the usual morphism with
codomain the group of 2-cocycles.

Since our aim is not to prove a new theorem, but to explain a classical one,
we limit to the simple case of groups, even if similar results can be obtained in
more general situations.

Acknowledgements : I would like to thank the referee for some useful sug-
gestions.

The classical isomorphism

Consider two groups A and C, with A abelian (we use the additive notation
for A and the multiplicative notation for C), and fix an operator ϕ : C →

Aut(A). Following [10], recall that an extension of A by C is an exact sequence

E : 0 // A
χ

// B
σ // C // 0 .
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Each extension E induces an operator ϕE : C → Aut(A). If E′ is another exten-
sion, a morphism β : E → E′ is a group-homomorphism β : B → B′ such that
the following diagram commutes in each part

B

β

��

σ

  A
AA

AA
AA

A

A

χ
>>}}}}}}}}

χ′

  A
AA

AA
AA

C

B′

σ′

>>}}}}}}}
.

These data define the category of extensions of A by C. It is in fact a groupoid
because, by the Five Lemma, such a β is an isomorphism. We call

OPEXT (C, A, ϕ)

the full subcategory of the extensions E such that ϕE = ϕ. The set

Π0(OPEXT (C, A, ϕ))

of isomorphism classes of extensions is denoted by OpExt(C, A, ϕ). It is an
abelian group under Baer sum, the zero being given by the class of the semi-
direct product A ×ϕ C.

Now consider the following sets, which are abelian groups under point-wise
sum :

- C2(C, A) is the group of maps g : C → A such that g(1) = 0

- Z2
ϕ(C, A) is the group of maps f : C ×C → A such that for all x, y, z in C

we have : f(x, 1) = 0 = f(1, y) and x·f(y, z)+f(x, yz) = f(x, y)+f(xy, z)
(where · is the C-action on A induced by ϕ).

There is a group homomorphism

δ : C2(C, A) → Z
2
ϕ(C, A)

defined, for g ∈ C2(C, A) and x, y ∈ C, by (δg)(x, y) = x·g(y)−g(xy)+g(x). The
cokernel of δ is the second cohomology group H2

ϕ(C, A) of C with coefficients in
A.

Given a 2-cocycle, that is an element f of Z2
ϕ(C, A), define an extension

ε(f) : 0 → A → A×fC → C → 0

in the following way : the underlying set of A×fC is the cartesian product of A

and C, but the operations are deformed by f, that is (a, x)+(a1, y) = (a+x·a1+
f(x, y), xy) and −(a, x) = (−x−1 ·a−x−1 ·f(x, x−1), x−1) (in particular, if f = 0,

then A×f C is the semi-direct product A×ϕC); the morphisms A → A×fC and
A×fC → C send a on (a, 1) and (a, x) on x. Passing to isomorphism classes, ε
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gives rise to a group homomorphism Z2
ϕ(C, A) → OpExt(C, A, ϕ), which factors

through the cokernel of δ (because if g is in C2(C, A), then

Φg : A×δgC → A ×ϕ C Φg(a, x) = (a + g(x), x)

is an isomorphism between ε(δg) and the semi-direct product extension. The
extension of ε to the cokernel of δ gives the isomorphism between H2

ϕ(C, A) and
OpExt(C, A, ϕ).

Categorical groups

Let C = (C,⊗, I, . . . ) be a monoidal category. We note by I the unit object
and we say that an object X of C is invertible if there exists an object X∗ and
two isomorphisms I → X⊗X∗ and X∗⊗X → I. We denote by Π0C the monoid
of isomorphism classes of objects of C (it is commutative if C is braided), and
by Π1C the commutative monoid C(I, I) of endomorphisms of I. A cat-group G

is a monoidal groupoid such that each object is invertible [6, 7, 11]. In this case,
Π0G and Π1G are groups. A morphism F : G → H of cat-groups is a monoidal
functor ; it is an equivalence iff the induced group homomorphisms Π0F and
Π1F are isomorphisms. If G and H are braided, we say that a morphism F is a
γ-morphism if it respects the braiding.

Now fix a γ-morphism F : G → H between symmetric cat-groups. The
cokernel of F (see [8, 13]) is given by a triple (CokerF, PF , ΠF ) where CokerF
is a symmetric cat-group, PF a γ-morphism and ΠF : F · PF → 0 a monoidal
natural transformation, as in the following diagram

G
0 //

F
��@

@@
@@

@@
CokerF

H

PF

;;vvvvvvvvv

ΠF

⇑

(0 is the constant functor which sends each morphism on the identity of the unit
object). The cat-group CokerF can be described in the following way :

- the objects of CokerF are those of H

- a morphism [f, N ] : X → Y in CokerF is an equivalence class of pairs
(f, N) with N an object of G and f : X → Y ⊗ F (N) a morphism in H ;
two such pairs (f, N) and (g, M) are declared equivalent if there exists a
morphism α : N → M in G such that the following diagram commutes

X
f

//

g
((QQQQQQQQQQQQQQ Y ⊗ FN

1⊗Fα

��
Y ⊗ FM

.
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If K is a symmetric cat-group, G : H → K a γ-morphism and ϕ : F · G → 0 a
monoidal natural transformation, there exists a unique factorization through the
cokernel, that is a unique γ-morphism G′ : CokerF → K such that PF · G′ = G

and ΠF ·G′ = ϕ. The functor G′ sends an arrow [f, N ] : X → Y on the composite

(Gf) · (1 ⊗ ϕ(N)) : GX → G(Y ⊗ FN) ' GY ⊗ G(FN) → GY ⊗ I ' GY

The cokernel is a bi-limit (see [12] for the notion of bi-limit), so it is character-
ized, up to equivalences, by its universal property, which is discussed in detail
in [13]. Finally, observe that

Π0G
Π0F

// Π0H
Π0PF // Π0(CokerF )

is the usual cokernel in the category of abelian groups.

First application

If G is a (abelian) group, we can look at it as a (symmetric) discrete cat-
group which we denote by D(G). Morphisms between discrete cat-groups are
exactly group homomorphisms. The point is that in general the cokernel of a γ-
morphism between two discrete symmetric cat-groups is NOT discrete. In fact,
its undiscreteness is measured by the kernel, in the usual sense, of the morphism:
if f : A → B is a morphism between abelian groups, Π1(CokerD(f)) = Kerf.

Moreover, comparing with the general construction of CokerF, we get the fol-
lowing explicit description of CokerD(f) :

- the objects of CokerD(f) are the elements of B;

- an arrow between two objects b and b′ is an element a of A such that
b = b′ + f(a).

In other words, the groupoid underlying CokerD(f) is nothing but the Dold-
Kan denormalization of the chain complex · · · 0 → 0 → A → B. We apply these
facts to the classification of extensions.

First, observe that, under Baer sum, the groupoid OPEXT (C, A, ϕ) is a
symmetric cat-group (see [1] for a conceptual proof). Now, the classical theorem
recalled above, gives us some informations only on the group OpExt(C, A, ϕ),
that is on Π0(OPEXT (C, A, ϕ)). To obtain informations on the whole category

OPEXT (C, A, ϕ)

it suffices to calculate the cokernel of δ : C2(C, A) → Z2
ϕ(C, A) in the 2-category

of symmetric cat-groups rather than in the category of abelian groups. In fact,
with the previous notations, we dispose of two γ-morphisms

D(C2(C, A))
D(δ)

// D(Z2
ϕ(C, A))

ε // OPEXT (C, A, ϕ)
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whose composite is naturally isomorphic to the zero-functor. The next propo-
sition qualifies the cokernel of D(δ) as the second cohomology cat-groups of C

with coefficients in A.

Proposition : The γ-morphism

ε′ : CokerD(δ) → OPEXT (C, A, ϕ) ,

extension of ε to the cokernel of D(δ), is an equivalence of cat-groups.

Proof. The fact that ε′ is an equivalence of cat-groups is equivalent to the
fact that Π0(ε

′) and Π1(ε
′) are isomorphisms. By the previous description of

the cokernel of a discrete morphism, we get :

- Π0(ε
′) : Π0(CokerD(δ)) = H2

ϕ(C, A) → OpExt(C, A, ϕ), which is the clas-
sical isomorphism already recalled;

- Π1(ε
′) : Π1(CokerD(δ)) = Kerδ = Z1

ϕ(C, A) → Π1(OPEXT (C, A, ϕ)),
which is the isomorphism between the group of crossed homomorphisms
and the group of automorphisms of A ×ϕ C inducing the identity on A

and C, as in [10] Proposition IV.2.1.

�

Second application

We consider now another classical way used to compute the group of exten-
sions [10]. Assume that C also is abelian and take ϕ to be the trivial operator
(that is, x · a = a for all x in C and a in A). We consider the subcategory
EXT (C, A) of OPEXT (C, A, ϕ) of those extensions

0 → A → B → C → O

in which B is abelian ; Ext(C, A) is Π0(EXT (C, A)). We can of course repeat
the previous argument to explain the equivalence between EXT (C, A) and the
cat-group of symmetric 2-cocycles, i.e. 2-cocycles f : C × C → A such that
f(x, y) = f(y, x) for all x, y in C. Otherwise, consider an exact sequence

F : 0 // K
i // P

e // C // 0

of abelian groups. It induces the usual exact sequence

0 // Hom(C, A)
e∗ // Hom(P, A)

i∗ // Hom(K, A)

F∗

��
Ext(K, A) Ext(P, A)

i∗
oo Ext(C, A)

e∗

oo
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(where F ∗ sends a morphism α : K → A on the extension given by the pushout
of i along α) and we have a factorization

F : Coker(i∗) → Ext(C, A)

of F ∗ through the cokernel of i∗. Now, if we choose P to be projective, then
Ext(P, A) = 0, so that the exactness in Ext(C, A) and in Hom(K, A) means
that F is an isomorphism.
Once again, we have some informations only on the group Ext(C, A), that
is on Π0(EXT (C, A)). But we have forgotten something : the exactness in
Hom(C, A) and in Hom(P, A). What does this exactness mean ? Consider the
following γ-morphisms of cat-groups

D(Hom(P, A))
D(i∗)

// D(Hom(K, A))
F // EXT (C, A)

where F is defined as F ∗, but without passing to isomorphism classes.

Proposition : The γ-morphism

F
′ : CokerD(i∗) → EXT (C, A) ,

extension of F to the cokernel of D(i∗), is an equivalence of cat-groups.

Proof. Once again, the fact that F ′ is an equivalence corresponds to two
classical isomorphisms:

- Π0(F
′) is the isomorphism F : Coker(i∗) → Ext(C, A);

- Π1(CokerD(i∗)) is the kernel of i∗, which, by exactness in Hom(P, A) and
in Hom(C, A), is Hom(C, A). Finally, Π1(F

′) is the familiar isomorphism
between Hom(C, A) and Π1(EXT (C, A)) which sends an element g of
Hom(C, A) on the matrix

(

1A 0A,C

g 1C

)

.

�
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