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1. Introduction

To write a few lines of introduction to a few pages of work on a real corner stone
of mathematics like sheaf theory is not an easy task. So, let us try with . . . two
introductions.

1.1. First introduction: for students (and everybody else). In the study of ordinary
differential equations, when you face a Cauchy problem of the form{

y(n) = f(x, y, y′, . . . , y(n−1)) , y(i)(x0) = y
(i)
0

you know that the continuity of f is enough to get a local solution, i.e. a solution
defined on an open neighborhood Ux0 of x0. But, to guarantee the existence of a
global solution, the stronger Lipschitz condition on f is required.

In complex analysis, we know that a power series
∑

an(z − z0)n uniformly
converges on any compact space strictly contained in the interior of the convergence
disc. This is equivalent to the local uniform convergence: for any z in the open disc,
there is an open neighborhood Uz of z on which the series converges uniformly.
But local uniform convergence does not imply uniform convergence on the whole
disc. This gap between local uniform convergence and global uniform convergence
is the reason why the theory of Weierstrass analytic functions exists.

These are only two simple examples, which are part of everybody’s basic knowl-
edge in mathematics, of the passage from local to global. Sheaf theory is precisely
meant to encode and study such a passage.

Sheaf theory has its origin in complex analysis (see, for example, [18]) and in
the study of cohomology of spaces [8] (see also [26] for a historical survey of sheaf
theory). Since local-to-global situations are pervasive in mathematics, nowadays
sheaf theory deeply interacts also with mathematical logic [3, 24, 38, 41], algebraic
geometry [27, 28, 29, 30], algebraic topology [9, 22], algebraic group theory [15],
ring theory [23, 48], homological algebra [16, 21, 51] and, of course, category theory
[39].

The references mentioned above are not at all exhaustive. Each item is a stan-
dard textbook in the corresponding area, and the reader probably has already
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been in touch with some of them. We have listed them here because, just by hav-
ing a quick glance at them, one can realize that sheaves play a relevant (sometimes
crucial) role. In this way, we have no doubt that the reader will find motivations
to attack sheaf theory directly from his favorite mathematical point of view.

In this chapter, we focus our attention on three aspects of sheaf theory.
A presheaf on a topological space X is a variable set indexed by the open

subsets of X. More precisely, it is a functor

F : O(X)op → Set,

where O(X) is the ordered set of open subsets of X and Set is the category of
sets. Think, as examples, of the presheaf of continuous functions

C : O(X)op → Set ; C(U) = {U → Y continuous }
or of the presheaf of constant functions

K : O(X)op → Set ; K(U) = {U → Y constants }
for Y a given topological space. Roughly speaking, a presheaf F is a sheaf when we
can move from local elements to global elements, i.e. when we can past together
(compatible) elements {fi ∈ F (Ui)}I to get a unique element f ∈ F (∪IUi). The
above-mentioned presheaf C is a sheaf, whereas the presheaf K is not. The first
important result we want to discuss is the fact that the abstract notion of sheaf
can be concretely represented by variable sets of the form “continuous functions”.
More precisely, any sheaf is isomorphic to the sheaf of continuous sections of a
suitable étale map (= a local homeomorphism).

A simple but important result (not analyzed in this chapter) is that presheaves
with values in the category of abelian groups, that is, functors of the form

F : O(X)op → Ab

(where Ab is the category of abelian groups), constitute an abelian category (Chap-
ter IV). In order to apply homological techniques to sheaves, it is then important
to observe that the category of sheaves on a topological space is a localization of
the corresponding category of presheaves. This means that there is a universal way
to turn a presheaf into a sheaf, and this process is an exact functor. The fact that
sheaves are localizations of presheaves is true also for set-valued presheaves, and
this is the second main point of sheaf theory treated in this chapter. In fact, we
show that, up to the necessity of generalizing sufficiently the notion of topological
space (here the notion of Grothendieck topology on a small category is needed),
sheaf categories are precisely the localizations of presheaf categories.

From the category theorist’s point of view, an exciting question in this subject
is: is it possible to give an abstract characterization of sheaf categories? In other
words, what assumptions an abstract category has to satisfy in order to prove that
it is equivalent to the category of sheaves for a Grothendieck topology? The answer
to this question is provided by Giraud’s Theorem characterizing Grothendieck
toposes. The third scope of this chapter is precisely to discuss such a theorem
together with the various conditions involved in its statement and in its proof.



1. Introduction 313

1.2. Second introduction: for teachers (and everybody else). Assume you have to
teach an introductory course in category theory for students in mathematics or
engineering. Probably, you spend half of the course to establish the basic categori-
cal language and to give a reasonable amount of examples to support the intuition
of the students. After this, you have to choose between going deeply into a sin-
gle topic, proving non-trivial results but completely neglecting other interesting
subjects, or to surf on a number of important topics, but hiding their complexity
and their mutual relationships because of the lack of time. As the good teacher
you are, you feel unhappy with both of these solutions. So, let us try an honorable
compromise between them. Choose a single topic, and use it as a kind of fil rouge
that the students can follow to go far enough in your selected subject (far enough
to appreciate the theory), but also to have a first glance at a lot of other topics
and their interaction with the development of the main theme.

The present chapter is an example of this approach: sheaf theory is a math-
ematically relevant skeleton to which to attach several other topics, classical or
more recent, which can enter into the picture in a natural way. It is maybe worth-
while to make it clear here and at once that the idea behind this chapter is not
to provide a new neither easier treatment of sheaf theory as it already appears in
literature. What we are doing is to cruise around quite a lot of different, hetero-
geneous - sometimes advanced - aspects in category theory to get the reader more
and more involved into this interesting part of mathematics. Nevertheless we hope
that this tour has an internal coherence: from a motivating example as sheaves on
a topological space we gradually lead the reader to a rather sophisticated result
as Giraud’s Theorem, whose proof - although not essentially different from the
classical ones - is achieved thanks to the various techniques presented, and aspires
to be the aim of the whole chapter.

This chapter does not contain new results. All the results can be found either
in one of the standard textbooks in sheaf theory [2, 6, 34, 35, 40, 52] or in some
research paper quoted below. For this reason, we include sketches of the proofs
only when we think they can be useful to capture the interest of the reader. Some
of the proofs we omitted, and some of the exercises we left to the reader, are far
to be easy.

1.3. Contents. The chapter is organized as follows:
Section 2 is a short introduction to sheaves on a topological space and serves as
basic motivation to the rest of the chapter. The main result here is the equivalence
between sheaves and étale maps. Section 3 contains the characterization of local-
izations of presheaf categories as categories of sheaves. We pass through several
categorical formulations of the notion of topology: universal closure operator, pre-
topology, Grothendieck topology, Lawvere-Tierney topology and elementary topos.
En passant, we introduce also categories of fractions, regular categories and the
coproduct completion, and we have a glance at the existence of finite colimits in
an elementary topos, which gives a strong link with Chapter V. The last section is
devoted to Giraud’s characterization of Grothendieck toposes. We put the accent
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on lextensive categories (that is, categories with “good” coproducts), seen also as
pseudo-algebras for a convenient pseudo-monad, and we touch on Kan extensions,
calculus of relations, left covering functors, filtering functors, and on the exact
completion.

Apart from the already quoted textbooks, our main references are Carboni-
Lack-Walters [11] for extensive and lextensive categories, Carboni-Mantovani [12]
for the calculus of relations and Menni [43, 44] for pretopologies. The latter is the
most recent topic we present in this chapter. We have generalized Menni’s defini-
tion and main result to the case of categories with weak finite limits because of our
main example, which is the coproduct completion of a small category. The notion
of pretopology is of interest also in the study of realizability toposes (see [44]),
but we do not develop this argument here. The reference for the exact completion,
sketched in Section 4, is the paper [14] by Carboni and the second author.

We would like to thank R.J. Wood: subsection 4.3 is the result of a stimulating
discussion with Richard. We are also grateful to W. Tholen for a number of useful
comments and suggestions and, in particular, for the big effort Walter and Jane
did to turn the language of our chapter into something more similar to English
than to Italian. Grazie!

2. Sheaves on a topological space

Let us start with a slogan : What is locally true everywhere, is not necessarily glob-
ally true. In other words, a problem could have a lot of interesting local solutions,
and fail to have even a single global solution.

2.1. Local conditions. Let us make the previous slogan more precise with some
example.

Example. Consider a map f : Y → X between two topological spaces.
1. The question: is f a continuous map? is a local problem. Indeed, if for each

point y of Y there is an open neighborhood Uy containing y and such that the
restriction of f to Uy is continuous, then f itself is continuous.

2. The question: is f a constant map? is not a local problem. Assume, for example,
that Y is given by the disjoint union of two non empty open subsets Y1 and Y2,
and that X contains at least two different points x1 6= x2. Define f(y) = x1

if y ∈ Y1 and f(y) = x2 if y ∈ Y2. Then f is locally constant, but it is not
constant.

3. Now let X be the set of complex numbers C and let Y be its one-point (or
Alexandroff) compactification C∗. The question: is f a holomorphic function?
is a local problem. This is a nice example which shows that looking for global
solutions to a local problem can trivialize the answer. If U is an open subset
of C∗, write H(U) for the set of holomorphic functions U → C. If U is strictly
included in C∗, then H(U) separates the points of U (i.e. if x and y are in U
and x 6= y, there exists f in H(U) such that f(x) 6= f(y)). But if U = C∗,
then H(U) contains only constant maps.
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2.2. Étale maps. For each condition, local or not, we can consider its “localization”,
which consists in asking locally the condition. Consider again a map f : Y → X
between topological spaces. For f to be a homeomorphism is not a local condition.
Its localization is known as the condition to be an étale map. This is a crucial
notion in sheaf theory.

Definition. Consider two topological spaces X and Y. A map f : Y → X is étale
if, for each point y in Y, there are open neighborhoods Vy of y and Uf(y) of f(y)
such that the restriction of f to Vy is a homeomorphism Vy ' Uf(y). Étale maps
are also called local homeomorphisms.

A typical example of an étale map which is not a homeomorphism is the pro-
jection of the circular helix on the circle, f(cos t, sin t, t) = (cos t, sin t).

The idea of an étale map is important because, in general, for a map f : Y → X
between topological spaces, the best we can discuss is its continuity. But if X
has some local structure and f is étale, then we can reconstruct piece-wise this
structure on Y. This is the basic idea of variety.

2.3. Local sections. Let f : Y → X be a continuous function. A continuous section
of f is a continuous map s : X → Y such that f(s(x)) = x for any x ∈ X. A local
section of f is a continuous map σ : U → Y defined on an open subset U of X
and such that f(σ(x)) = x for any x ∈ U. To have a continuous section is not
a local condition for a continuous map f : Y → X. Its localization, i.e. to have a
local section, is another important ingredient in sheaf theory. Here is a classical
example (which leads to the discovery Riemann surfaces).

Example. Let f : C→ Cr {0} be the complex exponential, f(z) = ez. (Note that
f is an étale map.) For any integer k ∈ Z, there is a section gk : C r {0} → C for
f, defined by the complex logarithm gk(ρeiθ) = lnρ + i(θ + 2kπ) with θ ∈ [0, 2π[.
Now, if U is a simply connected open subset of CrR+, each of these gk restricts
to a continuous (in fact, holomorphic) section of f. But if U contains a loop
around the origin, none of the gk is continuous. On the other hand, given a map
g : C r {0} → C, the equation f(g(z)) = z implies that g = gk for some k. So,
for each z ∈ C r {0}, there is a open neighborhood Uz of z such that f has a
continuous section on Uz (if z ∈ R+ one has to past together a gk with gk−1), but
f does not have a continuous section on the whole Cr {0}.

2.4. Presheaves. Let us now formalize the first two items of Example 2.1. Let X
and Y be two topological spaces. For each open subset U of X, write C(U) for
the set of continuous maps from U to Y and K(U) for the set of constant maps
from U to Y. If V is an open subset of X contained in U, by restriction we get two
maps C(U) → C(V ) and K(U) → K(V ). Moreover, both of these constructions are
functorial, that is they give rise to two presheaves on the topological space X.

Definition.
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1. If C is a small category, a presheaf on C is a functor F : Cop → Set with values
in the category Set of sets and mappings. We write SetC

op

for the category of
presheaves on C and their natural transformations.

2. If X is a topological space, a presheaf on X is a presheaf on O(X), the ordered
set of open subsets of X, seen as a category with at most one arrow between
two objects.

Notation. Having in mind the examples C and K, for an arbitrary presheaf F on a
space X we write f|V for the image of f ∈ F (U) under F (V ⊆ U) : F (U) → F (V ).

2.5. Sheaves. The notion of sheaf will emphasize an additional property of the
presheaf C, that the presheaf K does not share. C is determined by a local condition,
K is not.

Definitions.

1. Let F : O(X)op → Set be a presheaf on a topological space X. Consider U ∈
O(X) and an open cover (Ui)i∈I of U, that is Ui ∈ O(X) for each i and
U = ∪i∈IUi. A family of elements (fi ∈ F (Ui))i∈I is compatible if, for each
i, j ∈ I, fi|Ui∩Uj

= fj |Ui∩Uj
.

2. A presheaf F on X is a sheaf if for each U ∈ O(X), for each open cover (Ui)I

of U and for each compatible family (fi ∈ F (Ui))I , there is a unique f ∈ F (U)
such that f|Ui

= fi for each i ∈ I. We call f the glueing of the family (fi)I .

We write Sh(X) for the full subcategory of SetO(X)op

spanned by sheaves.

Exercise. Show that a presheaf F on X is a sheaf exactly when, for each U ∈ O(X)
and for each open cover (Ui)I of U, the following diagram is an equalizer

F (U) →
∏

i

F (Ui) ⇒
∏

i,j

F (Ui ∩ Uj)

2.6. Examples of presheaves and sheaves. We give now some basic examples of
presheaves and sheaves on a topological space.

Examples.

1. The presheaf of continuous functions C : O(X)op → Set is a sheaf. In general,
the presheaf of constant functions K : O(X)op → Set is not a sheaf.

2. Let X be the complex space C, and, for each U ∈ O(X), write L(U) for
the set of bounded holomorphic functions from U to C. Under restriction,
L : O(C)op → Set is a presheaf, but it is not a sheaf. Consider, for each positive
real number r, the open disk Dr centered at the origin and of radius r. Define
fr ∈ L(Dr) by the assignment fr(z) = z for each z ∈ Dr. Clearly, C = ∪rDr

and (fr)r is a compatible family, but no glueing for this family exists, because
a bounded holomorphic function from C to C is necessarily constant.



2. Sheaves on a topological space 317

3. The following example of sheaf will turn out to be a generic one (see Theorem
2.8). Fix a continuous map f : Y → X and define, for each U ∈ O(X), Sf (U)
to be the set of continuous sections of f defined on U. In other words, an
element σ ∈ Sf (U) is a continuous map σ : U → Y such that f(σ(x)) = x for
all x ∈ U. Once again the action of Sf on the inclusion V ⊆ U is simply the
restriction.

4. The following functor is a sheaf

O : O(X)op → Set O(U) = {W ∈ O(X) | W ⊆ U}
with action given by intersection. This simple example will play a special role
in Section 3 (see Exercise 3.22).

5. For each U ∈ O(X), the representable presheaf O(X)(−, U) : O(X)op → Set
is a sheaf.

2.7. Internal logic. Roughly speaking, we can say that:
1. A local condition is a condition ϕ
- which makes sense in every open subset of a topological space X and
- which holds in U ∈ O(X) exactly when, for any x ∈ U, there is an open

neighborhood Ux of x, Ux contained in U, such that the condition ϕ holds in
Ux and in every open Vx ⊆ Ux.

2. A local problem is a problem P
- which makes sense in every open subset of a topological space X and
- which has a solution in U ∈ O(X) exactly when, for any x ∈ U, there is an

open neighborhood Ux of x, Ux contained in U, such that the problem P has
a solution in Ux and in every open Vx ⊆ Ux.

Looking at the previous examples, we have:
1. To be a continuous function is a local condition, to be a constant function is

not a local condition.
2. To have a continuous section is not a local problem, to have a local section is

a local problem.
The idea of local condition or local problem leads to the notion of local validity

of a formula, which is the key ingredient to codify the internal logic of a sheaf.
This is another important topic which we do not pursue in this chapter (a full
treatment can be found in [6]). Let us only observe that the “definition” of local
condition implies that such a condition is inherited by open subset: if ϕ holds in
an open subset U, then it holds in any open subset V contained in U. For example,
for a map f : C∗ → C (see Example 2.1.3), the formula

(f holomorphic ⇒ f constant)

holds for U = C∗ but it does not hold for proper open subsets of C∗.

2.8. The equivalence between sheaves and étale maps. It is a matter of experience
that each local problem gives rise to a sheaf, as we have seen for C and Sf . It would
be nice to turn this experience into a theorem, but a more formalized notion of
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local problem would be needed for this. What we can do is to express the converse
statement as a theorem, that is to show that each sheaf is the variable set of answers
to some local problem. This will be done in the next theorem, which represents
the main achievement of this section, but, before that, some preliminary work is
needed.

If X is a topological space, we write Et/X for the category having as objects
étale maps f : Y → X. An arrow from f : Y → X to f ′ : Y ′ → X is an étale map
g : Y → Y ′ such that f ′ · g = f.

Exercises.

1. Show that Et/X is a full subcategory of the comma category Top/X, where
Top is the category of topological spaces and continuous functions.

2. Show that, if α : F → G is an arrow in Sh(X), then the compatibility with
the glueing operation is a consequence of the naturality of α. This is why we
consider Sh(X) full in SetO(X)op

.

We already know how to get a sheaf on a space X from a continuous map
f : Y → X, it is the sheaf of local sections Sf defined in Example 2.6.3. Consider
now an arrow g : f → f ′ in Top/X and an element σ ∈ Sf (U), U ∈ O(X).
Composition with g gives us an element g · σ ∈ Sf ′ . In this way, we obtain a
functor

S : Top/X → Sh(X).

By composition with the full inclusion i : Et/X → Top/X, we get a functor

S · i : Et/X → Sh(X).

The next theorem makes precise our claim that each sheaf is (up to natural iso-
morphism) the variable set of answers to a local problem.

Theorem. Let X be a topological space. The functor

S · i : Et/X → Sh(X)

is an equivalence of categories.

2.9. Sketch of the proof, I. The most interesting part of the proof is the con-
struction of the functor Sh(X) → Et/X quasi-inverse of S · i. To discover the
construction of Sh(X) → Et/X, we can start with an étale map f, consider the
functor Sf and then try to recover f from Sf .
First of all, observe that, since f is étale, for each y ∈ Y there are open neighbor-
hoods Vy of y and Uf(y) of f(y) such that f|Vy

: Vy → Uf(y) is a homeomorphism. In
this way, we get a local section sy = (f|Vy

)−1 ∈ Sf (Uf(y)) such that sy(f(y)) = y.
Such a section is not necessarily unique, that is: it may be possible to find another
local element s′y ∈ Sf (U ′

f(y)) such that s′y(f(y)) = y. Even if sy and s′y are not
equal, they are “locally equal”. This will be explained in the following lemma.
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Lemma. Let f : Y → X be an étale map and consider s, s′ ∈ Sf (U). If there is an
x ∈ U such that s(x) = s′(x), then there exists an open neighborhood Ux of x such
that s|Ux

= s′|Ux
.

This is what we need to get a bijection

Y '
∐

x∈X

(Sf )x, where (Sf )x = (
∐

U3x

Sf (U))/ ≈

(here, the symbol
∐

means disjoint union, and ≈ is the equivalence relation defined
as follows: s ∈ Sf (U) ≈ s′ ∈ Sf (U ′) iff there exists an open neighborhood Ux of x,
Ux ⊆ U ∩U ′, such that s|Ux

= s′|Ux
). Explicitly, the bijection sends y ∈ Y into the

class [sy] ∈ (Sf )f(y). Conversely, given s ∈ Sf (U) and x ∈ U, the class [s] ∈ (Sf )x

is sent to the point s(x) of Y.
The meaning of the previous bijection is that we can reconstruct the set underlying
the space Y by looking at the sheaf of local sections of f. Now, what about the
map f : Y → X? And what about the topology of Y ? The first question is easy.
It suffices to compose the map f with the bijection

∐
(Sf )x ' Y to get a map

πf :
∐

x∈X

(Sf )x → X [s] ∈ (Sf )x 7→ f(s(x)) = x ∈ X.

As far as the topology of Y is concerned, the key remark is once again a simple
exercise on étale maps.

Exercise. Let f : Y → X be an étale map and consider a subset V of Y. Show that
V ∈ O(Y ) iff s−1(V ) ∈ O(U) for all s ∈ Sf (U) and for all U ∈ O(X). In other
words, Y has the final topology with respect to all the local sections of f.

Since we want the bijection Y ' ∐
(Sf )x to be a homeomorphism, we have to

put on
∐

(Sf )x the topology induced by that of Y, that is the final topology with
respect to all the compositions t : U → Y ' ∐

(Sf ) for t ∈ Sf (U) and U ∈ O(X).
Once again, these compositions can be expressed without explicit reference to Y.
If x is in U, we have x 7→ t(x) 7→ [st(x)] = [t] ∈ (Sf )f(t(x))=x. Finally, the topology
on

∐
(Sf )x is the final topology with respect to all the maps

σU
s : U →

∐

x∈X

(Sf )x x 7→ [s] ∈ (Sf )x

for s ∈ Sf (U) and U ∈ O(X).

2.10. The total space. The previous discussion makes evident the construction of
a functor Sh(X) → Et/X, or, more generally, of a functor SetO(X)op → Et/X.

Definition. Let F : O(X)op → Set be a presheaf on a topological space X. Its total
space T (F ) is given by

πF :
∐

x∈X

Fx → X

where Fx (the stalk of F at the point x) is the quotient set (
∐

U3x F (U))/ ≈, and
≈ is the equivalence relation defined as follows: s ∈ F (U) ≈ s′ ∈ F (U ′) iff there
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exists an open neighborhood Ux of x, Ux ⊂ U ∩ U ′, such that s|Ux
= s′|Ux

. The
space

∐
Fx has the final topology with respect to all maps

σU
s : U →

∐

x∈X

Fx x 7→ [s] ∈ Fx

for s ∈ F (U) and U ∈ O(X). The map πF is defined by πF ([s] ∈ Fx) = x.

Exercises.

1. Show that the map πF :
∐

Fx → X defined just above is an étale map.
[Hint: Recall that if a space Y has the final topology with respect to a family of
maps (gi : Yi → Y )I , then a map f : Y → X is continuous iff all the composites
f · gi are continuous.]

2. Describe the stalk Fx as a filtered colimit.

Consider now two presheaves F and G on X and a natural transformation α : F →
G. We get an arrow α̂ : T (F ) → T (G) in the following way:

α̂ :
∐

x∈X

Fx →
∐

x∈X

Gx [s ∈ F (U)] ∈ Fx 7→ [αU (s) ∈ G(U)] ∈ Gx.

Such α̂ is continuous because the composite α̂ · σU
s is nothing but σU

αU (s). This
completes the construction of the total space functor

T : SetO(X)op → Et/X.

Now we are able to compute

Top/X
S // Sh(X) i // SetO(X)op T // Et/X

(here i is again the full inclusion); we get an arrow, natural with respect to f ∈
Top/X,

∐
x∈X(Sf )x

εf //

πf

%%JJJJJJJJJJ Y

fÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

X

given by [s] ∈ (Sf )x 7→ s(x).
So we can summarize the previous discussion saying that εf is a homeomorphism
if and only if f is an étale map. In other words, we have a natural isomorphism
ε : T · S ⇒ Id : Et/X → Et/X.

2.11. Sketch of the proof, II. We only sketch what happens when we go the other
way round. Let F be in SetO(X)op

and apply

SetO(X)op T // Et/X
i // Top/X

S // Sh(X) .

We want to compare the presheaf F and the resulting sheaf SπF
. For each U ∈

O(X), there is a map ηF : F (U) → SπF
(U) which sends s ∈ F (U) into σU

s : U →∐
Fx : x 7→ [s] ∈ Fx. In fact, these ηF (U) collectively give an arrow ηF : F →
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SπF
in SetO(X)op

, which is natural with respect to F. Moreover, each ηF (U) is a
bijection if and only if F is a sheaf (the surjectivity is given by the existence of
the glueing, the injectivity by its uniqueness). In other words, we have a natural
isomorphism η : Id ⇒ S · T : Sh(X) → Sh(X).

2.12. Surjectivity. Let us point out a simple fact, which will be related to the
example of logarithm (Example 2.3). If α : F → G is an arrow in Sh(X) or in
SetO(X)op

, by definition we have a map αU : F (U) → G(U) for each U ∈ O(X).
But, for each x in X, α induces also a map

αx : Fx → Gx [s] 7→ [αU (s)].

The difference between αU and αx becomes clear if we think of what their surjec-
tivity means. The surjectivity of αU is the existence of a global solution defined on
the open set U, whereas the surjectivity of αx is the existence of a local solution
at x.

Example. Let X = C (complex numbers), F = H (the sheaf of holomorphic
functions) and G = H∗ (the subsheaf of H of those g : U → C such that g(z) 6= 0
for all z in U). We can define an arrow exp : H → H∗ by

expU : H(U) → H∗(U) (g : U → C) 7→ (eg : U → C).

Now, expU is not surjective if U contains a loop around the origin. On the contrary,
for each x 6= 0, expx is surjective because we can find a simply connected open
neighborhood Ux of x, not containing 0, where the logarithmic function is well-
defined and holomorphic.

It is here that sheaf theory meets homological algebra. In fact, sheaves as
H or H∗ have, for each U ∈ O(X), a natural structure of abelian group (and
even more), and the restriction operation is a morphism of abelian groups. One
says that H and H∗ are sheaves of abelian groups. The categories of presheaves
and sheaves of abelian groups are abelian categories, so that all the machinery of
homological algebra can be used to study problems like surjectivity and injectivity
of arrows. (For example, the exactness of a sequence F → G → H between sheaves
of abelian groups means that, for each x ∈ X, the sequence of abelian groups and
homomorphisms Fx → Gx → Hx is exact in the usual sense.) We do not enter
into details. Chapter IV gives a glance at abelian categories and the homological
techniques therein.

2.13. Sheaves are a localization. To close this section, let us look more carefully
at the problem of surjectivity and injectivity. Fix an arrow α : F → G in Sh(X).
We have seen, with the example exp : H → H∗, that the statement

(∀ x ∈ X αx surjective ) ⇒ (∀ U ∈ O(X) αU surjective )

does not hold. On the other hand, the injectivity is preserved passing from stalks
to local sets:

(∀ x ∈ X αx injective ) ⇒ (∀ U ∈ O(X) αU injective ) .
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The complete situation is given in the following exercise.

Exercise.

1. Let α be an arrow in Sh(X).
- Show that α is an epimorphism iff αx is surjective for all x ∈ X.
- Show that α is a monomorphism iff αx is injective for all x ∈ X iff αU is
injective for all U ∈ O(X).

2. Let α be an arrow in SetO(X)op

.
- Show that α is an epimorphism iff αU is surjective for all U ∈ O(X).
- Show that α is a monomorphism iff αU is injective for all U ∈ O(X).

[Hint:
1. Show that two parallel arrows α, β in Sh(X) are equal iff αx = βx for all

x ∈ X.
2. Recall that in a functor category, limits and colimits are computed point-wise.]

The previous exercise shows that the full inclusion Sh(X) → SetO(X)op

pre-
serves monomorphisms but not epimorphisms. The ultimate reason for this is a
deep one: the full subcategory of sheaves is reflective in the category of presheaves.
And even more, it is a localization, that is, the left adjoint to the full inclusion
preserves finite limits.

Theorem. Let X be a topological space. The full inclusion Sh(X) → SetO(X)op

has
a left adjoint, given by the composite functor

SetO(X)op T // Et/X
i // Top/X

S // Sh(X) .

Moreover, the left adjoint preserves finite limits.

Proof. This is a particular case of a more general result discussed in the next
section. ¤

3. Topologies, closure operators and localizations

The final result of the previous section has been that the category Sh(X) is a
localization of SetO(X)op

, that is a reflective subcategory such that the left adjoint
is left exact (a functor between categories with finite limits is called left exact if it
preserves finite limits). This section is devoted to answer the following question:
is any localization of a presheaf category equivalent to some category of sheaves?
This question achieves its right level of generality if we consider presheaf categories
of the form SetC

op

for C a small category. A way to get a positive answer is
to generalize the notion of topological space, considering so-called Grothendieck
topologies on the small category C.

3.1. Universal closure operators. The first step is reminiscent of the fact that a
topological space can be defined as a set X with a closure operator ( ) : P(X) →
P(X). This idea can be transposed to an arbitrary category (see, for example
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[17]). For an object B of a category E, Sub(B) denotes the partially ordered set
of subobjects of B, given by monomorphisms into B.

Definition. Let E be a category with finite limits. A universal closure operator on
E consists of a class of operations ( ) : Sub(B) → Sub(B), one for each object B
of E, such that
c1. for all S ∈ Sub(B), S ⊆ S;
c2. for all S, T ∈ Sub(B), if S ⊆ T then S ⊆ T ;
c3. for all S ∈ Sub(B), S ⊆ S;
c4. for all f : B → C in E, the following diagram commutes (f∗ is the pullback

operator)

Sub(B)
( ) // Sub(B)

Sub(C)

f∗

OO

( )

// Sub(C)

f∗

OO

Observe that, in the presence of the other axioms, condition c2 can be equiva-
lently replaced by the following one:
c2’. for each S, T ∈ Sub(B), S ∩ T = S ∩ T , where ∩ is the intersection of subob-

jects, that is their pullback.

3.2. From localizations to universal closure operators. It is easy to establish a first
link between localizations and universal closure operators.

Proposition. Any localization i : A ¿ E : r, r a i, with E finitely complete, induces
a universal closure operator on E.

Proof. Let B be an object in E and consider a subobject a : A ½ B. Since both r
and i preserves monos, we get a subobject i(r(a)) : i(r(A)) ½ i(r(B)). We define
( ) : Sub(B) → Sub(B) by the following pullback, where ηB is the unit of r a i,

A // a //

²²

B

ηB

²²
i(r(A)) //

i(r(a))
// i(r(B))

¤

3.3. Bidense morphisms. The previous proposition allows us to associate with
any localization of E, a universal closure operator on E. Moreover, we will see
that, when E is a presheaf category, this process is essentially a bijection between
localizations of E and universal closure operators on E. In the more general case
where E is finitely complete and has strong epi-mono factorizations, the mapping
from the class of localizations to the class of universal closure operators is only
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essentially injective. To prove this, we need the notion of bidense morphism and a
short digression on categories of fractions.

Definition. Let ( ) be a universal closure operator on a category E with finite
limits.

1. A subobject a : A ½ B is dense if a = 1B as subobjects of B (that is, if a is
an isomorphism).

2. If E has strong epi-mono factorizations, an arrow is bidense if its image is
dense and the equalizer of its kernel pair is dense.

Lemma. Let i : A ¿ E : r, r a i be a localization of a finitely complete category E
with strong epi-mono factorizations. Consider the universal closure operator ( )
associated to r a i as in Proposition 3.2. An arrow f ∈ E is bidense with respect
to ( ) if and only if r(f) is an isomorphism in A.

Proof. Consider the following diagram, where (e,m) is the strong epi-mono fac-
torization of f, (f0, f1) is the kernel pair of f and ϕ is the equalizer of f0 and
f1,

K // ϕ // N
f0 //
f1

// A
f //

e ÃÃ ÃÃA
AA

AA
AA

A B

I
>>

m

>>}}}}}}}}

Since r preserves equalizers, kernel pairs and monos (being left exact) and strong
epis (being left adjoint), (r(e), r(m)) is the factorization of r(f), (r(f0), r(f1)) is
the kernel pair of r(f) and r(ϕ) is the equalizer of r(f0) and r(f1). It follows that
r(f) is an iso iff r(ϕ) and r(m) are isomorphisms. As a consequence, in order to
prove our statement it suffices to prove that, given an arbitrary mono m : I ½ B,
r(m) is an iso iff m is dense. For this, consider the following diagram, where the
internal square is the pullback defining the closure m of m, and j is the unique
factorization through such a pullback,

I **
m

**UUUUUUUUUUUUUUUUUUUUUU
j

$$HHHHHHHHH

ηI

½½5
55

55
55

55
55

55
55

5

I //
m

//

µ

²²

B

ηB

²²
i(r(I)) //

i(r(m))
// i(r(B))

Plainly, if r(m) is an iso, then m is dense. Conversely, for any mono m, r(j) is an
iso (because r preserves pullbacks, so that r(m) is the pullback of r(m) along the
identity). If we assume that m is an iso, then r(m) = r(m) · r(j) is an iso. ¤



3. Topologies, closure operators and localizations 325

3.4. Categories of fractions. The previous lemma suggests to pay special attention
to the class of arrows inverted by the reflector r : E→ A.

Definition. Let Σ be a class of morphisms in a category E. A category of fractions
of E with respect to Σ is a functor PΣ : E→ E[Σ−1] such that PΣ(s) is an iso for
any s ∈ Σ and which is universal with respect to this property.

Here universal means that if F : E→ A is a functor such that F (s) is an iso for
any s ∈ Σ, then there exists a functor G : E[Σ−1] → A and a natural isomorphism
ϕ : G · PΣ ⇒ F. Moreover, given another functor G′ : E[Σ−1] → A with a natural
isomorphism ϕ′ : G′ · PΣ ⇒ F, there is a unique natural isomorphism ψ : G → G′

such that the following diagram commutes

G · PΣ

ϕ
Á&

FF
FF

FF
FF

FF
FF

FF
FF

ψ·PΣ +3 G′ · PΣ

ϕ′wÄ xxxxxxxx

xxxxxxxx

F

3.5. Calculus of fractions. The category of fractions is characterized, up to equiva-
lence, by its universal property. But its explicit description, and even its existence,
is in general a hard problem. Nevertheless, when the class Σ has a calculus of
fractions, the description of E[Σ−1] becomes quite easy.

Definition. Let Σ be a class of morphisms in a category E. The class Σ has a left
calculus of fractions if the following conditions hold:

1. For any object X ∈ E, the identity 1X ∈ Σ;
2. If s, t ∈ Σ and t · s is defined, then t · s ∈ Σ;
3. Given g, t ∈ E with t ∈ Σ, then there are s, f ∈ E such that s ∈ Σ and

s · g = f · t
D

g //

t

²²

C

s

²²
A

f
// B

4. If t ∈ Σ and f · t = g · t, then there is s ∈ Σ such that s · f = g · s

D
t // A

f //
g

// B
s // C

Lemma. Let Σ be a class of morphisms in a category E. If Σ has a left calculus of
fractions, then PΣ : E→ E[Σ−1] can be described as follows:

- objects of E[Σ−1] are those of E;

- a premorphism A → B in E[Σ−1] is a triple (f, I, s) with A
f // I B

soo

and s ∈ Σ;
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- two parallel premorphisms (f, I, s) and (g, J, t) are equivalent if there exist
i : I → X and j : J → X such that i · f = j · g, i · s = j · t and i · s ∈ Σ; a
morphism is an equivalence class of premorphisms;

- the composite of [f, I, s] and [g, J, t] is given by [g′ · f, K, s′ · t], with g′, s′ any
pair of arrows such that s′ ∈ Σ and g′ · s = s′ · g

K

A
f // I

g′
??ÄÄÄÄÄÄÄÄ
B

soo g // J

s′
__@@@@@@@

C
too

- PΣ : E → E[Σ−1] sends f : A → B into [f, B, 1B ] : A → B. If f ∈ Σ, then
PΣ(f) is invertible, with PΣ(s)−1 = [1B , B, f ].

Proof. We omit the strightforward verification that E[Σ−1] is well-defined and is
a category. As far as the universal property is concerned, with the notations of
Definition 3.4, we have:
- G sends [f, I, s] : A → B into F (s)−1 · F (f) : F (A) → F (B);
- ϕ is given by ϕA = 1F (A) for any A ∈ E;
- ψ is given by ψA = (ϕ′A)−1 for any A ∈ E; its naturality depends on the fact
that [f, I, s] = PΣ(s)−1 · PΣ(f). ¤

Proposition. Let i : A ¿ E : r, r a i be a reflective subcategory of a category E
and let Σ be the class of arrows s of E such that r(s) is an isomorphism. The
comparison functor r′ : E[Σ−1] → A is an equivalence.

Proof. First of all, let us check that Σ has a left calculus of fractions. With the
notations of Definition 3.5, we have:
1) and 2) are obvious;
3) let f = i(r(g)) · i(r(t))−1 · ηA : A → i(r(A)) → i(r(D)) → i(r(C)) and g =
ηC : C → i(r(C));
4) let s = ηB : B → i(r(B)).
Now we can use Lemma 3.5 to check that r′ : E[Σ−1] → A is an equivalence:
- essentially surjective: obvious;
- full: given h : r(A) → r(B) in A, then h = r′[h, i(r(B)), ηB ], where h : A →
i(r(B)) corresponds to h via r a i;
- faithful: let [f, I, s], [g, J, j] : A → B be two arrows in E[Σ−1] and assume they
have the same image under r′, that is r(s)−1 · r(f) = r(t)−1 · r(g). The next
diagram, where σ and τ corresponds to r(s)−1 and r(t)−1 via r a i, shows that
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[f, I, s] = [g, J, j]
I

σ

²²
A

f

;;xxxxxxxxxx

g
##FF

FF
FF

FF
FF

i(r(B)) B

s

ggPPPPPPPPPPPPPPP

t

wwnnnnnnnnnnnnnnn
ηBoo

J

τ

OO

¤

Corollary. Let E be a finitely complete category with strong epi-mono factoriza-
tion. A localization i : A ¿ E : r, r a i is completely determined by the associated
universal closure operator (see Proposition 3.2).

Proof. By the previous proposition, the localization is determined by the class Σ
of arrows inverted by r. By Lemma 3.3, Σ is determined by the closure operator.

¤

3.6. Localizations as categories of fractions. The next exercise allows us to recog-
nize localizations among reflective subcategories using fractions (see also [4, 5]).

Exercise. Consider a reflective subcategory i : A→ E of a finitely complete category
E. The reflector r : E→ A is left exact if and only if the class of morphisms inverted
by r has a right calculus of fractions (a condition dual to that of Definition 3.5).

3.7. Examples of categories of fractions. To end our discussion on categories of
fractions, let us report some examples. They have no relations with the rest of
the chapter and we quote them only to give categories of fractions back to their
natural context, which is homotopy theory (see [20, 31]).

Examples.

1. The homotopy category of Top is equivalent to the category of fractions of
Top with respect to homotopy equivalences.

2. Let R be a commutative ring with unit and let E = Ch(R) be the category of
chain complexes of R-modules. The homotopy category of E is equivalent to
the category of fractions of E with respect to homotopy equivalences.

3. Let E+
c be the subcategory of positive chain complexes which are projective

in each degree. The homotopy category of E+
c is equivalent to the category of

fractions of E+
c with respect to arrows inducing an isomorphism in homology.

3.8. Grothendieck topologies. We take now the crucial step indicated at the be-
ginning of this section: passing from sheaves on a topological space to sheaves
for a Grothendieck topology. Before giving the formal definition of Grothendieck
topology on a small category, let us observe two simple facts about the definition
of sheaf on a topological space (Definition 2.5) which will enlight the next notion:
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1. The notion of sheaf depends on the fact that we require the glueing condition
with respect to all open covers (Ui)i∈I of an open subset U of the topological
space X. In principle, one could select some open covers of U, that is some
families (Ui → U)I of arrows in O(X), and require the glueing condition only
with respect to the selected open covers. In this way, the notion of sheaf would
be meant with respect to the selected system of open covers.

2. On the other hand, there is no restriction in considering only hereditary open
covers, that is open covers (Ui)I containing, together with an open subset Ui,
all its open subsets. In fact, any open cover (Ui)I can be made hereditary (by
adding to each Ui its open subsets) and compatible families on the original
cover are in bijection with compatible families on the new one.

Now we are ready to introduce the notion of Grothendieck topology on a small
category. This notion describes the behaviour of hereditary open covers in a topo-
logical space.

Definition. Let C be a small category. Write C0 for the set of objects of C, and C1

for its set of arrows.

1. If C is an object of C, a sieve on C is a subobject s : S ½ C(−, C) of the
presheaf represented by C. Equivalently, S is a set of arrows with codomain C
such that, if f : X → C is in S and g : Y → X is any arrow, then f · g is in S.

2. A Grothendieck topology on C is a map T : C0 → P(P(C1)) (that is, for each
object C, T (C) is a collection of families of arrows of C) such that:
g1. for each C ∈ C and for each S ∈ T (C), S is a sieve on C;
g2. the total sieve C(−, C) is in T (C);
g3. if S ∈ T (C) and g : D → C is any arrow, then g∗(S) ∈ T (D), where g∗(S)

is the following pullback

g∗(S)

²²

// // C(−, D)

C(−,g)

²²
S // // C(−, C)

g4. if S ∈ T (C) and R is a sieve on C such that g∗(R) is in T (D) for all
g : D → C in S, then R ∈ T (C).

Exercise. Show that, for each X ∈ C,

g∗(S)(X) = {x : X → D | g · x : X → D → C is in S(X)}.

3.9. From universal closure operators to Grothendieck topologies. By Proposition
3.2, we are able to associate with any localization of a presheaf category SetC

op

a universal closure operator on SetC
op

. The next step will involve Grothendieck
topologies on C.
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Proposition. Let C be a small category. Any universal closure operators on SetC
op

induces a Grothendieck topology on C.

Proof. Let C be an object in C. We get a Grothendieck topology T on C in the
following way: a sieve S on C is in T (C) when, regarded as a subobject of C(−, C),
it is dense with respect to the universal closure operator. ¤

The previous construction of a Grothendieck topologies from a universal closure
operators is, in fact, a bijection. This will be explained in Corollary 3.14.

3.10. Sheaves for a Grothendieck topology. It is time to recall the question ad-
dressed at the beginning of this section. Is any localization of a presheaf category
equivalent to a sheaf category? To answer this question, we need an appropriate
notion of sheaf for a Grothendieck topology. The notion of sheaf for a Grothendieck
topology is much like that of sheaf on a topological space (Definition 2.5).

Definition. Let T be a Grothendieck topology on a small category C and consider
a presheaf F : Cop → Set.

1. Consider an object C and a sieve S ∈ T (C). An S-compatible family is a family
of elements (fk ∈ F (K) | k : K → C is in S) such that, for each y : K ′ → K
in C, F (y)(fk) = fk·y.

2. The presheaf F is a T -sheaf if, for each object C ∈ C, for each S ∈ T (C) and
for each S-compatible family (fk)k∈S , there exists a unique f ∈ F (C) such
that F (k)(f) = fk for all k ∈ S.

We write Sh(T ) for the full subcategory of SetC
op

given by T -sheaves. Since
a sieve on C is a subobject of the representable presheaf C(−, C), we can express
the notion of sheaf in a slightly different way.

Exercise. Show that a presheaf F is a T -sheaf iff for each C ∈ C and for each
S ∈ T (C), the inclusion S ½ C(−, C) induces a bijection Nat(C(−, C), F ) '
Nat(S, F ) (where Nat(G,F ) is the set of natural transformation from G to F ).

Theorem. Let T be a Grothendieck topology on a small category C. The full sub-
category Sh(T ) → SetC

op

is a localization.

3.11. Cartesian closed categories. Before giving a sketch of the proof of Theorem
3.10, let us point out two important properties of the category SetC

op

.

Definition. A category E with binary products is cartesian closed if, for any object
X, the functor X×− : E→ E has a right adjoint. When this is the case, we denote
the right adjoint by (−)X : E→ E.

Proposition. Let C be a small category. The category SetC
op

is cartesian closed.

Proof. Consider two presheaves F and G on C. We seek a functor GF : Cop → Set
such that, for any H ∈ SetC

op

, there is a natural bijection Nat(F × H, G) '
Nat(H, GF ). In particular, for H = C(−, X) the previous bijection and the Yoneda
Lemma give GF (X) ' Nat(F × C(−, X), G). We take this as the definition of
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GF and the rest of the proof is routine. (Hint: to check the natural bijection
Nat(F ×H, G) ' Nat(H, GF ) for an arbitrary presheaf H, express H as a colimit
of representable functors as in Proposition 3.27.) ¤

3.12. Subobject classifier. The next important fact is the existence of a subobject
classifier in any presheaf category.

Definition. Let E be a category with finite limits. A subobject classifier is a mono
t : T ½ Ω (T being the terminal object) satisfying the following universal property:
for each mono s : S ½ A, there is a unique arrow ϕs : A → Ω (the characteristic
function of s) such that the following diagram is a pullback

S // s //

²²

A

ϕs

²²
T //

t
// Ω

The terminology comes from the case E = Set, where t : {∗} → {0, 1} : ∗ 7→ 1,
and ϕs is the usual characteristic function: ϕs(a) = 1 iff a ∈ S. As usual, the
subobject classifier is uniquely determined (up to isomorphism) by its universal
property.

Proposition. Let C be a small category. The category SetC
op

has a subobject clas-
sifier.

Proof. If Ω: Cop → Set is the subobject classifier in SetC
op

, there is a natural
bijection {s : S ½ C(−, X)} ' Nat(C(−, X), Ω) ' Ω(X). We take this as the
definition of Ω on objects. It extends to arrows f : Y → X by pullback along
C(−, f). ¤

3.13. Elementary toposes. We can summarize the two previous propositions saying
that, for each small category C, the category SetC

op

is an elementary topos.

Definition. An elementary topos is a finitely complete and cartesian closed category
with a subobject classifier. (See Section 1 in Chapter I for an equivalent definition.)

Not every elementary topos is of the form SetC
op

. For example, the category
of finite sets and arbitrary maps is an elementary topos.

3.14. Lawvere-Tierney topologies. Let us now explain the interest of the notion
of subobject classifier in sheaf theory.

Definition. Let t : T ½ Ω be the subobject classifier of an elementary topos E. A
Lawvere-Tierney topology is an arrow j : Ω → Ω such that the following equations
hold:
lt1. j · t = t ;
lt2. j · j = j ;
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lt3. ∧ · (j × j) = j · ∧ (where ∧ : Ω × Ω → Ω is the characteristic function of the
diagonal < t, t > : T ½ Ω× Ω).

Example. Let 0 be the initial object of an elementary topos E (see 3.22 for the
existence of finite colimits in an elementary topos) and let f : T ½ Ω be the
characteristic function of 0 ½ T (which is a mono because 0 is strict, see Example
4.1.7 and Exercise 4.2.4). Let ¬ : Ω → Ω be the characteristic function of f : T ½
Ω. The “double negation” ¬¬ : Ω → Ω is a Lawvere-Tierney topology.

Proposition. Let E be an elementary topos. There is a bijection between Lawvere-
Tierney topologies on E and universal closure operators on E.

Proof. Consider a universal closure operator ( ) on E and take the closure t : T ½
Ω of the subobject classifier. The characteristic function j : Ω → Ω of t is a
Lawvere-Tierney topology.
Conversely, consider a Lawvere-Tierney topology j : Ω → Ω and a mono s : S ½ A.
We take as closure s : S ½ A the pullback of t : T ½ Ω along j ·ϕs : A → Ω, where
ϕs is the characteristic function of s. ¤

Corollary. Let C be a small category. There is a bijection between:
1. universal closure operators on SetC

op

2. Lawvere-Tierney topologies on SetC
op

3. Grothendieck topologies on C.

Proof. The correspondence between the Grothendieck topologies T on C and
the Lawvere-Tierney topologies j on SetC

op

is described by the following pullback
diagram in SetC

op

T // //

²²

Ω

j

²²
T //

t
// Ω

In fact, the Grothendieck topology T is a special subobject of Ω, and the corre-
sponding Lawvere-Tierney topology j is its characteristic function. ¤

3.15. Sheaves for a Lawvere-Tierney topology. Thanks to the previous proposition,
we can define the notion of j-sheaf, where j is a Lawvere-Tierney topology on an
elementary topos E. We say that a mono is j-dense (j-closed) if it is dense (closed)
with respect to the universal closure operator corresponding to the topology j.

Definition. Let j be a Lawvere-Tierney topology on an elementary topos E. An
object F ∈ E is a j-sheaf if every j-dense mono s : S ½ A induces, by composition,
a bijection E(A,F ) ' E(S, F ).

We write Sh(j) for the full subcategory of E of j-sheaves. When the elementary
topos is of the form SetC

op

, there is no ambiguity in the notion of sheaf. Indeed,
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using Exercise 3.10, one can check that, under the bijection of Corollary 3.14,
T -sheaves correspond exactly to j-sheaves.

3.16. Sheaves are precisely localizations. We finally arrive to a more general form
of Theorem 3.10.

Theorem. Let j be a Lawvere-Tierney topology on an elementary topos E. The full
subcategory Sh(j) → E is a localization.

We limit ourselves to the construction of the left adjoint, even though proving
that it is left exact is far from being trivial. (The difficult part is the preservation
of equalizers. As far as binary products are concerned, see point 4 of the next
exercise.) To construct the reflector r : E→ Sh(j), the existence of cokernel pairs
in E is required. In the case of our main interest, that is when E is a presheaf
category, the existence of colimits is obvious (they are computed point-wise in
Set). Even in the case of an elementary topos it is possible to prove that finite
colimits exist. We will see this in 3.22. Take an object A in E and the arrow
πA : ΩA → (Ωj)A, where

Ω
π // // Ωj // ω // Ω

is the factorization of the idempotent j : Ω → Ω through the equalizer ω of j
and the identity on Ω. Consider the diagonal ∆A : A ½ A × A, its characteristic
function =A : A×A → Ω and the arrow {−}A : A → ΩA corresponding to =A by
cartesian closedness. Finally, consider the equalizer i : I ½ (Ωj)A of the cokernel
pair of πA · {−}A : A → (Ωj)A. We define r(A) = I, where i : I ½ (Ωj)A is the
closure of i with respect to the universal closure operator on E associated to the
topology j. The fact that I is a j-sheaf follows from the next exercise.

Exercise. Let j be a Lawvere-Tierney topology on an elementary topos E.

1. Ωj is a j-sheaf.
2. If F is a j-sheaf, then FX is a j-sheaf for each X.
3. If F is a j-sheaf and i : I ½ F is a mono, then I is a j-sheaf iff i is j-closed.
4. Let F be a j-sheaf and consider two objects A and B in E. Using point 2 and

the cartesian closedness of E, show that there is a natural bijection

Sh(j)(r(A)× r(B), F ) ' Sh(j)(r(A×B), F ) .

Deduce that r : E→ Sh(j) preserves binary products.

3.17. Classification of localizations. The previous theorem allows us to close the cir-
cle localizations 7→ universal closure operators 7→ topologies. Indeed, going through
all the various constructions described in this section, we are now able to state the
following theorem.

Theorem.

1. Let E be an elementary topos. There is a bijection between localizations of E
and Lawvere-Tierney topologies on E.
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2. Let C be a small category. There is a bijection between localizations of SetC
op

and Grothendieck topologies on C.

In other words, any localization of a presheaf category (more generally, of an
elementary topos) is a category of sheaves. A category of the form Sh(T ), for T
a Grothendieck topology on a small category, is called a Grothendieck topos. We
can summarize the situation for Grothendieck toposes by saying that:

- Grothendieck toposes are exactly the localizations of presheaf categories;
- Each localization of a Grothendieck topos is still a Grothendieck topos.

The first statement has no analogue for elementary toposes. On the other hand,
the second statement also holds for elementary toposes.

- Each localization of an elementary topos is still an elementary topos.

Since we know that any localization of an elementary topos E is of the form
Sh(j) for j a Lawvere-Tierney topology on E, it suffices to prove that Sh(j) is an
elementary topos. By Exercise 3.16.2, cartesian closedness passes from E to Sh(j).
As far as the subobject classifier is concerned, observe that, since j · t = t, t factors
through ω : Ωj ½ Ω. Again by Exercise 3.16.3, this factorization tj : T ½ Ωj

classifies subobjects in Sh(j).

Exercise. Since any localization of an elementary topos is an elementary topos,
and since any presheaf category is an elementary topos, any Grothendieck topos is
an elementary topos. In particular, if X is a topological space, the category Sh(X)
is an elementary topos. Show that, in Sh(X), the subobject classifier is the sheaf
O : O(X)op → Set described in Exercise 2.6.4.

3.18. Back to topological spaces. As an exercise, let us specialize some of the
notions introduced in this section to the canonical localization

Sh(X) → SetO(X)op

of Section 2 (Theorem 2.13).
If V is an open subset of the topological space X,

↓ V = {V ′ ∈ O(X) | V ′ ⊆ V }
is a sieve. A principal sieve is a sieve of the form ↓ V for some V ∈ O(X).

1. We already know that the subobject classifier in Sh(X) is

O : O(X)op → Set O(U) = {V ∈ O(X) | V ⊆ U} .

In terms of sieves, O can be described in the following way:

O(U) = { principal sieves on U} .

2. The subobject classifier in SetO(X)op

is

Ω: O(X)op → Set Ω(U) = { sieves on U} .
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3. The Lawvere-Tierney topology j : Ω → Ω associated to the canonical localiza-
tion is given by

jU : Ω(U) → Ω(U) jU (S) = ↓ (∪{V ∈ S}) .

Clearly, the image Ωj of j : Ω → Ω is O.
4. The Grothendieck topology T onO(X) associated to the canonical localization

is obtained taking as covering sieves on an open subset U those sieves S such
that U = ∪{V ∈ S} .

3.19. Locales. The category of sheaves on a topological space is called a spatial
topos. A natural question is if a localization of a spatial topos is again a spatial
topos. The answer is negative. Before giving an explicit counterexample, let us
recall some basic facts from Chapter II, where the theory of locales is developed.

If L is a locale, we write Pt(L) for its spectrum, which is a topological space
(II.1.4). If X is a topological space and O(X) is the locale of its open subsets, X
in general is not homeomorphic to Pt(O(X)) (which is the free sober space on X),
but O(X) and O(Pt(O(X))) are isomorphic as locales (II.1.6).

The definition of sheaf on a topological space plainly transposes to the case of
a locale. We write Sh(L) for the topos of sheaves on a locale L. In this way, if X
is a topological space, Sh(X) ' Sh(O(X)). (Basically, the whole Section 2 can
be translated in terms of locales, see [6].) As for spaces, if L is a locale, then the
presheaf

Ω: Lop → Set Ω(u) = {w ∈ L | w ≤ u}
is a sheaf, and it is the subobject classifier in Sh(L). Moreover, L is isomorphic to
Sh(L)(T, Ω) (where T is the terminal object). This implies that two locales having
equivalent categories of sheaves are isomorphic.

Finally, an element u of a locale L is called regular if ¬¬u = u (the negation
¬u is denoted uc and called also pseudo-complement in Sections I.3 and II.1). The
subset of regular elements of a locale L is a complete Boolean algebra (II.2.13).

3.20. A counterexample. Let us sketch now the announced counterexample about
spatial toposes. Let R be the real line with its usual topology and consider the
double negation topology ¬¬ in the topos Sh(R) (Example 3.14). The topos E of
¬¬-sheaves is equivalent to the category of sheaves on the Boolean algebra R of
regular open subsets of R. Assume that E is a spatial topos, say E = Sh(X) for
some topological space X. Then R should be isomorphic to O(X) and then also
to O(Pt(R)). But this is impossible because Pt(R) is the empty space, whereas
all the open intervals are in R (see II.2.13 in [6] for more details).

3.21. Localic toposes. To end our détour through locales, let us give a glance at
two further results concerning localic toposes, that is toposes of the form Sh(L)
for L a locale.
1. We have just seen that a localization of a spatial topos is not necessarily

spatial. This problem disappears using localic toposes, in the sense that
- a localization of a localic topos is a localic topos.
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Moreover, the fact that a localization of a spatial topos is not necessarily
spatial can be related to the fact, proved in II.2.14, that a sublocale of a
spatial locale (that is, a locale of the form O(X) for X a topological space) is
not necessarily spatial.

2. A geometric morphism F : A→ B is a functor F with a left exact left adjoint.
If X and Y are topological spaces, any continuous function f : Y → X induces
a geometric morphism Sh(Y ) → Sh(X) (which is a localization if f is the in-
clusion of an open subset), but the converse is not true. On the contrary, given
two localic toposes Sh(L) and Sh(L′), there is a bijection between geometric
morphisms Sh(L) → Sh(L′) and morphisms of locales L → L′.

3.22. Colimits in an elementary topos. In the proof of Theorem 3.16, to construct
the reflector r : E → Sh(j) we have used that the elementary topos E has finite
colimits. The existence of finite colimits in an elementary topos is a problem strictly
related to monadic functors studied in Chapter V.

Observe that cartesian closedness for an elementary topos E induces, for any
object Y, a functor Y (−) : Eop → E. Indeed, given f : X → Z, we take as Y f : Y Z →
Y X the arrow corresponding, by cartesian closedness, to the composite

εY · (f × 1) : X × Y Z → Z × Y Z → Y ,

where εY is the counit at Y for the adjunction Z×− a (−)Z . If we take Y = Ω, we
get a functor Ω(−) : Eop → E. The non trivial fact is that Ω(−) is monadic. This
implies that Eop has finite limits (because E has finite limits), that is, E has finite
colimits.

Let us sketch the proof that Ω(−) : Eop → E is monadic. We use, for this,
Theorem V.2.4. The left adjoint is provided by Ω(−) : E → Eop. Now, observe
that in an elementary topos, every mono is regular (indeed, a mono s : S ½ A
is the equalizer of ϕs : A → Ω and t·! · ϕs : A → Ω → T → Ω). To prove that
Ω(−) : Eop → E reflects isomorphisms, it suffices now to prove that it reflects epis
and monos, and for this we only need to show that it is faithful. But this last fact
follows directly from an inspection of the following diagram

X
f //
g

//

<1,f>

²²
<1,g>

²²

Z

∆Z

²²

// T

t

²²
X × Z

f×1 //
g×1

// Z × Z =Z

// Ω

To check the last condition of Theorem V.2.4, we use Beck’s condition:

- if the left hand square is a pullback and f is a mono, then the right hand square
commutes
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Z
h //

k

²²

X

f

²²

ΩZ

k̂
²²

ΩX
Ωh

oo

f̂

²²
V g

// Y ΩV ΩY
Ωg

oo

(where f̂ corresponds, by cartesian closedness, to the characteristic function of

(f × 1) · eX : ∈X½ X × ΩX ½ Y × ΩX ,

with eX : ∈X½ X × ΩX the mono classified by the counit εΩ : X × ΩX → Ω).
Consider now two arrows f, g : X → Y with a common retraction, and consider
also their equalizer e : E → X. Then

ΩY Ωf
//

Ωg
//
ΩX

f̂oo

Ωe
// ΩE

êoo

is a split coequalizer (to check the equation Ωg · f̂ = ê ·Ωe, apply Beck’s condition
to the pullback of f along g, which is nothing but E).

3.23. Regular projective covers [14]. In our analysis of Giraud’s Theorem charac-
terizing localizations of presheaf categories (Section 4), we will use that a presheaf
category has enough regular projective objects (see below). With this example in
mind, we study now universal closure operators in the special case of regular cat-
egories with enough regular projective objects (even if the most general result on
localizations, which is part 1 of Theorem 3.17, does not involve regular projective
objects). Our aim here is to show that universal closure operators on a regular cat-
egory with enough regular projective objects are classified by suitable structures
(called pretopologies) defined on regular projectives.

From Chapter IV, recall that a category is regular if it is finitely complete, has
regular epi-mono factorizations, and regular epis are pullback stable. Recall also
that in any regular category, strong epis coincide with regular epis. An object P
of a category E is regular projective if the functor E(P,−) : E → Set preserves
regular epis (which, in Set, are nothing but surjections). We say that a category
has enough regular projectives if for any object X there is a regular epi x : P ³ X
with P regular projective. In this case, we say that X is a quotient of P and P is
a regular projective cover of X.
Finally, a regular projective cover of a category E is a full subcategory P such that

- each object of P is regular projective in E;
- each object of E has a P-cover, that is a regular projective cover in P.

Clearly, a category E has enough regular projectives iff it has a regular projective
cover, but a regular projective cover can be strictly smaller than the full subcate-
gory of all regular projectives.
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Example. In the context of presheaf categories, the relevant example of regular
projective cover will be described in 3.27 and 3.28. Let us mention here another
example, exploited in Chapter VI to study algebraic categories and their local-
izations. If A is an algebraic category (more generally, a monadic category over a
power of Set), its full subcategory of free algebras is a regular projective cover.
Indeed, free algebras are regular projective objects, and each algebra is a quotient
of a free one.

Lemma. If P is a regular projective cover of a finitely complete category E, then P
has weak finite limits.

(A weak limit is defined as a limit, except that one requires only the existence of a
factorization, not its uniqueness. A functor can have several non isomorphic weak
limits. For example, every non empty set is a weak terminal object in Set.)
Proof. Take the limit in E and cover it with an object of P. ¤

3.24. J -closed arrows. We present the axioms which will bring to the definition
of J -closed arrow first, and then to the definition of pretopology. Weak limits are
required in this context.

Let P be a category with weak pullbacks. Write P0 for the class of objects of P,
and P1 for its class of arrows. Consider a map J : P0 → P(P1) (that is, for each
object X ∈ P, J (X) is a collection of arrows in P) such that:

p0. if f ∈ J (X), then X is the codomain of f ;
p1. if f : Y → X is a split epi (i.e. there is s such that f ·s = 1X), then f ∈ J (X);
p2. consider two arrows f and g and a weak pullback (1); if g ∈ J (X), then

f∗(g) ∈ J (Y )

W
g∗(f) //

f∗(g)

²²

Z

g

²²
Y

f
// X

(1)

p3. consider two arrows g : Z → Y and f : Y → X; if f ·g ∈ J (X), then f ∈ J (X);
p4. consider two arrows g : Z → Y and f : Y → X; if g ∈ J (Y ) and f ∈ J (X),

then f · g ∈ J (X).

The next exercise will be useful to complete the proof of Proposition 3.26.

Exercise. Let J : P0 → P(P1) be as before.

1. Show that condition p2 is equivalent to:
p2’. consider two arrows f and g as in p2 and assume that g ∈ J (X); then

there exists a weak pullback (1) such that f∗(g) ∈ J (Y ).
2. Consider an arrow g : Z → X; show that if there is an arrow f ∈ J (X) and a

weak pullback (1) such that f∗(g) ∈ J (Y ), then g ∈ J (X).



338 VII. Sheaf Theory

Definition. Let P be a category with weak pullbacks and J : P0 → P(P1) as before.
An arrow h is J -closed if, for every commutative square as below

W
k //

g

²²

X

h

²²
Z

f
// Y,

if g ∈ J (Z) then f factors through h.

Lemma. J -closed arrows are stable under weak pullbacks.

3.25. Pretopologies [43, 44]. We are able now to formulate the proper notion of
pretopology.

Definition. Let P be a category with weak pullbacks. A pretopology on P is a map
J : P0 → P(P1) satisfying conditions p0, p1, p2, p3 and p4, stated in 3.24, and
the following condition:

p5. for any arrow f : Y → X, there exist an arrow g : A → B in J (B) and a
J -closed arrow h : B → X such that f factors through h · g and h · g factors
through f

Y

f

²²

//
A

g

²²

oo

X B
h

oo

3.26. Regular projective covers and pretopologies. The interest of regular projec-
tive covers and pretopologies in the study of universal closure operators is attested
by the next proposition.

Proposition. Let E be a regular category and P a regular projective cover of E.
There is a bijection between universal closure operators on E and pretopologies on
P.

Proof. Let us start with a universal closure operator ( ) on E, as in Definition
3.1. We define a pretopology J on P in the following way: for each X ∈ P, an
arrow h : Y → X of P is in J (X) when its image (in E) is a dense subobject
of X. It is quite easy to check conditions p1, p2, p3 and p4 (see 3.24), so let us
focalise on condition p5: we use part 1 of the next exercise (recall that a subobject
is closed with respect to ( ) if it is equal to its closure). Given an arrow f in P,
take its regular epi-mono factorization f = m · e. Consider the following diagram,
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where the mono a is given by condition c1 in Definition 3.1, the two squares are
pullbacks, W is a P-cover of I and Z is a P-cover of V

Z
z // // V

d
²²²²

l // // A // b //

c
²²²²

W

w
²²²²

X e
// // I // a //

//
m

//I // m // Y

With the notations of condition p5, put g = b · l · z and h = m ·w. Since a is dense
(by universality of the operator), also b is dense, so that g ∈ J (W ); moreover (by
the next exercise) h is J -closed because m is closed. The arrow d shows that h · g
factors through f. Conversely, since d ·z is a regular epi between regular projective
objects, it has a section which shows that f factors through h · g.
Consider now a pretopology J on P and an object X ∈ E. We need a natural
closure operator ( ) : SubE(X) → SubE(X). We assume first that X ∈ P and we
define the operator in the following way: given a mono m : I ½ X, take a P-cover
e : Y ³ I. Now, condition p5 in Definition 3.25 gives g : A → B in J (B) and
h : B → X J -closed such that f = m · e factors through h · g and h · g factors
through f. We take as m the mono part of the factorization of h. If X is an
arbitrary object in E and m : I ½ X is a mono, to define m consider a P-cover
x : X ′ ³ X, the pullback x∗(m) of m along x, and its closure x∗(m) defined as
before (X ′ is in P). We take as m the mono part of the factorization of x · x∗(m).
To check that this definition does not depend on the chosen P-cover is easy. What
is more subtle is to prove that the axioms of universal closure operator still work
when we replace a regular projective object by an arbitrary one. In particular, to
prove condition c4, one has to use Barr-Kock Theorem for regular categories (see
2.17 in Chapter IV). Finally, to prove that the two constructions just described
are one the inverse of the other, one uses part 2 of the next exercise. ¤

Exercise. Let P be a regular projective cover of a regular category E. Consider an
arrow h : Y → X in P and its factorization h = m · e in E.

1. Let ( ) be a universal closure operator on E. Show that m is closed with
respect to ( ) iff h is J -closed (Definition 3.24), where J is the pretopology
on P induced by ( ).

2. Let J be a pretopology on P. Show that h ∈ J (X) iff m is dense with respect
to the universal closure operator on E induced by J .

3.27. Regular projective presheaves. To end this section, we specialize Proposition
3.26 to the case of presheaf categories. Indeed, a presheaf category is regular and
has a regular projective cover, as explained in the next proposition.

Proposition. Let C be a small category. The category of presheaves SetC
op

is reg-
ular and its full subcategory of coproducts of representable presheaves is a regular
projective cover.
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Proof. The regularity follows from that of Set. By Yoneda Lemma, each repre-
sentable presheaf is regular projective. Moreover, in any category, a coproduct of
regular projectives is regular projective. Now, any presheaf F is the colimit of

C/F
UF // C Y // SetC

op

(where C/F is the comma category of arrows C(−, C) ⇒ F, UF is the obvious
forgetful functor and Y is the Yoneda embedding) and then it is a quotient of a
coproduct of representable presheaves. ¤

3.28. The coproduct completion [11, 14]. The regular projective cover of SetC
op

given in the previous proposition can be described directly from C via a universal
property. Consider the following category, which we denote by FamC :

- An object of FamC is a functor f : I → C, where I is a small set regarded as
a discrete category. Sometimes we write (I, f) for such an object.

- An arrow (a, α) : (I, f) → (J, g) is a functor a : I → J together with a natural
transformation α : f ⇒ g · a. Explicitly, α is a family of arrows in C of the
form {αi : f(i) → g(a(i))}i∈I .

- There is a full and faithful functor η : C → FamC which sends an object
X ∈ C to the functor X : {∗} → C, ∗ 7→ X.

Proposition. Let C be a (not necessarily small) category. The functor η : C →
FamC is the coproduct completion of C. This means:
1. The category FamC has small coproducts,
2. For each category B with small coproducts, composition with η induces an

equivalence from the category of coproduct preserving functors from FamC to
B, to the category of functors from C to B.

Proof. Given F : C → B, its extension F ′ : FamC → B along η sends (I, f) into
the coproduct

∐
I F (f(i)) in B, and extends to arrows via the universal property of

the coproduct. The essential uniqueness of F ′ follows from the fact that an object
(I, f) of FamC is the coproduct of the η(f(i))’s. ¤

The category FamC provides the external description of the regular projective
cover of SetC

op

described in Proposition 3.27. We state this fact in the next lemma,
which will be used also in the proof of Giraud’s Theorem (Section 4).

Lemma. Let C be a small category. Its coproduct completion FamC is equivalent
to the full subcategory of SetC

op

spanned by coproducts of representable presheaves.

Since FamC is a regular projective cover of SetC
op

, we know that it has weak
finite limits (Lemma 3.23). The existence of limits in FamC has been studied
in [32]. Categories of the form FamC are studied also in [7] in connection with
categorical Galois theory.

The next corollary represents the last step of this section. In the case of a
presheaf category SetC

op

, the regular projective cover FamC is generated by the
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representable presheaves, and a pretopology on FamC can be entirely described
looking at the generators. In this way, we rediscover the notion of Grothendieck
topology.

Corollary. Let C be a small category. There is a bijection between pretopologies on
FamC and Grothendieck topologies on C.

Proof. Even if it follows from Corollary 3.14 and Proposition 3.26, it is worth-
while to construct explicitly the bijection between pretopologies and Grothendieck
topologies. Before starting, let us point out a simple fact which might help to un-
derstand the relation between these two notions. Given a sieve S ½ C(−, C), there
is a canonical arrow

σ :
∐

f∈S(X),X∈C
C(−, X) −→ C(−, C)

and we can get S back as the image of σ.
Now, given a pretopology J on FamC, consider an object C in C and its image
η(C) in FamC. Then, J (η(C)) is a collection of arrows in FamC with codomain
η(C). In fact, an arrow (b, β) : (J, g) → η(C) in FamC is nothing but a family of
arrows {βj : g(j) → C}j∈J in C. From such a family, we can construct the corre-
sponding arrow in SetC

op

and we can consider its regular epi-mono factorization
∐

J C(−, g(j))
β //

&& &&MMMMMMMMMM
C(−, C)

S
;;

;;vvvvvvvvv

We get a Grothendieck topology taking, as T (C), all the sieves S ½ C(−, C)
arising in this way from an arrow (b, β) : (J, g) → η(C) in J (η(C)).
Conversely, consider a Grothendieck topology T on C. For every sieve S ∈ T (C),
we can consider all the FamC-covers of S. Composing with S ½ C(−, C), each
FamC-cover gives an arrow in FamC with codomain η(C). We take, as J (η(C)),
all the arrows in FamC arising in this way from the sieves in T (C). Doing so,
we have defined J on objects of FamC coming from C, which means of the form
η(C), and it remains to extend J to arbitrary objects of FamC. To provide such
an extension, we will use the fact that any object of FamC can be regarded in
a unique way as a coproduct of objects coming from C, together with the fact
that FamC is an extensive category. Extensive categories are the main subject of
Section 4, so we suspend the proof at this stage to come back to this problem in
4.4, when the notion of extensivity will have been approached. ¤

4. Extensive categories

In Section 2, we have seen that the category of sheaves on a topological space is a
localization of the category of presheaves. In Section 3, we have seen how to relax
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the notion of topological space so that arbitrary localizations of presheaf categories
can be interpreted as categories of sheaves. The question we want to answer in this
last section is if it is possible to recognize categories of sheaves for a Grothendieck
topology from a purely categorical point of view. In other words, we look for a
characterization theorem for categories of sheaves (equivalently, for localizations
of presheaf categories).

Let us start with some necessary conditions. We have already observed that
any category of the form SetC

op

, for C a small category, is regular. Even more is
true: SetC

op

is an exact category (see Chapters IV and VI), that is equivalence
relations are effective (once again, this follows from the exactness of Set, because
limits and colimits of SetC

op

are computed pointwisely in Set). Since exactness is
preserved by localizations, every Grothendieck topos is an exact category. But this
cannot be enough to characterize Grothendieck toposes. For example, any monadic
category over a power of Set is exact (and this is one of the main ingredients
of the characterization of algebraic categories as given in Chapter VI) and any
elementary topos is exact. What make the difference between “algebra” (in the
sense of monadic categories over powers of Set) and “topology” (in the sense
of sheaf categories) is the behaviour of coproducts. Coproducts are disjoint and
universal in Set, in categories of variable sets and in their localizations (but the
same properties do not hold for groups, for instance).

4.1. Extensive and lextensive categories [11]. Let us recall the most elegant for-
mulation of disjointness and universality of coproducts.

Definition.

1. A category A with coproducts is extensive when, for each small family of ob-
jects (Xi)i∈I , the canonical functor

∐
:

∏
I(A/Xi) −→ A/

∐
I Xi is an equiv-

alence.
2. A category is lextensive if it is extensive and has finite limits.

A warning: in [11], as well as in III.2.6, only the finitary version of extensive
and lextensive categories is considered, that is, the previous condition is required
for finite, instead of small, coproducts. With the exception of Example 4.1.7, we
always deal with small coproducts.

Examples.

1. Any localization of a lextensive category is lextensive;
2. Set and Top are lextensive categories;
3. For each small category C, SetC

op

is lextensive;
4. If A is pointed and extensive, then it is trivial;
5. The homotopy category of Top is extensive, but not lextensive;
6. For any category C, FamC is extensive (but, in general, it is not lextensive);
7. An elementary topos is lextensive (here, replace small coproducts by finite

coproducts).
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4.2. More on extensive categories. Since the notion of extensivity is crucial in
the rest of this chapter, we give now, in the form of exercises, some equivalent
formulations or consequences of it. We call injections the canonical arrows Xi →∐

I Xi into the coproduct.

Exercises.

1. A category with coproducts is extensive if and only if it has pullbacks along
injections and the following two conditions hold:
e1. given a family of arrows (fi : Yi → Xi)I , for all i ∈ I the following square

is a pullback

Yi
//

fi

²²

∐
I Yi`

I fi

²²
Xi

// ∐
I Xi

e2. (coproducts are universal) given an arrow f : Y → ∐
I Xi and, for any

i ∈ I, the pullback

Yi
//

²²

Y

f

²²
Xi

// ∐
I Xi

then the comparison morphism
∐

I Yi → Y is an isomorphism.
2. A category with coproducts is extensive if and only if it has pullbacks along

injections and the following two conditions hold:
e2. coproducts are universal;
e3. (coproducts are disjoint) given a family of objects (Xi)I , for each i, j ∈ I,

i 6= j, the following square (where 0 is the initial object) is a pullback

0 //

²²

Xj

²²
Xi

// ∐
I Xi

3. Consider a category with coproducts and finite limits. The following conditions
are equivalent:
e2. coproducts are universal;
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e2’. if, for all i ∈ I, the left hand square is a pullback, then the right hand
square is also a pullback

Pi
//

²²

Xi

²²

∐
I Pi

//

²²

∐
I Xi

²²∐
I Xi

²²

A // B

A // B

e2”. (a) the canonical arrow
∐

I(X ×Xi) → X × (
∐

I Xi) is an isomorphism
(a category with coproducts and binary products which satisfies this
conditions is called distributive),

(b) if, for all i ∈ I, Ei → Xi ⇒ Y is an equalizer, then
∐

I Ei →
∐

I Xi ⇒
Y is an equalizer as well.

4. In an extensive category, injections are monos and the initial object is strict
(that is, every arrow X → 0 is an isomorphism).

5. In a distributive category, injections are monos and the initial object is strict.

4.3. Lextensive categories as pseudo-algebras [46]. We have already remarked that
the coproduct completion FamA of any category A is extensive. Moreover, we can
use this completion to give an elegant characterization of extensivity. Assume A
has coproducts. By the universal property of η : A → FamA, we can extend the
identity functor on A to a coproduct preserving functor Σ: FamA → A (which
happens to be left adjoint to η).

Proposition. Let A be a category with coproducts and finite limits. A is lextensive
if and only if Σ: FamA→ A preserves finite limits.

The easy proof uses the explicit description of finite limits in FamA, which are
inherited from those in A. In particular, the statement can be refined saying that
A is distributive iff Σ preserves binary products.

The previous proposition can be incorporated in an elegant “2-dimensional”
presentation of lextensive categories. Although it will not be used in the rest of
the chapter, we recall it here, because it represents another interesting link with
monadic functors, studied in Chapter V. Both the Fam construction and the Lex
(finite limit completion) construction give rise to pseudo-monads Fam : CAT →
CAT and Lex : CAT → CAT (where CAT is the 2-category of categories and
functors). In fact, Fam is a KZ-doctrine and Lex is a coKZ-doctrine over CAT
and the two are related by a distributive law of Lex over Fam, so that we can
consider the lifting F̂ am of Fam to the 2-category CATLex of Lex-pseudo-algebras
(which are nothing but finitely complete categories and left exact functors). Now,
the previous proposition, together with the adjunction Σ a η, essentially means
that the 2-category of lextensive categories and functors preserving coproducts
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and finite limits is bi-equivalent to the 2-category of F̂ am-pseudo-algebras. More
on KZ-doctrines and distributive laws for pseudo-monads can be found in [36, 42].

4.4. Back to pretopologies. Let us come back now to the problem pointed out at the
end of the proof of Corollary 3.28, that is how to construct a pretopology on FamC
starting from its values on the objects of C. We consider the problem in terms of
the associated universal closure operator on SetC

op

. Consider a universal closure
operator ( ) on A = SetC

op

(or on any other lextensive category A). Given a family
of objects (Ai)I in A, we have a canonical bijection Sub(

∐
I Ai) '

∏
I Sub(Ai).

Moreover, for any i ∈ I, the universality of the operator implies that the following
diagram commutes

∏
I Sub(Ai) ' Sub(

∐
I Ai)

( ) //

²²

Sub(
∐

I Ai) '
∏

I Sub(Ai)

²²
Sub(Ai)

( ) // Sub(Ai)

In other words, the knowledge of the operator on the Ai’s forces its definition on∐
I Ai. If, moreover, A is regular, then the factorization of a coproduct of arrows

is the coproduct of the various factorizations. The previous argument implies then
that a subobject of

∐
I Ai is dense iff the corresponding subobjects of the Ai’s are

dense (compare with III.7.5). Translated in terms of the pretopology J on FamC,
this means that an arrow h is in J (

∐
I η(Xi)) iff each hi is in J (η(Xi)), where hi

is the pullback of h along the injection η(Xi) →
∐

I η(Xi).

4.5. Generators. Now that we have the notion of extensive category, we can
come back to the problem of characterizing Grothendieck toposes. We already
know that any localization of a presheaf category is exact and extensive. The last
ingredient to get such a characterization (the ingredient which essentially makes
the difference from elementary toposes) is given by representable presheaves. If C
is a small category, it embeds into SetC

op

via the Yoneda embedding. In view of
the characterization theorem, the important property of representable presheaves
is encoded in the next definition. (A notation: if S is a set and G is an object of a
category, S ◦G is the S-indexed copower of G.)

Definition. A set of objects G of a category A is a small generator if, for each object
A ∈ A, the following conditions hold:
1. the coproduct

∐
G∈G A(G,A) ◦G exists;

2. the canonical arrow a :
∐

G∈G A(G,A) ◦G → A is an epi.

Observe that the second condition in the previous definition can be equivalently
stated saying that two parallel arrows x, y : A → A′ are equal iff x · f = y · f for
all f ∈ A(G,A) and for all G ∈ G. This formulation does not require the existence
of coproducts.

A glance at the proof of Proposition 3.27 shows that, if C is a small category, the
representable presheaves (C(−, X))X∈C are a small generator for SetC

op

. Moreover,
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if G is a small generator for a category E and A is a reflective subcategory of E,
with reflector r : E→ A, then {r(G) | G ∈ G} is a small generator for A.

4.6. Characterization of Grothendieck toposes. We are finally ready to state a
semantical characterization of Grothendieck toposes.

Theorem. Let A be a category. The following conditions are equivalent:

1. A is equivalent to a localization of a presheaf category;
2. A is exact, extensive, and has a small generator.

We already know that condition 1 implies condition 2. To prove the converse
is less easy. Let us mention in advance our plan. (All notions not yet introduced
will be explained at the right moment.)
Step 1: Given G a small generator for A, we consider the full subcategory C of A
spanned by the objects of G. We have a full and faithful functor

A(−,−) : A→ SetC
op

A 7→ A(−, A) ∈ SetC
op

Step 2: We get a left adjoint r a A(−,−) considering the left Kan extension of the
full inclusion i : C→ A along the Yoneda embedding Y : C→ SetC

op

.
Step 3: We split the construction of r into two steps. First we consider the extension
i′ : FamC → A of i along the completion η : C → FamC, and then the extension
i′′ : SetC

op → A of i′ along the embedding FamC→ SetC
op

.
Step 4: We explain that r = i′′ is left exact iff i′ is left covering iff i is filtering.
Step 5: We check that i is filtering, so that

A
A(−,−)

// SetC
oproo

is equivalent to a localization.

4.7. Step 1.1: calculus of relations [12, 19]. The next lemma provides the occasion
to introduce the calculus of relations, an interesting tool available in any regular
category.

Lemma. Let A be an exact and extensive category.

1. In A cokernel pairs of monos exist and are pullbacks.
2. In A every mono is regular.
3. In A every epi is regular.

Proof. By point 1, any mono is the equalizer of its cokernel pair. This proves point
2. In any category with regular epi-mono factorization, if every mono is regular,
then every epi is regular. It remains to prove point 1. This can be done using the
calculus of relations. Let us sketch the argument (see also I.1.5).
The category Rel(A) has the same objects as A. An arrow R : X ( Y in Rel(A)

is a relation X R
r0oo r1 // Y , that is a mono (r0, r1) : R ½ X × Y. Given
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two relations X R
r0oo r1 // Y S

s0oo s1 // Z , their composition is defined
by taking first the pullback

P

s′0
²²

r′1 // S

s0

²²
R r1

// Y

and then the image of (r0 ·s′0, s1 ·r′1) : P → X×Z. The identity on X is the diagonal
∆X : X ½ X × X and the associativity of the composition is equivalent to the
fact that regular epis are pullback stable. If (r0, r1) : R ½ X × Y is a relation,
the opposite relation is defined to be (r0, r1)◦ = (r1, r0) : R ½ Y ×X. This gives
an involution on Rel(A). The category A can be seen as a non-full subcategory
of Rel(A) identifying an arrow f : X → Y with its graph (1X , f) : X ½ X × Y.
Using coproducts in A, we can define the union of two subobjects (and then of
two relations) as the image of their coproduct

S
∐

R Roo

²²

S
∐

R // // S ∪R // // X

S //

OO

X

Moreover, a relation R : X1

∐
Y1 ( X2

∐
Y2 is determined by a matrix R = (Rij)

of four relations Rij : Xi ( Yj (here we are using the distributivity in A). Now,
consider a mono i : A ½ X and an arbitrary arrow f : A → Y. The pushout of i
and f is given by the quotient of X

∐
Y with respect to the equivalence relation

(
∆X ∪R◦ ·R R

R◦ ∆Y ∪R ·R◦
)

where R : X ( Y is X Aooioo f // Y . ¤

4.8. Step 1.2: dense generators. We can now embed A into SetC
op

.

Proposition. Let A be an exact and extensive category and let G be a small generator
of A. Consider the full subcategory C of A spanned by the objects of G. The functor
A(−,−) : A→ SetC

op

is full and faithful.

Proof. By Lemma 4.7, for any A ∈ A the canonical arrow a :
∐

G∈G A(G,A)◦G →
A is a regular epi. The key of the proof consists of deducing from this fact that G
is a dense generator. This means that the functor

UA : C/A → A (f : G → A) 7→ G

(where C/A is the full subcategory of the comma category A/A) has colimit
〈A, (f : G → A)f,G〉. (Indeed, this is exactly the condition stated in Proposition
3.27.) We include some details here, to see extensivity at work at least once. Let
〈C, (gf : G → A)f,G〉 be another cocone on UA. By the universal property of the
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coproduct, we get a unique factorization g such that g · sf = gf , where the sf

are the injections in the coproduct (see the following diagram, where N(a) is the
kernel pair of a)

G
gf //

sf

²² f

))SSSSSSSSSSSSSSSSSSSS C

N(a)
u //
v

//
∐

G∈G A(G,A) ◦G
a

//

g

55kkkkkkkkkkkkkkkk
A

OO

To get the (necessarily unique) factorization A → C, it remains to prove that
g · u = g · v. Since coproducts in A are universal, N(a) is the coproduct of the
various pullbacks Uf as in the following diagram

Uf //

uf

²²

G

sf

²²
N(a)

u
//
∐

G∈G A(G, A) ◦G

so that to check g · u = g · v simplifies to verify g · u · uf = g · v · uf for all f. But
N(a) is also the coproduct of the various pullbacks

Vf //

vf

²²

G

sf

²²
N(a)

v
//
∐

G∈G A(G,A) ◦G

Fix now one of the morphisms f, say f0 : G0 → A. Using once again the universality
of the coproducts, Uf0 can be described as the coproduct of the various pullbacks

Pf,f0
//

pf,f0

²²

Vf

vf

²²
Uf0 uf0

// N(a)

so that checking g · u · uf0 = g · v · uf0 simplifies further to verify g · u · uf0 · pf,f0 =
g · v · uf0 · pf,f0 . Finally, for this it is enough to check that g · u · uf0 · pf,f0 · l =
g ·v ·uf0 ·pf,f0 · l for all l : G → Pf,f0 and for all G ∈ G. This follows from a diagram
chase, (gf : G → A)f,G being a cocone on UA : C/A → A.
Since G is a dense generator, the functor A(−,−) is full and faithful (in fact, the
converse holds too). Consider two objects A,B ∈ A and a natural transformation
τ : A(−, A) ⇒ A(−, B) : Cop → Set. For every G ∈ G and for every f : G → A, we
get an arrow τG(f) : G → B, and all these arrows form a cocone on UA. G being
a dense generator, there is a unique factorization t : A → B through the colimit
of UA. This process inverts the obvious construction of a natural transformation
A(−, A) ⇒ A(−, B) from an arrow A → B. ¤
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4.9. Step 2: Kan extensions. We start by recalling the definition of (left) Kan
extension.

Definition. Consider two functors F : C → A and G : C → B. A Kan extension of
F along G is a functor KG(F ) : B→ A with a natural transformation εG(F ) : F ⇒
KG(F ) · G such that, for any other functor H : B → A, composing with εG(F )
gives a natural bijection Nat(KG(F ), H) ' Nat(F,H ·G).

Being defined by a universal property, a Kan extension, when it exists, is es-
sentially unique. We present also the following easy lemma, which will be useful
to split the construction of a Kan extension.

Lemma. Consider three functors F : C → A, G : C → B, G′ : B → B′. Assume the
existence of KG(F ) and of KG′(KG(F )). Then, KG′·G(F ) = KG′(KG(F )).

Observe that, with no regards to size conditions, the definition of Kan extension
precisely means that the functor

− ·G : [B,A] → [C,A]

between functor categories, has a left adjoint

KG(−) : [C,A] → [B,A].

From this point of view, the previous lemma is a particular instance of the general
fact that adjoint functors compose.

Proposition. Consider a functor F : C → A with C small and A cocomplete.
Consider also the Yoneda embedding Y : C → SetC

op

. Then KY (F ) exists and
the natural transformation εY (F ) is a natural isomorphism. Moreover, KY (F )
is left adjoint to the functor A(F−,−) : A → SetC

op

which sends A ∈ A into
A(F−, A) ∈ SetC

op

.

Proof. We know, from Proposition 3.27, that each E ∈ SetC
op

is the colimit

of C/E
UE // C Y // SetC

op . Since we want KY (F ) to be a left adjoint and
εY (F ) to be an isomorphism, we have to define KY (F )(E) as the colimit of

C/E
UE // C F // A . Let us write 〈A, (σf : F (C) → A)f∈C/E〉 for such a colimit.

Given a functor H : SetC
op → A and a natural transformation α : F ⇒ H · Y, we

get a natural transformation β : KY (F ) → H in the following way: the component
of β at E is the unique arrow making the diagram commutative

A
βE // H(E)

F (C)

σf

OO

αC

// H(C(−, C))

H(f)

OO

That εY (F ) is an isomorphism follows from the Yoneda embedding being full
and faithful. As far as the adjunction KY (F ) a A(F−,−) is concerned, con-
sider a natural transformation h : E ⇒ A(F−, B), i.e. a natural family of arrows
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{hC : Nat(C(−, C), E) ' E(C) → A(F (C), B)}. Now, for every f ∈ C/E, we get
hC(f) : F (C) → B. By the universal property of the colimit, these hC(f) give rise
to a unique k : A → B such that k · σf = hC(f). ¤

Corollary. In the situation of Proposition 4.8, the functor A(−,−) : A → SetC
op

has a left adjoint given by the Kan extension of the full inclusion C→ A along the
Yoneda embedding Y : C→ SetC

op

.

Proof. In order to apply the previous proposition, it remains to prove that A is
cocomplete. For this let us remark only that, because of extensivity and exactness,
the coequalizer of two parallel arrows can be constructed as the quotient of the
equivalence relation generated by their jointly monic part. ¤

4.10. Step 3.1: coproduct extension as a Kan extension. In some special case,
the Kan extension of a functor can be described in an easy way. The first case of
interest for us is the Kan extension along the coproduct completion η : C→ FamC
of a small category C. Indeed we have the following simple lemma.

Lemma. Let C be a small category, A a category with coproducts and F : C→ A an
arbitrary functor. The coproduct preserving extension F ′ : FamC → A of F (see
Proposition 3.28) is the Kan extension of F along η : C→ FamC.

4.11. Step 3.2: left covering functors [14]. We have already observed that FamC
is a regular projective cover of the exact category SetC

op

, so that FamC has weak
finite limits. In this situation, we have an extension property with respect to left
covering functors. The notion of left covering functor generalizes the notion of left
exact functor to situations in which only weak finite limits exist.

Definition. Let P be a category with weak finite limits and A an exact category.
A functor F : P→ A is left covering if for any functor L : D → P (D being a finite
category) and for any (equivalently, for one) weak limit W of L, the canonical
comparison between F (W ) and the limit of F · L is a regular epi.

The fact that left covering functors are a good generalization of left exact
functors is confirmed by the next exercise.

Exercise. Let F : P→ A be a left covering functor. Show that F preserves all the
finite limits which exist in P.
[Hint: Show that F preserves all finite monomorphic families.]

4.12. Step 3.3: the exact extension of a left covering functor. Let us come back
to the situation where P is a projective cover of an exact category B, and consider
another exact category A. In this context, a left covering functor F : P→ A can be
extended to a functor F : B→ A. Indeed, given an object B ∈ B, we can consider
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a P-cover of B, its kernel pair in B, and again a P-cover of the kernel pair, as in
the following diagram

P ′
n // // N(b)

b0 //
b1

// P
b // // B

Now we can apply the functor F to the P-part of the diagram and factorize its
image in A as a regular epi followed by a jointly monic pair

F (P ′)
F (b0·n) //
F (b1·n)

//

"" ""DD
DD

DD
DD

D
F (P )

I

i0

77ppppppppppppp i1

77ppppppppppppp

The left covering character of F guarantees that (i0, i1) is an equivalence relation.
Since A is an exact category, the coequalizer of (i0, i1) exists, and we take this
coequalizer as F (B).

Exercises.

1. Prove that (i0, i1) is an equivalence relation.
2. Prove that F is well defined, that is, it does not depend on the choice of P, b, P ′

and n.
3. Extend the construction of F to the arrows of B.

The previous construction gives us our second example of Kan extension.

Lemma. Let P be a regular projective cover of an exact category B, A an exact
category and F : P → A a left covering functor. The functor F : B → A just
described is the Kan extension of F along the full inclusion P→ B.

Corollary. Under the hypothesis of Proposition 4.8, the Kan extension of the full
inclusion i : C → A along the Yoneda embedding is given by the Kan extension
along FamC→ SetC

op

of the Kan extension along C→ FamC of i.

SetC
op

²²

FamC

99ttttttttt

%%KKKKKKKKKK

C

;;xxxxxxxxx // A

4.13. Step 4.1: exact completion [14, 33]. In Step 3, we have constructed the Kan
extension KY (i) of i : C → A along Y : C → SetC

op

in two steps. We can detect
the left exactness of KY (i) through these two steps.
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Lemma. Let P be a regular projective cover of an exact category B and let F : P→ A
be a left covering functor, with A exact. The Kan extension F : B→ A is left exact.

A complete proof of this lemma requires the exact completion of a category
with weak finite limits. It amounts to the construction of an exact category Pex

from a category P with weak finite limits in such a way that:

- the category P is a regular projective cover of Pex;
- composition with the full inclusion γ : P → Pex classifies exact functors (a

functor between exact categories is exact if it is left exact and preserves regular
epis). This means that, for any exact category A, γ induces an equivalence
between the category of exact functors from Pex to A and the category of left
covering functors from P to A.

Moreover, if an exact category B has enough regular projective objects, then B is
equivalent to Pex, where P is any regular projective cover of B. In other words, an
exact category with enough regular projectives is determined by any of its regular
projective covers, and an exact functor out from it is determined by its restriction
to a regular projective cover. For example, for any small category C, the category
SetC

op

is equivalent to the exact completion of FamC.

A complete treatment of the exact completion is off the subject of this chapter.
We point out only one of the main ingredients, which is part 2 of next exercise
(part 1 is preparatory to part 2).

Exercises.

1. Show that if a category has a weak terminal object, weak binary products and
weak equalizers, then it has all weak finite limits.

2. Let P be a category with weak finite limits and A a regular category. Show
that a functor F : P → A is left covering iff it is left covering with respect to
a weak terminal object, weak binary products and weak equalizers.

Let us mention here that, since an algebraic category is exact and has enough
regular projective objects (Example 3.23), the exact completion can be used to
study localizations of algebraic categories. This is done in Chapter VI.

The fact that algebraic categories (more generally, monadic categories over a
power of Set) are exact and have enough regular projective objects is related to
the axiom of choice in Set (see [49] for a detailed discussion). Let us recall two
quite different examples.

Examples.

1. Let E be an elementary topos; the dual category Eop is exact with enough
regular projective objects.

2. Let E be an elementary topos; the category Sl(E) of internal sup-lattices in
E is exact, and the category of relation Rel(E) is a regular projective cover of
Sl(E) (see [49]).



4. Extensive categories 353

To complete the picture, let us also mention that the problem of when the exact
completion of a category is extensive, cartesian closed or a topos has been studied
respectively in [25, 37], in [13, 47] and in [43, 45].

4.14. Step 4.2: filtering functors. It remains to examine the Kan extension along
the coproduct completion.

Definition. Consider a small category C and a category A with finite limits. A
functor F : C→ A is filtering when the following conditions hold:
f1. The family of all maps F (X) → T (with X varying in C and T the terminal

object) is epimorphic;
f2. For any pair of objects A,B ∈ C, the family of all maps (F (u), F (v)) : F (X) →

F (A) × F (B) (with u : X → A, v : X → B in C and X varying in C) is
epimorphic;

f3. For any pair of arrows u, v : A → B in C, the family of all maps F (X) → Eu,v

(induced, via the equalizer Eu,v → F (A) of F (u) and F (v), by maps w : X → A
in C such that u · w = v · w, with X varying in C) is epimorphic.

Note that, when A = Set, this definition means that the category C/F is
filtering, that is F is a filtered colimit of representable functors.

Lemma. Consider a small category C and an exact and extensive category A. The
Kan extension F ′ : FamC → A of a functor F : C → A along η : C → A is left
covering iff F is filtering.

Proof. Let us describe some weak limits in FamC, using their canonical presen-
tation as quotients of the corresponding limits in SetC

op

. A weak terminal object
in FamC is the coproduct

∐
C(−, X) of all the representable presheaves. A weak

product of two objects C(−, A) and C(−, B) in FamC is the coproduct
∐
C(−, X)

indexed by all the pairs of arrows u : X → A, v : X → B with X varying in C.
A weak equalizer of two parallel arrows u, v : C(−, A) → C(−, B) in FamC is the
coproduct

∐
C(−, X) indexed over all the arrows x : X → A such that u ·x = v ·x,

with X varying in C.
Since in A every epi is regular (see Lemma 4.7), the three conditions of the previous
definition respectively mean that F ′ : FamC → A is left covering with respect to
weak terminal objects, weak binary products of objects coming from C and weak
equalizers of arrows coming from C. Using the extensivity of A, one can show that
such a functor is left covering with respect to weak terminal objects, weak binary
products and weak equalizers. We conclude by Exercise 4.13.2. ¤

4.15. Step 5: conclusion. Consider now an exact and extensive category A with a
small generator G, as in condition 2 of Theorem 4.6. Let C be the full subcategory
of A spanned by the objects of G.

Lemma. The full inclusion i : C→ A is a filtering functor.

Proof. The three conditions of Definition 4.14 are satisfied respectively because G
generates T, A×B and Eu,v. ¤
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Corollary. In the previous situation, A is equivalent to a localization of SetC
op

.

Proof. Since i : C → A is filtering, its Kan extension KY (i) : SetC
op → A along

the Yoneda embedding Y : C → SetC
op

is left exact. But KY (i) is left adjoint to
A(−,−) : A→ SetC

op

, which is full and faithful. ¤

4.16. Another proof of Giraud’s Theorem. The aim of this last section is to sketch
a slightly different proof of Giraud’s Theorem, a proof which underlines the role
of the exact completion. The stream of the proof is simple: first, we characterize
categories of the form FamC for C a small category. Second, using that SetC

op

is the exact completion of FamC, we get an abstract characterization of presheaf
categories. Third, to prove that i : A→ SetC

op

is a localization, we need an exact
functor r : SetC

op → A, that is, by the universal property of SetC
op

= (FamC)ex,
a left covering functor FamC→ A.

Definition. Let B be a category with coproducts. An object C of B is connected if
the representable functor B(C,−) : B→ Set preserves coproducts.

(Connected objects are sometimes called indecomposable.)

Lemma. [7, 14] Let B be a category. The following conditions are equivalent:
1. B is equivalent to the coproduct completion of a small category;
2. B has a small subcategory C of connected objects, such that each object of B

is a coproduct of objects of C.

Proof. The implication 1 ⇒ 2 is obvious. Conversely, consider the coproduct-
preserving extension F ′ : FamC → B of the full inclusion F : C → B. The fact
that the objects of C are connected implies that F ′ is full and faithful. It is also
essentially surjective because each object of B is a coproduct of objects of C. ¤

Corollary. [10, 14] Let A be a category. The following conditions are equivalent:
1. A is equivalent to a presheaf category;
2. A is exact, extensive, and has a small (regular) generator G such that each

object in G is regular projective and connected.

Proof. The implication 1 ⇒ 2 is obvious. Conversely, consider the full subcategory
B of A spanned by coproducts of objects in G. B is a regular projective cover of
A. Moreover, by the previous lemma, B ' FamC for a small category C. Finally,
A ' Bex ' (FamC)ex ' SetC

op

. ¤

Proposition. Let A be a category. The following conditions are equivalent:
1. A is equivalent to a localization of a presheaf category;
2. A is exact, extensive, and has a small (regular) generator G.

Proof. The implication 1 ⇒ 2 is obvious. Conversely, let G be the small generator
and consider the not full subcategory B of A spanned by coproducts of objects of
G. An arrow f : G → ∐

I Gi is in B exactly when it factors through an injection
Gi →

∐
I Gi (in other words, the objects of G are not connected in A because
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connectedness is not stable under localization, but we force them to be connected
in B). Now, by the previous lemma, B ' FamC for a small category C, so that
Bex is a presheaf category. The main point to prove that A is a localization of Bex

is to check that the inclusion B→ A is left covering, so that it extends to an exact
functor Bex → A (which plays the role of the left exact left adjoint). The fact that
B→ A is left covering comes from the next exercise. More details can be found in
[50]. ¤

Exercise. Consider a small category C, an exact and extensive category A, and
a coproduct-preserving functor F : FamC → A. Show that if F is left covering
with respect to binary weak products and weak equalizers of objects and arrows
of FamC coming from C, then it is left covering with respect to all binary weak
products and weak equalizers.

Remark. Another interesting aspect of the previous proof is that exactly the same
arguments can be used to characterize (localizations of) algebraic categories and
monadic categories over Set (compare with Chapters V and VI). One has to replace
FamC by the Kleisli category of the (finitary) monad, that is the full subcategory
of free algebras, the connectedness condition by the condition to be abstractly
finite, and extensivity by exactness of filtered colimits. This striking analogy is
exploited in [50] to study essential localizations (a localization is essential if the
reflector has a left adjoint).
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[28] M. Hakim, Topos annelés et schémas relatifs, Ergebnisse der Mathematik und ihrer
Grenzgebiete 64, Springer-Verlag (1972).

[29] R. Hartshorne, Algebraic geometry., Graduate Texts in Mathematics 52, Springer-
Verlag (1977).

[30] F. Hirzebruch, Topological methods in algebraic geometry, Die Grundlehren der
Mathematischen Wissenschaften 131, Springer-Verlag (1966)

[31] M. Hovey, Model categories, Mathematical Surveys and Monographs 63, American
Mathematical Society (1999).



References 357

[32] H. Hu and W. Tholen, Limits in free coproduct completions, J. Pure Appl. Algebra
105 (1995) 277–291.

[33] H. Hu and W. Tholen, A note on free regular and exact completions and their
infinitary generalizations, Theory and Appl. of Categories 2 (1996) 113–132.

[34] P. T. Johnstone, Topos theory, London Mathematical Society Monographs 10, Aca-
demic Press (1977).

[35] P. T. Johnstone, Sketches of an elephant. A topos theory compendium, Oxford Logic
Guides, Oxford: Clarendon Press (2002).

[36] A. Kock, Monads for which structures are adjoint to units, J. Pure Appl. Algebra
104 (1995) 41–59.

[37] S. Lack and E. M. Vitale, When do completion processes give rise to extensive cat-
egories? J. Pure Appl. Algebra 159 (2001) 203–230.

[38] J. Lambek and P. J. Scott, Introduction to higher order categorical logic, Cambridge
Studies in Advanced Mathematics 7, Cambridge University Press (1986).

[39] F. W. Lawvere and R. Rosebrugh, Sets for mathematics, Cambridge University Press
(2001).

[40] S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic: a first introduction to
topos theory, Universitext, Springer-Verlag (1992).

[41] M. Makkai and G. E. Reyes, First order categorical logic, Lecture Notes in Mathe-
matics 611, Springer-Verlag (1977).

[42] F. Marmolejo, Distributive laws for pseudomonads, Theory and Appl. of Catege-
gories 5 (1999) 91–147.

[43] M. Menni, Exact completions and toposes, Ph. D. Thesis, Univ. of Edinburgh (2000).

[44] M. Menni, Closure operators in exact completions, Theory and Appl. of Categories
8 (2001) 522–540.

[45] M. Menni, A characterization of the left exact categories whose exact completions
are toposes, J. Pure Appl. Algebra 177 (2003) 287–301.

[46] R. Rosebrugh and R. J. Wood, Cofibrations II: Left exact right actions and compo-
sition of gamuts, J. Pure Appl. Algebra 39 (1986) 283–300.
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