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ABSTRACT. We give necessary and sufficient conditions on a functor k : C → E ,
where C is an algebraic theory, in order to the induced functor E(k−,−) : E → Alg(C)
being a geometric morphism or a localization. We apply our techniques also to the
particular case of module categories and to the case of presheaf categories.

1. Introduction

Let E ,A be categories with finite limits. A geometric morphism from E to A is a functor
R : E → A having a left exact left adjoint L : A → E . A localization of A is a full and
faithful geometric morphism R : E → A.

Localizations have been intensively studied in the case of A being a presheaf topos, a
module category, or an algebraic category. In all these settings, localizations have been
characterized: Giraud’s theorem establishes that localizations of presheaf toposes are pre-
cisely Grothendieck toposes (see Theorem 1 in the Appendix of [7]); Gabriel-Popescu’s the-
orem establishes that localizations of module categories are precisely abelian Grothendieck
categories (see [8]); localizations of algebraic categories have been characterized in [9] as
those cocomplete exact categories having a regular generator and exact filtered colimits.

The problem of classifying geometric morphisms and, in particular, localizations is a
slightly different matter. Let us explain it in the context of presheaf categories. Given a
functor k : C → E , where C is a small category and E is a cocomplete category, we get an
adjunction

E
E(k−,−)

// [Cop, Set]
LanYC (k)

oo LanYC(k) a E(k−,−)

where YC : C → [Cop, Set] is the Yoneda embedding and LanYC(k) is the left Kan extension
of k along YC. This produces a functor

[C, E ] → Adj[E , [Cop, Set]]

where the objects of Adj[E , [Cop, Set]] are adjoint pairs

E
R

// [Cop, Set]
Loo L a R
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and the morphisms are the natural transformations between left adjoint functors. Such a
functor has a right adjoint

Adj[E , [Cop, Set]] → [C, E ]

which sends an adjoint pair (L a R) to the composite functor L · YC : C → E . Moreover,
since the functor YC is full, faithful and dense, this is in fact an equivalence

Adj[E , [Cop, Set]] ' [C, E ]

Therefore, the classification problem for geometric morphisms amounts to restricting the
previous equivalence to the full subcategory of Adj[E , [Cop, Set]] given by geometric mor-
phisms, and it can be stated in the following terms: find necessary and sufficient conditions
on a functor k : C → E in order to its left Kan extension along Yoneda

LanYC(k) : [Cop, Set] → E

being left exact (and the right adjoint

E(k−,−) : E → [Cop, Set]

being full and faithful, if we wish to classify localizations).
The matter of classifying geometric morphisms into a presheaf topos has been solved in

terms of filtering functors: the functor E(k−,−) : E → [Cop, Set] is a geometric morphism
iff k : C → E is a filtering functor (see Theorem VII.9.1 in [7], or [3] for a quite different
proof). The analogous problem of classifying localizations of the form

E
R

// R-mod
Loo

where R is a ring with unit (or, more in general, a small preadditive category) and E
is a Grothendieck category, has been recently solved by Lowen using sheaf theoretical
techniques, see [6]. The aim of our paper is to complete the picture. In Section 2 we
classify localizations of the form

E
R

// [Cop, Set]
Loo

We start with presheaf categories because in this case the classification of geometric
morphisms in terms of filtering functors is well known, so that it is just a matter of
refining the notion of filtering functor to get the classification of localizations. Our proof
is quite similar to the one of Lowen for localizations of module categories (see also the
comparison lemma in [5]). The case of algebraic categories is more delicate, and it needs
some preliminaries on left covering functors. This is the subject of Section 3. Then, in
Section 4 we classify geometric morphisms and localizations of the form

E
R

// Alg(C)
Loo
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where Alg(C) is the category of algebras for an algebraic theory C. In Section 5 we spe-
cialize the result of Section 4 to get a classification of geometric morphisms into a module
category.
Acknowledgment: We would like to thank W.T. Lowen for some stimulating discussion
on the classification of localizations.

2. Localizations of presheaf categories

Throughout the section, let C be a small category and E be a cocomplete, exact and
extensive category. We refer to Chapter 2 in [1] for the notion of exact category, and to
[2, 4] for the notion of extensive category (we underline the need of the infinitary version
of extensivity, as in [4]. For a functor k : C → E , we write

k! = LanYC(k) : [Cop, Set] → E k∗ = E(k−,−) : E → [Cop, Set]

so that we have k! a k∗.
We recall from [7, 3] the definition of filtering functor and the classification of geometric

morphisms into a presheaf category.

2.1. Definition.

1. An epimorphic family in E is a collection {fi : Xi → X}i∈I of arrows in E such that
for any pair u, v : X → Y, if u · fi = v · fi for all i ∈ I, then u = v. (Equivalently,
such that the induced arrow

∐
Xi → X is an epimorphism.)

2. A functor k : C → E is said to be filtering if:

(F1) the family of arrows {kC → 1 | C ∈ C}, where 1 is a terminal object of E , is
epimorphic;

(F2) for any pair of objects A,B ∈ C, the family of arrows

{〈ku, kv〉 : kC → kA× kB | A C
uoo v // B in C}

is epimorphic;

(F3) for any pair of arrows u, v : A ⇒ B in C, the family of arrows

{w′ : kC → Eu,v | w : C → A in C such that u · w = v · w}

where e : Eu,v → kA is an equalizer of (u, v) and e · w′ = kw, is epimorphic.

2.2. Theorem. Consider a functor k : C → E . The following conditions are equivalent:

1. k∗ : E → [Cop, Set] is a geometric morphism;

2. k : C → E is filtering.
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Let us reformulate the previous result in terms of an equivalence of categories. We
denote by GeoMor[E , [Cop, Set]] the category of geometric morphisms from E to [Cop, Set],
and geometric transformations between these, that is, natural transformations between
the left adjoint functors. We denote by Filt[C, E ] the category of filtering functors from C
to E and natural transformations.

2.3. Corollary. The equivalence of categories

Adj[E , [Cop, Set]] ' [C, E ]

restricts to an equivalence

GeoMor[E , [Cop, Set]] ' Filt[C, E ]

Our aim is now to refine the previous result in order to achieve a classification of
localizations. We need a technical lemma, which adjusts to our context Lemma 3.4 in [6].

2.4. Lemma. Let k : C → E be a functor, and consider an object C ∈ C, and a subfunctor
r : R→ C(−, C). The following conditions are equivalent:

1. k!r is an epimorphism;

2. The family kR = {kd : kD → kC | d ∈ RD , D ∈ C} is epimorphic.

Proof. Since r : R → C(−, C) is a subfunctor, for any arrow d : D → C in R(D) the
natural transformation C(−, d) : C(−, D) → C(−, C) factors through r. Therefore, the
universal property of the coproduct allows us to construct the following commutative
diagram

R
r

&&LLLLLLLLLLLL

∐
d∈R(D),D∈C C(−, D) r′ //

e

55llllllllllllllll

C(−, C)

C(−, D)

ρd

hhRRRRRRRRRRRRR C(−,d)

99ssssssssss

where ρd denotes the coproduct injection. Moreover, since the (regular epi-mono) fac-
torization of an arrow in [Cop, Set] is computed pointwise in Set, the arrow e is a regular
epimorphism. When applying to the previous diagram the left adjoint k!, we get the
following commutative diagram, where k!ρd is the coproduct injection and k!e is a regular
epimorphism

k!R
k!r

!!CC
CC

CC
CC

C

∐
d∈R(D),D∈C kD

k!r′ //

k!e

77ppppppppppp

kC

kD

k!ρd

ggNNNNNNNNNNNN kd

=={{{{{{{{{
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Finally, k!r is an epimorphism iff k!r′ is an epimorphism iff the family

kR = {kd : kD → kC | d ∈ RD , D ∈ C}

is epimorphic.

We list here the conditions on k : C → E which allow k∗ to realize a localization.

2.5. Definition. A functor k : C → E is said to be fully filtering if

(A) For any object X ∈ E , the family of arrows RX = {c : kC → X | C ∈ C} is
epimorphic;

(B) For any pair of arrows kA X
aoo b // kB in E , the family of arrows

Ra,b = {c : kC → X | a · c = kfA , b · c = kfB for some A C
fAoo fB // B in C}

is epimorphic;

(F3) As in Definition 2.1.

2.6. Remark. The choice of terminology in the previous definition is justified by the
fact that condition (A) implies condition (F1) and condition (B) implies condition (F2),
so that any fully filtering functor is indeed filtering.

We are finally able to state and prove the main result of this section.

2.7. Proposition. Let k : C → E be a functor. The following conditions are equivalent:

1. k∗ : E → [Cop, Set] is a localization;

2. k : C → E is fully filtering.

Proof. 1 ⇒ 2. Condition (A). Let X be an object in E ; if u, v : X ⇒ Y are such that
u · c = v · c for any c ∈ RX = {c : kC → X | C ∈ C}, then the natural transformations
k∗u and k∗v are equal. Since k∗ is faithful, this implies u = v, so that RX is epimorphic.
Condition (B). Let a : X → kA, b : X → kB be two arrows in E ; we prove that the family

Ra,b = {d : kD → X | a · d = kfA , b · d = kfB for some A D
fAoo fB // B in C}

is epimorphic. For it, fix an arrow c : kC → X and consider the following diagram

Pa·c //

zzuuuuuuuuu

p

��

C(−, A)

ηA

��

Ra·c

r $$IIIIIIIII

C(−, C) ηC

// E(k−, kC)
E(k−,a·c)

// E(k−, kA)
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where the rectangle is a pullback, the triangle is the (regular epi-mono) factorization, and
η is the unit of the adjunction k! a k∗. Explicitly,

Ra·c = {x : Cx → C | a · c · kx = kfx for some fx : Cx → A}

Since k∗ is full and faithful, the counit of the adjunction k! a k∗ is an isomorphism.
Because of the triangular identities, also k!ηA is an isomorphism. Since k! is left exact,
this implies that k!p is an isomorphism, and then k!r is an epimorphism. By Lemma 2.4,
this means that the family kRa·c = {kx : kCx → kC | x ∈ Ra·c} is epimorphic. Fix now a
morphism x : Cx → C in Ra·c; using the previous argument, we obtain a family

Rb·c·kx = {yx : Cyx → Cx | b · c · kx · kyx = kfyx for somefyx : Cyx → B}

such that kRb·c·kx = {kyx : kCyx → kCx | yx ∈ Rb·c·kx} is epimorphic. Pasting together
RX (which is epimorphic by condition (A)), kRa·c and kRb·c·kx, we get a new epimorphic
family

Ma,b = {c · kx · kyx | yx ∈ Rb·c·kx, x ∈ Ra·c, c ∈ RX}

Moreover, by definition of Rb·c·kx and Ra·c, the collection Ma,b is contained in Ra,b, so that
also Ra,b is epimorphic.

2 ⇒ 1. We prove first that if k : C → E satisfies conditions (A) and (B), then k∗ is
full and faithful. Let X,Y be objects in E and α : k∗X → k∗Y an arrow in [Cop, Set]. By
condition (A), the family RX = {h : kC → X | C ∈ C} is epimorphic. This means that
the canonical arrow λ induced by the arrows h ∈ RX via the universal property of the
coproduct ∐

h∈RX
kC λ // X

kC

σh

OO

h

::ttttttttttt

is an epimorphism (we denote by σh the coproduct injection). Since E is exact and
extensive, any epimorphism is a regular epimorphism (Lemma 4.7 in [4]), so that λ is the
coequalizer of its kernel pair λ0, λ1 : N(λ) ⇒

∐
kC. On the other hand, for any h ∈ RX , we

have an arrow αC(h) : kC → Y, and therefore a canonical morphism µ from the coproduct

∐
h∈RX

kC
µ // Y

kC

σh

OO

αC(h)

::ttttttttttt

It suffices to prove then that the arrow µ coequalizes λ0 and λ1, in order to get a unique
arrow b : X → Y such that b · λ = µ, that is a unique arrow b such that k∗b = α, as
desired. For any pair h, h′ ∈ RX , consider the following diagram, where the outer square



7

is a pullback and the dotted arrow is the canonical factorization

P (h, h′)
ph //

ph′

��

sh,h′ %%

kC

σh

��
N(λ)

λ0 //

λ1

��

∐
kC

λ

��
kC ′

σh′
//
∐
kC

λ
// X

By extensivity of E , the diagram 〈sh,h′ : P (h, h′) → N(λ) | h, h′ ∈ RX〉 is a coproduct, so
that in order to check the equation µ · λ0 = µ · λ1 we just have to pre-compose with all
the sh,h′ . By condition (B), the family

Rph,ph′ = {d : kD → P (h, h′) | ph · d = kf , ph′ · d = kf ′ for some C D
foo f ′

// C ′ in C}

is epimorphic, then to verify the equation µ · λ0 · sh,h′ = µ · λ1 · sh,h′ it is enough to pre-
compose with all the d ∈ Rph,ph′ . Finally, using the naturality of α, we have
µ · λ0 · sh,h′ · d = µ · σh · ph · d = µ · σh · kf = αC(h) · kf = αD(h · kf) = αD(h · ph · d) =
αD(h′ · ph′ ·d) = αD(h′ ·kf ′) = αC′(h′) ·kf ′ = µ ·σh′ ·kf ′ = µ ·σh′ · ph′ ·d = µ ·λ1 · sh,h′ ·d.

The previous result can be reformulated in terms of an equivalence of categories.
We denote by Loc[E , [Cop, Set]] the full subcategory of GeoMor[E , [Cop, Set]] given by the
localizations. We denote by FullyFilt[C, E ] the full subcategory of Filt[C, E ] given by the
fully filtering functors.

2.8. Corollary. The equivalence of categories

Adj[E , [Cop, Set]] ' [C, E ]

restricts to an equivalence

Loc[E , [Cop, Set]] ' FullyFilt[C, E ]

3. Left covering functors on categories of free algebras

Throughout the section, let C = 〈0, T, 2T, . . . , nT, . . .〉 be an algebraic theory (we refer to
Chapter 3 in [1]). We denote by Alg(C) the category of finite product preserving functors
Cop → Set, and by F(C) the category of free algebras, which is (equivalent to) a full
subcategory of Alg(C). The full embedding ιC : C → F(C), assigning to any nT in C the
free algebra C(−, nT ), satisfies the following properties.
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3.1. Lemma.

1. F(C) has coproducts and ιC : C → F(C) preserves finite coproducts.

2. If E has coproducts and the functor k : C → E preserves finite coproducts, then
there is an essentially unique coproduct-preserving functor k′ : F(C) → E such that
k′ · ιC ' k.

3. The coproduct-preserving extension k′ is the left Kan extension of k along ιC.

Proof. 1. Obvious.
2. The functor k′ : F(C) → E is defined as follows: for a set X, we define k′X =

∐
X kT.

Let X and Y be sets, a morphism f : X → Y in F(C) is a morphism f :
∐

X C(−, T ) →∐
Y C(−, T ) in Alg(C). Assume Y is an infinite set. Since Y is the filtered colimit of

its finite subsets and C(−, T ) is a finitely presentable object in Alg(C), for any x ∈ X
there exist a finite subset S of Y and a morphism fx : C(−, T ) →

∐
S C(−, T ) making

commutative the following diagram∐
X C(−, T )

f //
∐

Y C(−, T )

C(−, T )

ρx

OO

fx

//
∐

S C(−, T )

jS

OO

where ρx is the coproduct injection and jS is induced by the inclusion S ⊂ Y. By Yoneda
lemma, the natural transformation fx : C(−, T ) →

∐
S C(−, T ) = C(−, sT ) (where s is

the cardinality of S) corresponds to a unique arrow fx : T → sT in C. Therefore, we can
define k′f as the unique arrow such that the following diagram

∐
X kT

k′f //
∐

Y kT

kT

σx

OO

kfx

// k(sT ) =
∐

S kT

jS

OO

commutes, for any x ∈ X, where σx in the coproduct injection. We have to show that the
definition of k′ does not depend on the choice of the factorization jS ·fx for f ·ρx. Suppose
f ′x · jS′ is another such a factorization and consider the union S ∪ S ′, then we have

jS∪S′ · uS · fx = jS · fx = f · ρx = jS′ · f ′x = jS∪S′ · uS′ · f ′x

where uS :
∐

S C(−, T ) →
∐

S∪S′ C(−, T ) is the arrow induced by the inclusion S ⊂ S∪S ′,
and analogously for uS′ . Since jS∪S′ is a monomorphism (it is induced by the inclusion of
S ∪ S ′ into Y, which is a split monomorphism), we have uS · fx = uS′ · f ′x, so that

jS · kfx = jS∪S′ · kuS · kfx = jS∪S′ · kuS′ · kf ′x = jS′ · kf ′x
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The rest of the proof is straightforward.
3. Consider a functor G : F(C) → E and a natural transformation γ : k ⇒ G · ιC. We
determine a unique natural transformation α : k′ ⇒ G such that α · ιC = γ. Given a set
X, we define αX as the unique arrow such that the following diagram

∐
X kT

αX // G(
∐

X C(−, T ))

kT

σx

OO

γT

// G(C(−, T ))

Gρx

OO

commutes, for any x ∈ X. The condition α · ιC = γ is obviously satisfied; the naturality
of α and its uniqueness can be checked using the naturality of γ and the factorisation of
an arrow f in F(C) as f · ρx = jS · fx, as in the proof of part 2.

3.2. Remark. Because of its uniqueness, the coproduct-preserving extension k′ : F(C) →
E of Lemma 3.1 coincides with the restriction of the Kan extension k! : Alg(C) → E to
free algebras.

Recall that a weak limit on a diagram is defined as a limit, except that the factorization
involved in its universal property is not necessarily unique. We are interested in weak
limits because the category F(C), in general, fails to have limits, but it has weak limits.
In fact, since free algebras are regular projective objects in Alg(C) and any algebra is in
a canonical way a regular quotient of a free one, to construct a weak limit in F(C) one
has just to construct the corresponding limit in Alg(C) and then to cover it with a free
algebra. The functors which behave well with respect to weak finite limits are the left
covering ones. Let us recall the definition from [3, 4].

3.3. Definition. Consider a category W with weak finite limits, an exact category E
and a functor K : W → E . The functor K is said to be left covering if, for any finite
diagram D in W and for any (equivalently, for one) weak limit W on D, the canonical
arrow from KW to the limit of K(D) is a regular epimorphism.

3.4. Lemma. Consider a cocomplete, exact category E with exact filtered colimits, a finite
coproduct-preserving functor k : C → E , and its coproduct preserving extension k′ : F(C) →
E as in Lemma 3.1. If k′ is left covering with respect to a weak terminal object, weak binary
products of objects coming from C, and weak equalizers of pairs of parallel arrows coming
from C, then k′ is left covering.

Proof. Thanks to Proposition 27 in [3], it suffices to show that k′ is left covering with
respect to weak binary products and weak equalizers.
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Concerning weak binary products: consider the following diagram

k′(F ×
∐

Y C(−, T )) λ // k′F × k′(
∐

Y C(−, T ))

k!(colimS(F ×
∐

S C(−, T )))

k!c

OO

k′F × colimSk
′(
∐

S C(−, T ))

b

OO

colimSk
′(F ×

∐
S C(−, T ))

colimSλS

//

c

OO

colimS(k
′F × k′(

∐
S C(−, T )))

a

OO

where
- F is a free algebra, and Y is a set;
- the filtered colimits are taken over the finite subsets S of Y ;
- products in F(C) are weak products;
- c stays for the canonical arrow induced by the universal property of a colimit;
- a is an isomorphism, because in E filtered colimits commute with finite limits;
- b is an isomorphism, because k′ preserves coproducts;
- by induction, for each S the comparison λS is a regular epimorphism, so that also the
colimit of all arrows λS is a regular epimorphism.
Since the diagram commutes, the comparison λ is a regular epimorphism.

Concerning weak equalizers: consider two parallel arrows

f, g :
∐
X

C(−, T ) ⇒
∐
Y

C(−, T )

in F(C), and a finite subset S of X. Since
∐

S C(−, T ) is a finitely presentable object in
Alg(C), there exist a finite subset R of Y and two arrows fS, gS making the following
diagram

colimSES
i // E

e //
∐

X C(−, T )
f //
g

//
∐

Y C(−, T )

ES

iS

OO

εS

ddIIIIIIIIII

eS

//
∐

S C(−, T )

jS

OO

fS //
gS

//
∐

R C(−, T )

jR

OO

commutative, where the rows are weak equalizers, iS is induced by the universal property
of E, εS is the colimit injection and i · εS = iS. Applying the functor k′ : F(C) → E , we
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get the following diagram

D
d // k′(

∐
X C(−, T ))

k′f //

k′g
// k′(

∐
Y C(−, T ))

k′E

λ

bbEEEEEEEEE k′e

77oooooooooooo

k′ES
λS

||zzzzzzzz

k′iS

OO

k′eS

''OOOOOOOOOOO

DS dS

//

θS

OO

k′(
∐

S C(−, T ))

k′jS

OO

k′fS //

k′gS

// k′(
∐

R C(−, T ))

k′jR

OO

where the rows are equalizers and θS, λS, λ are induced by the universal property of the
equalizers. Finally, we obtain the following commutative diagram

k!(colimSES)
k!i // k′E

λ // D

colimSk
′ES

c

OO

colimSλS

// colimSDS

θ

OO

where θ is induced by the maps θS, and c is canonical. Since all λS are regular epimor-
phisms, colimSλS also is a regular epimorphism. Moreover, θ is an isomorphism, and
then the comparison λ is a regular epimorphism, as desired. This follows from the fact
that, k′jR being a monomorphism, DS is the equalizer of (k′jR · k′fS, k′jR · k′gS), and in E
filtered colimits commute with finite limits. (Note that the arrow k′jR is a monomorphism
because jR is induced by the inclusion of R into Y. If Y is not the empty set, then we can
assume R to be non empty, so that the inclusion R ⊂ Y is a split monomorphism; if Y is
the empty set, then jR is the identity.)

3.5. Remark. To end this section, let us describe explicitly the weak limits involved in
Lemma 3.4.

1. C(−, T ) is a weak terminal object in F(C);

2. Let A,B be objects in C; a weak product of C(−, A) and C(−, B) in F(C) is given
as follows

C(−, A)
∐
C(−, T )

πAoo πB // C(−, B)

where the coproduct is indexed by the pairs (u, v) ∈ C(T,A) × C(T,B), and πA ·
ρ(u,v) = C(−, u), πB · ρ(u,v) = C(−, v) for any such a pair, ρ(u,v) being the coproduct
injection;
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3. Let u, v : A ⇒ B be arrows in C; a weak equalizer of C(−, u) and C(−, v) in F(C) is
given as follows ∐

C(−, T ) l // C(−, A)
C(−,u) //

C(−,v)
// C(−, B)

where the coproduct is indexed by the set of arrows w : T → A such that u·w = v ·v,
and l · ρw = C(−, w).

4. Geometric morphisms and localizations of algebraic categories

Let C = 〈0, T, 2T, . . . , nT, . . .〉 still denote an algebraic theory and E a cocomplete, exact
category with exact filtered colimits. Since the codomain restriction YC : C → Alg(C)
of the Yoneda embedding is a dense functor preserving finite coproducts, pre-composing
with YC : C → Alg(C) still induces an equivalence of categories

Adj[E ,Alg(C)] → ‘[C, E ]

where ‘[C, E ] is the category of finite coproduct-preserving functor from C to E .
The first step to classify geometric morphisms and localizations of the form

E
R

// Alg(C)
Loo

is to adjust to the new setting the notion of filtering functor. We have already mentioned
the fact that in an exact and extensive category any epimorphism is regular. This is no
longer true if we omit the extensivity condition, as in the current section. This is the
reason why the families involved in the next definition are regular epimorphic, and not
just epimorphic.

4.1. Definition.

1. A regular epimorphic family in E is a collection {fi : Xi → X}i∈I of arrows in E such
that the induced arrow

∐
Xi → X is a regular epimorphism.

2. A functor k : C → E is said to be regular filtering if:

(RF1) the family of arrows {kC → 1 | C ∈ C}, where 1 is a terminal object of E , is
regular epimorphic;

(RF2) for any pair of objects A,B ∈ C, the family of arrows

{〈ku, kv〉 : kC → kA× kB | A C
uoo v // B in C}

is regular epimorphic;

(RF3) for any pair of arrows u, v : A ⇒ B in C, the family of arrows

{w′ : kC → Eu,v | w : C → A in C such that u · w = v · w}
where e : Eu,v → kA is an equalizer of (ku, kv) and e · w′ = kw, is regular
epimorphic.
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4.2. Remark. If the functor k : C → E involved in the previous definition preserves
finite coproducts, then in conditions (RF1–RF3) we can equivalently replace the variable
object C ∈ C by the base object T of the algebraic theory C.

Here is the announced classification of geometric morphisms.

4.3. Proposition. Let k : C → E be a finite coproduct-preserving functor. The following
conditions are equivalent:

1. k∗ : E → Alg(C) is a geometric morphism;

2. k′ : F(C) → E is left covering;

3. k : C → E is regular filtering.

Proof. 1 ⇔ 2 : Following the terminology of [3], the full embedding F(C) → Alg(C) is the
exact completion of F(C). The equivalence between condition 1 and condition 2 is then
just a particular case of Theorem 29 in [3].

2 ⇔ 3 : Thanks to Remark 3.5 and Remark 4.2, k : C → E is regular filtering precisely
when k′ : F(C) → E is left covering with respect to a weak terminal object, and weak
binary products and weak equalizers of objects and arrows coming from C. By Lemma 3.4,
the proof is complete.

Hence, we denote by GeoMor[E ,Alg(C)] the category of geometric morphisms from E
to Alg(C), and by RFilt‘[C, E ] the category of those regular filtering functors from C to
E which preserve finite coproducts.

4.4. Corollary. The equivalence of categories

Adj[E ,Alg(C)] ' ‘[C, E ]

restricts to an equivalence

GeoMor[E ,Alg(C)] ' RFilt‘[C, E ]

We can move on now to localizations. The algebraic analogue of Lemma 2.4 is given
by the following:

4.5. Lemma. Let k : C → E be a functor, C ∈ C an object, and r : R → C(−, C) a
subobject in Alg(C). The following conditions are equivalent:

1. k!r is an epimorphism (respectively, a regular epimorphism);

2. The family kR = {kd : kD → kC | d ∈ RD , D ∈ C} is epimorphic (respectively,
regular epimorphic).
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Proof. The proof runs parallel to the one of Lemma 2.4. The only difference accours
while proving that

e :
∐

d∈RD,D∈C

C(−, D) → R

is a regular epimorphism. For this, apply the forgetful functor U : Alg(C) → Set defined
by evaluation at T. The canonical map∐

d∈RD,D∈C

C(T,D) → RT

is surjective (just use the identity on T ), so that also Ue is surjective. This implies that
e is a regular epimorphism because U reflects regular epimorphisms.

4.6. Definition. A functor k : C → E is said to be fully regular filtering if

(RA) For any object X ∈ E , the family of arrows RX = {c : kC → X | C ∈ C} is regular
epimorphic;

(RB) For any pair of arrows kA X
aoo b // kB in E , the family of arrows

Ra,b = {c : kC → X | a · c = kfA , b · c = kfB for some A C
fAoo fB // B in C}

is regular epimorphic;

(RF3) As in Definition 4.1.

4.7. Remark. Once again, condition (RA) implies condition (RF1) and condition (RB)
implies condition (RF2). Moreover, if k : C → E preserves finite coproducts, we can
replace in conditions (RA) and (RB) the variable object C ∈ C by the base object T.
Condition (RA) amounts then to saying that the object kT is a regular generator for E .
4.8. Proposition. Let k : C → E be a finite coproduct-preserving functor. The following
conditions are equivalent:

1. k∗ : E → Alg(C) is a localization;

2. k : C → E is fully regular filtering.

Proof. 1 ⇒ 2. Condition (RA): Since C(−, T ) is a regular generator for Alg(C), k!C(−, T ) =
kT is a regular generator for E .
Condition (RB): Since pullbacks in Alg(C) are computed pointwise in Set, we can repeat
the same arguments as in the proof of Proposition 2.7 and, using Lemma 4.5, we get three
regular epimorphic families RX , kRa·c, and kRb·c·kx (same notations as in the proof of 2.7).
We have to show that the family

Ma,b = {c · kx · kyx | yx ∈ Rb·c·kx, x ∈ Ra·c, c ∈ RX}
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is still regular epimorphic (this immediately implies that Ra,b is regular epimorphic, since
Ma,b is contained in Ra,b). For it, we consider the following diagram∐

Ma,b
kCyx

//

'

X
∐

RX
kCλoo

∐
RX

∐
kRa·c

∐
kRb·c·kx

kCyx ‘
RX

‘
kRa·c λx

//
∐

RX

∐
kRa·c

kCx

‘
RX

λc

OO

where the morphisms λ are induced by the universal property of the corresponding co-
products, and the isomorphism is given by the associativity isomorphism of the coproduct.
Since RX , Ra·c and Rb·c·kx are regular epimorphic families, the arrows λ, λc and λx are reg-
ular epimorphisms, and then so are their coproducts. Since the diagram is commutative,
the canonical arrow ∐

Ma,b

kCyx → X

is a regular epimorphism, as desired.
2 ⇒ 1. We prove that if k : C → E satisfies conditions (RA) and (RB), then k∗ is

full and faithful. Let X, Y be objects in E and α : k∗X → k∗Y an arrow in Alg(C). By
condition (RA), the canonical map

λ :
∐
h∈RX

kT → X

induced by the arrows in RX = {h : kT → X}, is a regular epimorphism, and so it is the
coequalizer of its kernel pair λ0, λ1 : N(λ) ⇒

∐
kT. On the other hand, for any h ∈ RX

we have an arrow αT (h) : kT → Y, and then a canonical morphism

µ :
∐
h∈RX

kT → Y

It suffices to prove that µ coequalizes λ0 and λ1. For any finite subset S ⊂ RX , consider
the following diagram

N(S)

nS

��

s0 //
s1

// k(sT ) =
∐

S kT

jS
��

λS

((RRRRRRRRRRRRRRRRR

N(λ)
λ0 //

λ1

//
∐

RX
kT

λ
// X

where jS is the colimit injection, λS = λ · jS, N(S) is the kernel pair of λS, nS is induced
by the universal property of N(λ), and s is the cardinality of S. By exactness of filtered
colimits in E , the diagram 〈nS : N(S) → N(λ) | S ⊂ RX , S finite〉 is a colimit. Moreover,
by condition (RB), the family of arrows

Rs0,s1 = {c : kT → N(S) | s0 · c = kf0 , s1 · c = kf1 for some sT T
f0oo f1 // sT in C}
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is (regular) epimorphic. Finally, to verify the equation µ ·λ0 = µ ·λ1, it is enough to verify
the equation µ · λ0 · nS · c = µ · λ1 · nS · c for all c ∈ Rs0,s1 and for any finite subset S of
RX , and this last equation holds by naturality of α.

4.9. Remark. Observe that to prove implication 2 ⇒ 1 we just need condition (B) on
k, and not condition (RB). So we can replace in the statement of the previous proposition
condition (RB) by conditions (B) and (RF2).

We denote by Loc[E ,Alg(C)] the full subcategory of GeoMor[E ,Alg(C)] given by the
localizations. We denote by FullyRFilt‘[C, E ] the full subcategory of RFilt‘[C, E ] given
by those fully regular filtering functors which preserve finite coproducts.

4.10. Corollary. The equivalence of categories

Adj[E ,Alg(C)] ' ‘[C, E ]

restricts to an equivalence

Loc[E ,Alg(C)] ' FullyRFilt‘[C, E ]

5. Geometric morphisms and localizations of module categories

Throughout the section, R is a ring with unit and R-mod is the category of unitary left
modules over R. Let us denote by R the preadditive category with just one object, say T,
and with the elements of R as arrows, the composition being given by the product in R.

Given an additive functor κ : R → E , where E is a cocomplete abelian category, we
denote by

κ! : R-mod → E

the left Kan extension of κ along the full embedding R→ R-mod, and by

κ∗ : E → R-mod

the right adjoint of κ!. The following condition on the functor κ : R → E is the abelian
version of condition (RF3):

(AF3) For any matrix M = (aij) ∈ Rn×m, the family of arrows

{w′ : κT → Ker(κM) | w = 〈wj〉 ∈ Rm such that for all i = 1, . . . , n,
∑
j

aij·wj = 0}

where e : Ker(κM) → κTm is a kernel of κM = (κaij) : κTm → κT n and e · w′ =
〈κwj〉, is (regular) epimorphic.

(The word “regular” can be avoided because E is abelian, so that any epimorphism is
regular.) As a special case of Proposition 4.3, we get the following:
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5.1. Proposition. Let κ : R → E be an additive functor into a cocomplete abelian cat-
egory E with exact filtered colimits. The following conditions are equivalent:

1. κ∗ : E → R-mod is a geometric morphism;

2. κ : R→ E satisfies condition (AF3).

Proof. Let CR be the theory of unitary R-modules (that is, CR is equivalent to the full
subcategory of R-mod of finitely generated free objects). The category R embeds into
CR as R = CR(T, T ), and the categories R-mod and Alg(CR) are equivalent. Moreover,
the additive functor κ : R → E extends in a unique way to an additive functor k : CR →
Alg(CR), and it is easy to check that, up to the equivalence R-mod ' Alg(CR), the Kan
extension κ∗ : R-mod → E coincides with the Kan extension k∗ : Alg(CR) → E of k along
the Yoneda embedding. To apply Proposition 4.3, it remains to show that k is regular
filtering (Definition 4.1) iff κ verifies condition (AF3). In fact, conditions (RF1) and (RF2)
are always verified (respectively, because in E the terminal object is a zero object, and
because finite products are biproducts), and the equivalence between (RF3) and (AF3) is
just the standard equivalence between kernels and equalizers in an abelian category.

5.2. Remark. When E is of the form S-mod, for S a ring with unit, to give a functor
κ : R→ E amounts to give an S-R-bimodule M, and the Kan extension κ! is the functor

M ⊗R − : R-mod → S-mod

Condition (AF3) amounts then to the flatness of M.

Consider again an additive functor κ : R → E . We state now the abelian version of
conditions (RA) and (RB) of Definition 4.6, as well as a simplified version of condition
(AF3):

(AA) The object κT is a generator for E ;

(AB) For any arrow a : κT → κT in E , the family of arrows

Ra = {κr : κT → κT | r ∈ R and a · κr = κs for some s ∈ R}

is epimorphic;

(AF3’) For any y ∈ R such that κy = 0: κT → κT, the family of arrows

Ey = {κs : κT → κT | s ∈ R such that y · s = 0}

is epimorphic.

5.3. Proposition. Let κ : R → E be an additive functor into a cocomplete abelian cat-
egory E with exact filtered colimits. The following conditions are equivalent:

1. κ∗ : E → R-mod is a localization;

2. κ : R→ E satisfies conditions (AA), (AB) and (AF3’).
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Proof. With the same notations of the proof of Proposition 5.1, we have to prove that
κ : R → E satisfies conditions (AA), (AB) and (AF3’) iff its extension k : CR → E sat-
isfies conditions (RA), (RB) and (AF3). Clearly, (RA) and (AA) are equivalent (see
Remark 4.7). Moreover, (RB) implies (AB). To see this, just take A = B = T,X = κT
and b the identity on κT in (RB).

We show now that (AA) and (AB) imply (RB). For it, let us start showing that (AA)
and (AB) implies the following condition:

(?) For any arrow b : X → κT in E , the family of arrows

{c : κT → X | b · c = κt for some t ∈ R}

is epimorphic.

Indeed, for any arrow x : κT → X, we get an epimorphic family by applying (AB) to
the composite b · x : κT → κT. By (AA), we can past together all these families (for
x varying in E) and we get a new epimorphic family which is contained in the family
under consideration in condition (?). Finally, since the objects A and B in (RB) are finite
copowers of T, one can show that (RB) follows from (AB) and (?) by induction.

To apply Proposition 4.8, it remains to compare conditions (AF3) and (AF3’). Clearly,
(AF3) implies (AF3’): since κy = 0, its kernel is κT. Now condition (AF3) withm = n = 1
is precisely (AF3’). Conversely, one can prove, working by induction on n, that (AF3’)
implies the following condition:

(??) For any 〈yi〉 ∈ Rn such that 〈κyi〉 = 0: κT → κT n, the family of arrows

E〈yi〉 = {κs : κT → κT | s ∈ R such that yi · s = 0 for all i}

is epimorphic.

Finally, we prove that (AA), (AB) and (??) imply (AF3). Let M ∈ Rn×m be a matrix as
in (AF3) and consider the family

{c : κT → Ker(κM) | e · c = κdc for some dc ∈ Rm}

For any such c, fix an arrow dc ∈ Rm such that e · c = κdc, and consider the family

{κbc : κT → κT |M · dc · bc = 0, bc ∈ R}

Now, if we put w = dc ·bc, we get w′ : κT → Ker(κM) as in condition (AF3). This induces
an arrow

λ :
∐
c

(
∐
bc

κT ) →
∐
w

κT

Consider the diagram ∐
c(

∐
bc
κT )

‘
c ϕc //

λ
��

∐
c κT

ϕ

��∐
w κT ψ

// Ker(κM)
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where ψ, ϕ and ϕc are induced by the corresponding families of arrows in E . By condition
(RB) (with a = e and b the unique arrow Ker(κM) → κT 0), ϕ is an epimorphism. By
condition (??) applied to M · dc, each ϕc is an epimorphism. Finally, a diagram chase
shows that the previous diagram commutes, so that ψ is an epimorphism.

In [6], the localizations of the form κ∗ : E → Add[Aop,Ab], where A is a small pread-
ditive category and Add[Aop,Ab] is the category of contravariant additive functors from
A to the category of abelian groups, are classified. Proposition 5.3 is precisely the main
result of [6] in the particular case of A being a one-object preadditive category, that is a
ring with unit.

5.4. Remark. To finish, we point out that localizations of the form Loc[E ,Add[Aop,Ab]]
can be always reconduced to localizations of the form Loc[E , R-mod]. Indeed, by Gabriel-
Popescu’s theorem, the category Add[Aop,Ab] itself is a localization of R-mod, say

Add[Aop,Ab]
r

// R-mod
loo

(take as generator G the coproduct of all representable presheaves, and as ring R the ring
of endomorphisms of G). Therefore, we can define a functor

Adj[E ,Add[Aop,Ab]] → Adj[E , R-mod] (L a R) 7→ (L · l a r ·R)

and the adjunction (L a R) is a geometric morphism (respectively, a localization) if and
only if the adjunction (L · l a r ·R) is a geometric morphism (respectively, a localization).
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Université catholique de Louvain
Chemin du Cyclotron 2
B 1348 Louvain-la-Neuve, Belgique
Email: centazzo@math.ucl.ac.be, vitale@math.ucl.ac.be


