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Abstract. This paper is an attempt to study extensions of sym-
metric categorical groups from a structural point of view. Using in
a systematic way bilimits in the 2-category of symmetric categorical
groups, we develop a theory which closely follows the classical the-
ory of abelian group extensions. The basic results are established
for any proper class of extensions, and a cohomological classification
is obtained for those extensions whose epi part has a categorical
section.
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Introduction

Extensions of categorical groups have been extensively studied in [2, 3, 4,
5, 6,7, 8,9, 10, 14, 20, 25], and remarkable applications to the classification
of homotopy types and to equivariant group cohomology have been found. In
most of the works on this subject, the chosen class of “epimorphisms” between
categorical groups is that of Grothendieck dense fibrations. This class does not
have good 2-categorical properties, basically because it is not stable under nat-
ural isomorphisms. We have therefore tried to replace the class of Grothendieck
dense fibrations with a class having a better 2-categorical behaviour.

Since an epimorphism of abelian groups is a morphism with a set-theoretical
section, our first idea was been to consider, as epimorphisms between symmetric
categorical groups, those symmetric monoidal functors having a categorical sec-
tion. This class is stable not only under natural isomorphisms, but also under
bi-pullbacks. These facts allowed us to use in a systematic way bi-limits and
bi-colimits, so that to develop the basic algebra for extensions in a way which
closely follows the classical theory of abelian group extensions.

While doing this, we realized soon that, at least as far as the basic alge-
bra is concerned, only few stability properties are needed. We decided then to
rewrite the theory in terms of “proper classes” of extensions, having as exam-
ples extensions with a categorical section, extensions with a graph-theoretical
section, and also the more general class of extensions in which the epi part is
simply a functor essentially surjective on objects. This last class seems to be the
most general one which supports the constructions of basic algebra. It has been
independently considered by A. Rousseau in his Ph. D. Thesis [20], where exten-



sions of (not necessarily symmetric) categorical groups are classified following
Breen-Grothendieck approach in terms of monoidal fibrations of bitorsors.

The present paper is organized as follows:

After recalling basic facts on categorical groups (Section 1), in Section 2 we give
the definition of extension of symmetric categorical groups and we show that
the 2-category EXT(C, A) of extensions of A by C is a 2-groupoid. In Section
3 we compare extensions of symmetric categorical groups with extensions of
abelian groups. Section 4 is devoted to trivial and split extensions. In Section 5
we discuss bi-pullbacks and bi-pushouts of symmetric categorical groups. They
are used in Sections 6 and 7 to compare EXT and Hom and to show that EXT
measures whether a morphism can be extended or lifted. Sections 8 and 9 con-
tain definition, basic facts and some examples of proper classes of extensions. In
Section 10, we establish the fundamental 2-exact Hom-Ext sequences obtained
by an extension. Section 11 is devoted to projective (and injective) objects. In
Section 12 we show that EXT measures the non-exactness of Hom. In Section
13 we define the 2-dimensional analogue of Baer sum, making Ext(C, A) into a
symmetric categorical group. The last two sections are devoted to a cohomologi-
cal classifications of F-extensions (i.e. those extensions of symmetric categorical
groups whose epi part has a categorical section). We define a convenient no-
tion of cobord and symmetric cocycle and we obtain a categorical equivalence
between the symmetric categorical group of F-extensions and the symmetric
categorical group of cocycles modulo cobords.

All along the paper, we restrict our attention to symmetric categorical groups
and monoidal functors compatible with the symmetry. Several results contain a
part stated in terms of bi-limits only (or proved using only bi-limits) and a dual
part involving bi-colimits. It is a general fact that the part involving only bi-
limits holds also for not necessarily symmetric categorical groups and arbitrary
monoidal functors.

To end this introduction, let us point out two major open problems.

Clearly, working with symmetric categorical groups instead of braided cate-
gorical groups, we loss some relevant examples. The reason why we restrict our
attention to the symmetric case is that the cokernel of a morphism (as well as
basic properties on 2-exact sequences based on the duality kernel-cokernel, see
[16]) is a main ingredient in our analysis, and its description is known, up to now,
only for morphisms between symmetric categorical groups. Moreover, several
definitions and constructions we use seem much more delicate if we have only a
braiding instead of a symmetry (they are so delicate that we suspect that the
right context to study the non-symmetric theory could be that of bigroupoids,
instead of categorical groups).

Another problem concerns projective objects (in the sense of Definition 11.1)
in the 2-category of symmetric categorical groups. The notion of projectivity
is crucial in the classical theory, but, unfortunately, we do not know if the 2-
category of symmetric categorical groups has enough projective objects. (It
would be interesting to solve this problem in order to appreciate the strong
specialization done in Sections 14 and 15, where we consider only F-extensions.)

Finally, we would like to thank the members of the Granada school in cat-



egory theory for several stimulating and useful discussions the second author
had with them when he was visiting Granada in summer 2001. We also thank
the referee for his help in comparing F-extensions with the classification of
extensions established in [20].

1 The 2-category SCG

Let us fix some notations. In any category, the composition is written diagram-

matically, that is X EER Yy —L~ 7 is written f - g. The identity arrow is
1 =1x:X — X (but the identity natural transformation on a functor F' is
called F). If C is a monoidal category, we write I = I¢ for the unit object, ® for
the tensor product, a = axy,z: (X®Y)®Z — X®(Y ®Z) for the associativity
isomorphism, | = lx: I ® X — X andr =ry: Y ® I — Y for the unit iso-
morphisms. (Ab)using the coherence theorem for monoidal categories, we often
assume the associativity isomorphism to be the identity. If C is symmetric, we
write v =vx,y: X®Y — Y ® X for the symmetry. If F': C — D is a monoidal
functor, we denote its monoidal structure by Fx y: F(X)@ F(Y) - F(X®Y)
and Fy: I — F(I). For any category C, we write moC for the (possibly large) set
of isomorphism classes of objects. If C is monoidal, 71 C is the commutative (see
[18]) monoid C(I,I). A categorical group (cat-group, for short) is a monoidal
groupoid in which each object is regular, i.e. it is invertible, up to isomorphism,
with respect to the tensor product. If G is a cat-group, we fix, for each object
X, a dual object X*, with unit and counit nx: I - X @ X*,ex: X*® X — I.
Iff: X—>YisinC, f*: Y* - X* is given by

18(f®1)

1
Yoy e I —2ys @(X® X*) Y* @Y ©X*)~

~ (Y eY)e X* X @ Xt~ X7

Basic facts on monoidal categories and cat-groups can be found in [11, 12, 13,
15, 16, 19, 21, 23, 24, 26].

The 2-category SCG has symmetric cat-groups as objects, monoidal functors
compatible with the symmetry as 1-cells, and monoidal natural transformations
as 2-cells (observe that they are natural isomorphisms, because cat-groups are
groupoids). Note that mo and 7; extend to two 2-functors from SCG to the
discrete 2-category Ab of abelian groups. Moreover, a 1-cell F': A — B in SCG
is an equivalence if and only if mo(F') and 71(F) are isomorphisms in Ab (see
[16)).

Let us recall now, from [16], the universal property and a construction for
kernels and cokernels in SCG. (As a matter of convention, each time that we
consider some kind of limit or colimit in SCG, it is to be understood in the sense
of bi-limit or bi-colimit, see [22].) Given a 1-cell ¥: B — C, its kernel is given



by a triple (KerX, ex, ex)

(where 0: KerY — C is defined by 0(f) = 1; for each arrow f in KerX) such
that, for any other triple (D, F, ¢)

there are F': D — KerX and ¢': F’ - ex = F such that the following diagram
commutes

F e -E%F’
p) -0

w'-zﬂ ﬂ

e
F-X 5 0

Moreover, if F”: D — KerX and ¢”: F’ - ex = F make commutative the
analogous diagram, then there is a unique ¥: F’ = F” making commutative
the following diagram

P-e
62:2}7”'

N A

As any bilimit, the kernel is determined, up to equivalence, by its universal
property. It can be described as the comma category having as objects pairs
of the form (X € B,ex: X(X) — I). The functor ey forgets ex and ex (X, ex)
is ex. In fact, this description could be called the standard kernel, because it
satisfies another universal property: if F' and ¢ are as before, there is a unique
F’ such that F' -ex = F and F’ - ex = . We always use the first universal
property, but the second one is sometimes useful to avoid ¢’ and then to simplify
notations.

The cokernel is defined by the dual universal property. In the following diagram,
we fix the notations for the cokernel of a 1-cellI': A — B

— > Coker

\”/



Objects of CokerI" are those of B. An arrow X — Y in CokerI is an equivalence
class of pairs of the form (f, A), with A an object of A and f: X - Y @ '(A)
an arrow in B. Two pairs (f, A) and (f’, A") are equivalent if there is g: A — A’
in A such that f - (1y ® 'g) = f’. Once again, we get in this way a standard
cokernel.

2 The 2-category of extensions

We want now to define extensions of symmetric cat-groups. For this, consider
the following diagram in SCG :

A—2 .

NA

B

and the corresponding factorizations through the kernel of ¥ and the cokernel
of T'
CokerI"

KerX®

Recall, from [16], that the triple (T, ¢, ) is 2-exact when Ty is full and essen-
tially surjective on objects or, equivalently, when ¥, is full and faithful.

Proposition 2.1 The following conditions are equivalent :
1) The triple (T, ¢, X) is 2-exact, T is faithful and ¥ is essentially surjective;
2) Ty is an equivalence and ¥ is essentially surjective;
3) T is faithful and g is an equivalence.

Proof. Obvious, because Pr is essentially surjective and ey is faithful. O

We are ready to give the definition of extension (compare with Definition
3.2.1 in [20]).

Definition 2.2 Let A, C be in SCG ;
1) An extension of A by C is a diagram (T, ¢, %) in SCG

NA

B

\o

A C



which satisfies the equivalent conditions of Proposition 2.1. We write also
(T,0,%): A — B — C for such an extension;

2) If (T, ¢, %) and (T, ¢, %) are two extensions of A by C, a 1-cell
(@, B,7): (0,0, 8) — (I, ¢, X)

is given by a 1-cell B and two 2-cells o,y in SCG as in the following
diagram

B/

such that the following diagram commutes

T-
r-8.%=——"—=7.3%

F’-Z’:>O§
]

3) If (Ot, Ba ’7)7 (O/a ﬁ/a 7/): (Fa ' Z) - (F/7 90/7 2/) are 1_66”57 a 2-cell
b: (a, B,7) = (&, 5,7
is a 2-cell b: B = B in SCG such that the following diagrams commute

I fg=—=>—er.g Bow =t .5y

Proposition 2.3 With the obvious compositions and identities, the data of Def-
inition 2.2 define a 2-category EXT(C, A).

We write Ext(C, A) for the classifying category of EXT(C, A), i.e. Ext(C,A)
has the same objects as EXT(C,A) and, as arrows, 2-isomorphism classes of
1-cells in EXT(C, A).

Example 2.4 Let F: A — B be a morphism in SCG. The following diagrams
are extensions

KerF — 2%~ Coker(er) Ker(Pr) ————— CokerF

N \ s



Our first result on extensions will be the 2-dimensional analogue of the Short
Five Lemma, that is the fact that EXT(C, A) is a 2-groupoid. This has been
independently proved also in [20]. We sketch the proof for the reader’s conve-
nience and because we deduce this fact from a slightly more general argument.
We need a notation: if A is an abelian group, we write A[1] for the symmet-
ric cat-group with only one object and such that m (A[1]) = A; we write A[0]
for the discrete symmetric cat-group such that 7y(A[0]) = A. Both (—)[0] and
(=)[1] extend to morphisms. (Of course, A[0] and A[1] are strict cat-groups.
Compare with [1], where classical homological algebra is developed in terms of
higher strict n-cat-groups.)

Lemma 2.5 Let (f,g): A — B — C be an exact sequence of abelian groups.

1) If f is a monomorphism, then (f[0],=,¢[0]): A[0] — B[0] — C]0] is a

2-exact sequences of symmetric cat-groups;

2) If g is an epimorphism, than (f[1],=,g[1]): A[l] — B[l] — C[1] is a
2-exact sequences of symmetric cat-groups.

Proposition 2.6 Consider a morphism in SCG together with its kernel and its
cokernel,

e P,
KerF —= G i H —— CokerF .

Then the following diagram (where 1 is the symmetric cat-group with only one
arrow, and \ and p are defined in the proof) is a 2-exact sequence of symmetric
cat-groups

m1(er)[0] (G)[0] w1 (F)[0]

1——— m (KerF)[0]

er F Pr

1 (H)[0] —2—> KerF G H CokerF

@] 2N e (Coker F)[1] —— 1

Proof. Since m preserves kernels, mg preserves cokernels and both send 2-
exact sequences into exact sequences [27], 2-exactness in m (KerF')[0], 71 (G)[0],
mo(H)[1] and 7o(CokerF)[1] follows from the previous lemma. 2-exactness in G
and H is obvious. It remains to check 2-exactness in m (H)[0], KerF, CokerF'
and mo(G)[1]. This is straightforward, once A and p defined. From [16], recall
that mo(Ker) and 71 (CokerF’) are isomorphic (in fact, they are equal if we use
the description of Ker and Coker given in Section 1).

The functor A corresponds to m1(Pp): m(H) — 71 (CokerF) = mo(KerF); ex-
plicitly, A: m (H)[0] — KerF sends h: I — I to (I, F; ' - h: F(I) — I).

The functor p corresponds to mo(ep): m (CokerF) = mo(KerF') — mo(G); ex-
plicitly, p: CokerF — mo(G)[1] sends [f, G]: Hy — Hs to [G]: x — . O



Corollary 2.7 Let F: G — H be a morphism in SCG. The following is an
exact sequence of abelian groups

T T w1 (P,
00— m (KerF) (er) m1(G) S 7r1 (H) m ) 71 (Coker F)
7o (P, ™ o (e
0 <—— mo(CokerF) of F7)TO(H O(F)WO(G) o F)ﬂ’o(KeI“F)

Proposition 2.8 Let A and C be in SCG.

1) The 2-category EXT(C, A) is a 2-groupoid, i.e. each 2-cell is an isomor-
phism and each 1-cell is an equivalence;

2) The category Ext(C, A) is a groupoid.

Proof. 1) We use the notations of Definition 2.2. To prove that 2-cells are
isomorphisms, one simply checks that, if b: (o, 3,7) = (o/,3',7') is a 2-cell in
EXT(C,A), then b=1: 8’ = B is a 2-cell (o/,3,7") = (a,3,7) in EXT(C, A).
Consider now a 1-cell («, 3,7): (T, ¢, %) — (I, ¢’, %) in EXT(C, A). Consider
also the factorizations 8: Ker®Y — KerY and : CokerI' — CokerI” induced,
respectively, by (3,7) and (a, 3). A straightforward direct computation shows
that the following four squares commute

mo(Kers) <L (a) <20 (CokerT) 5L 1 () s 1 (Kers)

m(,@)i 1J{ m(ﬁ)l J{1 J/WO B)

mo(KerY') <—— mp(A) =<—— w1 (Cokerl”) —= 71 (C) — mo(KerX)
7o (T'G) w1 (') ™1 (20) mo(A')

The commutativity of the first and the third square means that mo(3) and
m1(f) are isomorphisms. Now we can particularize Corollary 2.7 taking, as F,
the functors ¥ and ¥/. We obtain the following commutative diagram with exact
rows

m(C) 2% 0 (Kers) L 1 (B) 70(C) —— 7o (CokerE) = 0

| e

m1(C) — mo(KerX) 7o (B’ 7o(C) —— mo(Coker¥’) =0
mo(\) mo(esr) o (%)

o (2)

(the zeros are due to the fact that ¥ and ¥/ are essentially surjective). By the
Five Lemma, 7y(() is an isomorphism. In an analogous way, we can particu-
larize Corollary 2.7 taking, as F, the functors I' and I'V. We have the following



commutative diagram with exact rows

m1(T) 71 (Pr) m1(p)

0 =m(Kerl') ——m1(A) w1 (B) m1(Cokerl") —— my(A)

N
1(

0 =m (Kerl") —— m1(A) —= m1(B’) —— m1 (Cokerl") — mo(A)
w1 (T) w1 (Prr) w1 (u')

(where the zeros are due to the fact that I and I are faithful). The Five Lemma
implies now that 71 () is an isomorphism. This implies that 3: B — B’ is an
equivalence in SCG. Consider the adjoint equivalence in SCG

BB —=B;n:lg=>p6-6" e8> 1w
and put

r. -1
el P—— . 3.1 —2 .51

-1 / -1,

gl == g1 g L0 g1y
It is now straightforward, using triangular identities for (n,¢), to check that
(2,874 y): (T7,¢, %) — (T,¢,%) is a 1-cell and 7, € are 2-cells in EXT(C, A).
2) Obvious from 1). O

3 Abelian group extensions

The comparison between abelian group extensions and extensions of symmetric
cat-groups is the object of this short section. First, observe that we can complete
Lemma 2.5 in the following way.

Lemma 3.1 Let (f,g9): A — B — C be an extension of abelian groups. Then
(f10],=,g[0]): A[0] — B[0] — C[0] and (f[1],=,g[1]): A[1] — B[1] — C[1] are
extensions of symmetric cat-groups.

Proof. If0 — A — B — C — 0 is exact, then 1 — A[0] — B[0] —
C[0] — 1 is 2-exact. In particular, the 2-exactness in A[0] means that f[0] is full
and faithful, and the 2-exactness in C[0] means that ¢[0] is full and essentially
surjective. The same argument works for A[1] — B[1] — C[1] . O

The converse is not true, in the sense that if (I', ¢, X): A - B — C is an ex-
tension of symmetric cat-groups, then in general neither (7o (T"), mo(2)): mo(A) —
mo(B) — 7o(C) nor (m (1), 71(2)): m1(A) — 71 (B) — m1(C) are extensions of
abelian groups (respectively because mo(I") in general is not injective and m (X)
in general is not surjective.



Lemma 3.2 Let (I, p,%X): A — B — C be an extension of symmetric cal-
groups.

1) If m(A) = 0 = m(C) then m(B) = 0 and (mo(T),70(X)): mo(A) —
mo(B) — mo(C) is an extension of abelian groups;

2) If mo(A) = 0 = mo(C) then mo(B) = 0 and (m(T),m1(X)): m(A) —
m1(B) — 71 (C) is an extension of abelian groups.

Proof. 1) If we apply 7, we get an exact sequence 0 — m1(B) — 0, so that
71 (B) = 0. Moreover, since m1(C) = 0, then ey is full (see [16]). But then also
T is full, so that mo(T") is injective.

2) If we apply 7o, we get an exact sequence 0 — m(B) — 0, so that mo(B) = 0.
Moreover, since my(A) = 0, then Pr is full (see [16]). But then also 3 is full, so
that 71 (X) is surjective. O

Note that, in the situation of Lemma 3.2, if m1(B) = 0, then 71 (A) = 0
(because my preserves kernels), but in general 71 (C) # 0 (because the cokernel
of a morphism between discrete cat-groups in general is not dicrete). Dually,
if mo(B) = 0, then mo(C) = 0 (because my preserves cokernels), but in general
mo(A) # 0.

We can summarize the previous discussion in the following proposition.

Proposition 3.3 Let A and C be two abelian groups. The (discrete) 2-groupoids
EXT(CI0], A[0]), EXT(C[1], A[1]) and EXT(C, A) (the classical groupoid of ex-
tensions of A by C) are equivalent.

4 Trivial extensions

Consider two symmetric cat-groups A and C; the product category A x C with
the obvious projections and injections

i ic

A< AxcEsC A AxC C

satisfies the universal properties of the product and of the coproduct in SCG.

Example 4.1 If A, C are in SCG, then

T(A,C): A—2>AxCZ>C

(with the identity 2-cell iy - pc = 0) is an extension of A by C. We call it the
trivial extension of A by C.

Definition 4.2 An extension (I, 0, X): A — B — C is a split extension of A by
C (or, in short, splits) if it is equivalent, in EXT(C, A), to the trivial extension
T(A,C).

Lemma 4.3

10



1) Let
1
C——C
#
s b

B
be in SCG; then (ex,ex,X): KerX — B — C is a split extension of KerX
by C ;

2) Let
1
A—"—>A
p
T
N
B
be in SCG; then (T,nr, Pr): A — B — CokerI' is a split extension of A
by CokerI.
Proof. We give a detailed proof of part 1) (part 2) is similar) because it is
our first example of proof using the universal property of a (bi)limit. We need
a 1-cell in EXT(C, KerX)

KerYX x C

KerY § B 4 C
X\ /
B

By the universal property of the coproduct Ker x C, we get a 1-cell 8 and two
2-cells a, 0 in SCG

KerY x C
KerY B0 C
R /
B
Now we have two 2-cells in SCG
. %)) € .
Y1t iKers 30X = ex - X ==>0 1Kers * PC
Yoiic B8 e Sy ===1c ic - pc

11



By the universal property of the coproduct KerY x C, there exists a unique
2-cell v: B3 = pc in SCG such that ixes -7 =1 and ic -y = ¥2. It remains
to check that («, 3,7): T(Ker3,C) — (ex,ex,X) is a 1-cell in EXT(C, KerY).
This means to check the commutativity of

iKers: Y

TKers - ﬁ Y ——> IKern - pe

a.zﬂ ﬂ

ey - b == 0
which, by definition of v;, amounts to ikers - ¥ = V1. O
Corollary 4.4 Let
A — C
®
i
A
B

be in EXT(C, A). The following conditions are equivalent :
1) The extension (', p, %) splits ;
2) There exist S: C—B and o: S-X = 1¢ in SCG ;
3) There exist R: B — A and p: T'- R = 1, in SCG.
Proof. 1) = 2): Given («,3,7): T(A,C) — (T, ¢,X) in EXT(C, A), put

S=ic-Bando: S-S =ic B ¥ —ic-pc—=1¢c.

2) = 1) : By Lemma 4.3, using that the equivalence I'g: A — KerX induces
a biequivalence EXT(C, A) ~ EXT(C, KerY) in which (T', ¢, ¥) corresponds to
(eg, €y, E)

1) = 3) = 1) : Similar. O

In view of some applications to 2-exact sequences, we need a more precise
formulation of Corollary 4.4. For this, fix an extension (I',p,%): A - B — C
of A by C and consider the category Split(X) :

- objects are pairs (S: C — B, 0: S-X = 1¢) in SCG ;

- an arrow A: (S,0) = (57,07) is a 2-cell A: S = S’ in SCG such that the
following diagram commutes



Consider also the trivial extension T'(A, C).

Lemma 4.5 Composition with ic: C — A x C induces an equivalence
¢ —: EXT(C,A)(T(A,C), (T, ¢,X)) — Split(X)

Proof. Let us describe explicitly the functor ic - —

- Given a 1-cell (a, 8,7): T(A,C) — (I, 9, %) in EXT(C, A), we obtain an

object (C —S> A x C —2> B ,icy: ic-4-5 = ic-pe = 1¢) in Split() ;

- Given a 2-cell b: (aa ﬁv ’Y) = (O/a 6/7 fyl) : T(Aa (C) - (Fa ' 2) in EXT(Ca A):
then the second condition on b in Definition 2.2 means that ic - b: (ic
Byic-v) = (ic- B ,ic -v') is an arrow in Split(X).

Now we check that i¢c - — is an equivalence :

Faithfulness : let b: (o, 8,7) = (o, #',7) be another 2-cell in EXT(C, A). Since
o is a natural isomorphism, by the first condition on b and b in Definition 2.2
we have that 44 -b = i - b. If, moreover, we assume that ic-b = i¢-b, then b = b.
Fullness : let \: (ic - B,ic - v) = (ic - #,ic - 7') be an arrow in Spht( ) and

/=1
consider iy -3 ="=>T % ia - 3 . By the universal property of the coproduct

A x C, we get a unique 2-cell b: 3 = 3’ in SCG such that

ZA ﬂﬁa& ﬁ/

N\ A

commutes and ic - b = A. It remains to check the commutativity of

/6 E/ > ﬂ/ E/

One can do this precomposing with iy and ic and using, respectively, that
(o, B,7) and (¢, 3',7") are 1-cells in EXT(C, A) and the condition on A to be
an arrow in Split(X).

Essential surjectivity : this is the part already proved in Lemma 4.3 (write
everywhere A, ¢ and I insted of Ker, ey, and ey). It remains only to check that
0: (ic - Byic-y) = (S,0) is an arrow in Split(X), but this is exactly the second
condition on + in the proof of Lemma 4.3. O

13



For later use, let us write explicitly a consequence of Lemma 4.5. Let
(z,L,y): (T1,01,%1) — (T2, 92, X2) be a 1-cell in EXT(C, A)

B,

For each pair of 1-cells
(a1, B1,m): T(A,C) — (T, 01,%51) (a2, 82,72): T(A,C) — (T2, 2, X2)

in EXT(C, A), there is a bijection between 2-cells b: (a1, f1,71) « (z,L,y) =
(ag, Ba2,72) in EXT(C, A) and arrows

Sl' o
/\:(Ciﬂ]ggli)]gbsl.ﬂ S 2 6y 2 1) =

(C =225 By, S -9 =2 1),

in Split(X3), where (S1,01) and (Sz, 02) correspond to the extensions (I', ¢1, 21)
and (Tg, p2, X2) via the equivalences

ic - —: EXT(C,A)(T(A,C), (T1,¢1,%1)) — Split(S;)
ic - —: EXT(C,A)(T(A,C), (I, 2, 52)) — Split(S) .

This bijection sends b: 1L = fBainto A\: S1-L=1ic-[1- L %i@ B =S5.

Clearly, given an extension (I', ¢, X)), instead of ¥ one could consider I' and
obtain a dual lemma perfectly analogous to Lemma 4.5. We leave this to the
reader.

5 Pullbacks and pushouts in SCG

To compare EXT and Hom, as well as to define the 2-dimensional analogue of
Baer sum, we need pullbacks and pushouts in SCG (in the sense of bilimits, of
course).

Let us start with pushouts. First, we recall the universal property: given
two l-cells F: A — B and G: A — C in SCG, their pushout is a diagram in
SCG of the form



such that, for any other diagram in SCG

A
|
B

there exist a 1-cell /X : FUG — D and two 2-cells o : ip- K = H | oF
K = K in SCG such that the following diagram commutes

C
|
D

)

J

Pl
Foip-ohK ———>p. g

iF‘,G'SOH'K\H ﬂ“’

G~ic~¢H’KT>G~K;

moreover, if 7K FUG - D, % ip -0 = H |, p8:iq -0 = K

satisfy the same condition, then there is a unique 2-cell 1: 1K = MK in
SCG such that the following diagrams commute

\/ \/

Passing through the description of cokernels in SCG given in [16] and the
obvious description of coproducts in SCG, we get an explicit description for
pushouts :

- Objects of F'U G are those of B x C ;

- A pre-morphism is a triple (f, A, ¢g): (B1,C1) — (B2,C3), with A an object of
A f: Bl >FA®ByinBand g: C1 ® GA— Cyin C ;

- A morphism is an equivalence class of pre-morphisms :

(f,A,9),(f,A,9): (B1,C1) — (Bz,Cs) are equivalent if there exists a: A — A
in A such that f- (Fa®1) = f and (1 ® Ga)-g = g ; we write [f, 4, g] for the
equivalence class of a pre-morphism (f, A, g) ;

- The composition of

[f,A.g] [f',A"9"]

(B1,C1) (Ba, C3) ———— (B3,(C3)

is, up to associativity, [f- (1® f') - (Fa,a ®1),AQ A", (1® GZ}A,) (g®1)-4g];
- The tensor product of

[f,A,g] [f,A%,g"]

(B1,Ch) (Bg,C2) with (B1,Cq) (Bj, C3)

15



is[(fef) 10781)- 19010 Fia),A0A, (101G ") 1ey®1)-
(9®9)]: (B1® B}, C1®Cy) — (B2 ® By, C2 ® C3)

-ip: B — FUG sends f: By — Bs into

[fléi (FI®1)313(1®GI_1) 'll}: (Blvl) - (B27I) 5

-ig: C— FUG sends g: C; — (s into

[T;I (1®F1),I,(1®G;1) Ty '9]3 (1701) - (LCQ) )

-ipg: F-ip = G- ig is defined, for each A in A, by

irg(A) = [r;i‘,A,lGA]: ip(FA) = (FA,I)— (I,GA) =ig(GA) ;

- K FUG — D sends [f, A, g]: (By,C1) — (Ba,Cs) into

H(By) ® K(Cy) ~ K(Cy) ® H(B))
1QHf

K(C1) ® H(F(A)® By) ~ K(C1) ® H(F(A)) ® H(Bs)
1®pa®1

K(C1) @ K(G(A)) ® H(By) ~ K(Cy @ G(A)) @ H(Bs)

Kg®1

K(Cz) ® H(Bz) ~ H(BQ) ® K(CZ)

- ip - oK = H is defined, for each B in B, by

o (B): oK (ip(B)) = H(B) & K(I) — " q(B)eT ~H(B):

- oK ig - oK = K is defined, for each C in C, by

K K H;'®1
e (C): ¢ (i6(C)) = H(I) ® K(C) Te K(C) ~ K(C);
-ap: pHE = pHK g defined, for (B,C) in FUG, by ¢(B,C): g 5(B,C) ~

_ . _ _ 7™ (B)&w™ (O)
P (ir(B)® ™K (ia(0)) H(B)® K(C) = ¢™"¥(B,0).
All what we need about pushouts is the next proposition.

Proposition 5.1 Consider the following pushout diagram in SCG

1) If G is faithful, then ip is faithful;
2) If G is full, then ip is full;

3) If G is essentially surjective, then ip is essentially surjective.



Proof. Everything can be checked directly using the previous explicit descrip-
tion. For example, let us prove point 1. Consider two arrows f,h: B; — B>
in B and assume that ip(f) = irp(h) in F U G. This means that there exists
a: I — I in A making commutative the following diagrams

a1t
T®GI~GI —>7 B~ B ~TeB, " FIoB,
1®G(Q)J/ J/1 1J/ J{F(a)@l
TGl ~GI —>1 B ——=B2~]®By——=FI® By
GI h Fr®l

From the first equation, we have G(«) = 1gy. If G is faithful, this implies that
« = 1;. But then, from the second equation, we get f = h. O

Pullbacks in SCG are easy, in fact they are computed as in the 2-category of
groupoids. We fix the notations for future references and we leave to the reader
to write the universal property and the explicit description.

P
FNG—=—=C
pF=‘$G G

P
B—Fp—A
For pullbacks, the dual of Proposition 5.1 holds.

Proposition 5.2 With the previous notations.
1) If G is essentially surjective, then pr is essentially surjective;
2) If G is full, then pg is full;
3) If G is faithful, then pp is faithful.

6 EXT and Hom

This section is devoted to the construction of new extensions from a given one,
using pullbacks and pushouts.

Let C,D be two symmetric cat-groups; the hom-category Hom(D, C) has an
obvious structure of symmetric cat-group. This plainly extends to a 2-functor

Hom: SCG x SCG — SCG

which reverses the direction of 1-cells in the first variable. Fix now a third
symmetric cat-group A and an extension E = (I',p,¥): A - B — C of A by C.
We need a 2-functor

— . E: Hom(D,C) — EXT(D, A),

17



where we consider Hom(ID, C) as a 2-category with no non-trivial 2-cells.
For this, consider a 1-cell G: D — C in SCG and the pullback of ¥ and G,
together with the comparison, as in the following diagram

where ¢r o, or and ¢ make commutative the following diagram

¥r,0°Ps,G

@ro-ps- X vro-pc-G

erEﬂ ﬂsﬂo-G

[-X=——=0 0-G.

Lemma 6.1 The diagram in SCG

0
i)
¥r,o prc

YNNG

is an extension of A by D ; we denote it by G - E.

Proof. From Proposition 5.2, we know that pg is essentially surjective. The

fact that
A 0 D
f0
\ i /
®r,o jZel

NG

is a kernel of ps can be checked using the universal property of the pullback
>N G and the universal property of

as kernel of X. The detailed proof is long but essentially straightforward, and
we omit it. (]

18



Consider now another 1-cell G’: D — C in SCG and the extension G’ - F
obtained by the pullback

Let u: G = G’ be a 2-cell in SCG ; by the universal property of ¥ N G’, we
obtain a 1-cell : ¥NG — XNG’ and two 2-cells s: B-p5s = px,v: B-par = pa
in SCG such that the following diagram commutes

5'?2,(;/

B-pg- X B-pe -G

. . . !
Py Y=o v - G =7 pa -G

We are looking for a 1-cell in EXT(D, A) induced by u :
NG

Pgr
NG .

As far as « is concerned, we have

®r,0Y ©o ()"
ap: ¢ro - B per =—=— 1,0 ' PG :>O:O><Pf,o el

©r,08 @ ()"
ap: pro - B Pl === P10 DS == ) —=> Pf o - -

Since

#r,0°8Ps, g
901‘,0'5‘17/2'2 @F,O'ﬁ'PG"G/

QB‘E»H« \H/am -G’

Pro Py ¥ ——== 91 P’ G

!
®r,0Ps,q’

commutes, there is a unique 2-cell a: ¢r -3 = ‘P/F,o such that - pe = ap and
a - ps = op.

19



Lemma 6.2 With the previous notations,

(Ol,ﬂ,’y)l (901‘,07 @prG) - (50%,0’ 906317/6”)
is a 1-cell in EXT(D, A); we denote it by - E.

Proof. The condition to be a 1-cell in EXT(D, A) is precisely the equation
a-pgr = ap. O

We pass now to the dual construction, involving pushouts. For this, consider
an extension £ = ([, ¥): A - B — C in SCG and fix a 1-cell F': A — D
in SCG. Consider also the pushout of F' and I' and the factorization as in the

following diagram
r

A——B
Fi iF:‘;" J/ir \E
D——>FUT <
1P
0 %
¢ v
0 C

with *% ¢% and ¢* making commutative the diagram

; 0,2
1LETP

Foip o0 ———=Tip - "%

F.LPOH/ \H/F-gaz

F.0 0 r-x.

Lemma 6.3 The diagram in SCG

FUX
s an extension of D by C ; we denote it by E - F.

Proof. From Proposition 5.1, we know that ¢y is faithful. Moreover, one can
check directly the universal property of the cokernel

20



using the universal property of the pushout FFUT and that of the cokernel
s C
1
r b
B
O

The construction of the extension F - F' of Lemma 6.3 fits into a 2-functor

— . F: EXT(C,A) — EXT(C,D)

A

Let us describe it in detail.
Counsider another extension E' = (I, ¢/, X): A — B’ — C with the correspond-
ing factorization

A—T o

F\L Ry J{lrl\ s
D—>FUl’ wz’\

=

F »'0 ‘POYZ \
! /
0 C

and let (o, 3,7): (T, 0, %) — (I, ¢',X') be a 1-cell in EXT(C, A). By the uni-
versal property of the pushout FUT', we get Sp: FUTI' — FUTY, ap: ip-0Fr =
i, O0p:ir - Bp = [ - ir» making commutative the following diagram

Top

I'ir - Br r-g-ip

iF,F'ﬁFW \H,a.irl

F-ip-fr 77— F iy =—=T1" i .
‘OXp

g1/

Consider now the 2-cells

0,5’ 0 0y—1
;. Qp-p r P ()

. -/ b : 0,2

"/DiZF'BF'(PO’E _ .(pO, 0 ip - %

Since they are compatible with ¢p , there exists a unique yr: Br - 900,2' = 0=
such that ig - v = vp and ip - v = . In particular,

(O[F7ﬂFa’7F): (iFﬁOOv(pO’E) - (i/FﬂD/Oa(pO’Z )
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is a 1-cell in EXT(C, D).

Starting from another 1-cell (o/, 3,7'): (T, ¢, X) — (I, ¢, %) in EXT(C, A),
repeat the previous argument. Consider also a 2-cell b: (o, 5,7) = (/,53,7).
Because of the first condition in the definition of 2-cell, the universal property
of the pushout FUT gives a unique 2-cell bp: fr = [} making commutative
the following diagram

ir-bp irbp

ZF ﬁF:>ZF /6F ZF.ﬁF Zr~ﬂ%

’
x % 6FH/ H(SF
-/
[

/B.il—v b:>/8/ZF/ .
i
To have a 2-cell bp: (o, Br,vr) = (&g, B, vr) in EXT(C,D), it remains to
check the commutativity of

02’

\/

this can be done, via the definition of yg, using the second condition on the
2-cell b and the two equations satisfied by bp.

To end this section, let us summarize the situation just discussed, as well as
the dual situation.

Proposition 6.4 Consider two 1-cells F: A — D,G: D — C in SCG and an
extension E = (', 0, X): A — B — C. The pullback construction gives two
2-functors

— . E: Hom(D, C) EXT(D, A)

G- —: EXT(C,A)

EXT(D, A) .

The pushout construction gives two 2-functors

E-—: Hom(A,D) —— > EXT(C, D)

— . F: EXT(C, A)

EXT(C,D) .

7 First application

As a first, simple application, let us show that EXT measures if a 1-cell can be
lifted (or extended).
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Proposition 7.1 Consider a I-cell G: D — C in SCG and an extension £ =
T,0,2): A—>B—C of AbyC. There exist G:D — B and v: G-¥ = G in
SCG if and only if the extension G - E in EXT(D, A) splits.

Proof. If G- E splits, there is a section S: D — X NG,0: 5 pe = 1p of pc
in SCG. Then one can put G = S - ps and

S-ps.c

Vi S gD s G G =251, .G =C.

Conversely, consider

HD

| s Je

H(C

By the universal property of the pullback ¥ N G, we get

D o D
i’

NG

in SCG U

We state the dual proposition, whose proof is left to the reader.

Proposition 7.2 Consider a 1-cell F: A — D in SCG and an extension £ =
T, X): A—>B—C of AbyC. There exist F:B—-D and¢: T -F = F in
SCG if and only if the extension E - F in EXT(C,D) splits.

8 Proper classes of extensions

As explained in the Introduction, we define now the notion of proper class of
extensions, in order to make results of Sections 10, 11 and 13 available for some
special classes of extensions.

The next definition extends Definition 2.2. It is useful to define proper
classes, and also to define Baer sum (see Section 13).

Definition 8.1 Consider two extensions E = (T', ¢, %) and E' = (I, ¢', %) in
SCG

A 0 C A 0 C’
\ﬁ/ \%/
T > r’ P2
B B .
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1) A 1-cell (F,a,p,7v,G): E — E’ is pictured in the following diagram

A—>sB—2sC

RN

A B

with F,«, B,7v,G in SCG and such that the following diagram commutes

r s
['v.6=—=T.-5-% =22 p.7/.y

mﬂ ﬂF

0-G 0 G-0

2) If (Fya, B,7,G), (F',o,0',7',G"): E— E' are two 1-cells, a 2-cell
(z,y,2): (F,a, B,7,G) = (F',d/, f',7, G")

isatriplex: F=F | y:8=0, 2: G= G of 2-cells in SCG making
commutative the following diagrams

I g==>rpr.1 NG =——=3-%

F'Qﬂ ﬂx-F' E'Z\H/ ﬂy'z/

-8 =—Fp.1 .G ==p0-Y.
« Y

Observe that 2-cells are invertible, and that a 1-cell (F,«,8,7,G) is in-
vertible as soon as F' and G are equivalences. The proof is similar to that of
Proposition 2.8.

Definition 8.2 A proper class P of extensions is the assignement, for every
pair of symmetric cat-groups A and C, of a full (at the level of 1-cells and
2-cells) sub-2-category P(C,A) of EXT(C, A) in such a way that:

1) The trivial extension T(A,C) is in P(C, A);

2) If E € P(C,A), E' € EXT(C',A) and (F,a,83,7,G): E — E' is an
equivalence (in the sense of Definition 8.1), then E' € P(C',A');

3) The 2-functors of Proposition 6.4 restrict to P

Hom(D,C) x EXT(C, A) —_ EXT(D, A)
T (pullback) T
Hom(D,C) x P(C,A) = P(D, A)
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EXT(C,A) x Hom(A, D) - EXT(C,D)
T (pushout) T

P(C,A) x Hom(A, D) o P(C, D)

To prepare the study of injective and projective symmetric cat-groups, let us
observe that a proper class P of extensions gives rise to two classes of morphisms

in SCG.

Definition 8.3 Let P be a proper class of extensions.

1) A morphism T': A — B in SCG is a P-mono if there exist ¥: B — C and
p:I'-X =0 in SCG such that (T',p, %) € P(C,A). Equivalently, T is a
P-mono if (I',7r, Pr) € P(Cokerl', A).

2) A morphism ¥: B — C in SCG is a P-epi if there exist I': A — B and
@: T2 = 0 in SCG such that (I', p,X) € P(C,A). Equivalently, ¥ is a
P-epi if (e, ex, ) € P(C, KerX).

The classes P-mono and P-epi inherit some good 2-categorical property from
those of the proper class P.

Proposition 8.4 Let P be a proper class of extensions.
0) For any A € SCG, the canonic morphism 1 — A is a P-mono;
0’) For any A € SCG, the canonic morphism A — 1 is a P-epi;
1) Equivalences C P-mono C faithful functors;
1’) Equivalences C P-epi C essentially surjective functors;

2) P-monos are stable under composition with equivalences and under natural
isomorphisms;

2’) P-epis are stable under composition with equivalences and under natural
1somorphisms;

3) P-monos are stable under pushouts;
3’) P-epis are stable under pullbacks;

4) Given F: A - E H: E — B in SCG, if F'- H is a P-mono then F is a
P-mono;

4’) Given L: B — E, G: E — C in SCG, if L-G is a P-epi then G is a P-epi.
The non trivial points are 4 and 4’. Their proof is based on the next lemma

Lemma 8.5
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1) Consider the following diagram in SCG, where H and h are induced by
the universal property of CokerF,

Pr
E ——— CokerF
A
i U
A e B o CokerG

If G is faithful, then the square is a pullback.

2) Consider the following diagram in SCG, where L and | are induced by the
universal property of KerG,

KerF B C
l
Ll i Li ¢ o
KerG e E

If F is essentially surjective, then the square is a pushout.

Proof. Let us prove part 2, the proof of part 1 is dual. Observe that, since F'
is essentially surjective, (ep,ep, F): KerF — B — C and (eg, g, G): KerG —
E — C are extensions. Consider now the factorization through the pushout
(Section 5) and the pushout extension (Section 6) as in the following diagrams

KerF ——B ~ KerF ——>B
Ll 4 J{iz \\ ; L\L & lig\\
KQTGHLUBFi KQTGHLUBFé

\\

Using the universal property of the pushout L U ey, one can complete the fol-
lowing diagram with a 2-cell e: K - G = T and check that it is a 1-cell between

extensions
LUep

KerG { K § C
X /
E
By Proposition 2.8, the proof is complete. O
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The proof of 8.4.4 and 8.4.4" is now obvious. Consider the diagram of 8.5.2
with F=L-G and Il = L-G. Since F is a P-epi, the extension (ep, ep, F') is in
P(C,KerF). But (eg, eq, G) is the pushout extension of (er, e, F) along L, so
that it is in P(C, KerG), that is G is a P-epi. The proof of 8.4.4 is similar.

We have constructed the classes P-mono and P-epi starting from a proper
class of extensions. It is possible to work in the opposite direction.

Proposition 8.6 Let M and £ be two classes of morphisms in SCG. Assume
that M satisfies conditions 0, 1, 2, 8 and 4 of Proposition 8.4 and that £ satisfies
conditions 0°, 17, 2, 8’ and 4’ of Proposition 8.4. Define P(C,A) as the full
sub-2-category of EXT(C,A) of those extensions (I',,X): A — B — C such
thatI' € M and X € €. Then P is a proper class of extensions.

Proof. Let us check, for example, that if E = (I',¢,X): A - B — C is in
P(C,A), then for any G: D — C the pullback extension G - E is in P(D, A).
Consider the diagram defining G - E (Section 6)

ﬂ G ~p

N

B —2> C
By condition 3’; pg is in &; by condition 4 and the fact that M is closed under
natural isomorphisms, we have that ¢r ¢ is in £. O

Finally, let us observe that the class £ alone suffices to construct a proper
class of extensions.

Proposition 8.7 Let £ be a class of morphisms in SCG satisfying conditions
0, 1°, 2°, 8 and 4’ of Proposition 8.4. Define the class M as the class of those
faithful morphismsT': A — B in SCG whose cokernel is in & (equivalently, which
are the kernel of some morphism ¥: B — C in ). Then M satisfies conditions
0, 1, 2, 8 and 4 of Proposition 8.4.

Proof. Let us check condition 3. Consider an extension (I', ¢, ¥X): A - B —
C with T" in €. Consider also the pushout extension along any F': A — D in
SCG (Section 6)

A—ﬂﬂ%
o [N
D—>FUT \
‘PO’Z.‘
v v
0 C
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Since I' € M, then ¥ € £. By condition 4’, ¢** € £ and then its kernel iy is in
M.

As far as condition 4 is concerned, it follows from part 1 of Lemma 8.5 and the
assumption that £ is stable under pullbacks. O

Dually, the class £ can be constructed by the class M, so that the class M
alone suffices to get a proper class of extensions.

9 Examples of proper classes

Example 9.1 Clearly, EXT is a proper class of extensions. In this case, P-epis
are the essentially surjective functors and P-monos are the faithful functors.

Example 9.2 Define an extension (T',¢,X): A — B — C to be a G-extension
if ¥: B — C is a Grothendieck fibration. This class is not proper (for example
because Grothendieck fibrations are not stable under natural isomorphisms).
Moreover, the smallest proper class containing G is EXT. Indeed, if ¥: B — C
is any functor between groupoids, the standard (bi)pullback of ¥ along the
identity on C is a Grothendieck fibration equivalent to 3.

Example 9.3 We arrive now to the example which motivates the abstract ap-
proach of Section 8.

Definition 9.4 An extension (T, p,X): A — B — C is an F-extension if there
exist a functor S: C — B and a natural transformation o: S - ¥ = 1¢.

Let us insist on the fact F-extensions are not trivial, because we do not
require S and o to be monoidal. The fact that F is a proper class is quite
obvious. We only point out that the stability under pullbacks is due to the fact
(already observed) that pullbacks in SCG are computed as in the 2-category of
groupoids, so that a functorial section for ¥: B — C gives rise to a functorial
section for any pullback of 3. The last section of this paper is devoted to a
cohomological classification of F-extensions.

We have defined the class F using F-epis. We want now to characterize
JF-monos.

Proposition 9.5 Let (I',p,%): A — B — C be an extension. The following
conditions are equivalent:

1) (T, ¢, %) is an F-extension;

2) There exists a functor R: B — A and a coherent (w.r.t. the monoidal
structure of I') natural transformation

v=(vpa: R(B®T(A)) — R(B)® A)(B,A)eBxA

To prove Proposition 9.5, we need the following lemma, which says that the
section (5, 0) can be normalized, and that the pair R,v induces a normalized
retraction for I'.
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Lemma 9.6

1) Let X: B — C, S:C — B,0: S-¥ = 1¢ be as in Definition 9.4; there
is a functor S: C — B, a natural transformation o: S -¥ = 1c and a
morphism St: I — S(I) such that the following diagram commutes

1

~<~——~

Py
iZ(SI)
~— 3(5(D)

2) LetT': A — B, R: B — A and v be as in Proposition 9.5; there is a functor
R:B — A, a natural transformation p: I' - R = 14 and a morphism
R;: I — R(I) such that the following diagram commutes

1 —2R(D)
1L iR(F;)
I <— R(I(I))
Proof.
1) Define

S 1 X=Y = S(Hiel: SX)eS(I)*— SY) S(I)*

O_X®(0_I—1)x

Ty BEX) ~N(SX) @ DS 22N X o ~ XTI~ X

2) Define R(X) = R(X) ® R(I)* and R; = npy: I — R(I) @ R(I)* = R(I).
We get a natural transformation 7p 4 =vp.a-(1®7): R(BRT(A)) = R(B®
IrNA)®R(I)* - R(B)Q A® R(I)* - R(B)® R(I)*® A = R(B) ® A. Finally,
we have pg =774 Byt RI(A) ~ RIURT(A) » RI)®A— T A~ A O
Now we can come back to the proof of Proposition 9.5.

Proof.

1) = 2) : Since T'g: A — KerX. is an equivalence, to prove condition 2) we look
for a functor R: B — KerX. Let B be an object of B, we define

R(B) = (B® S(X(B))", Rp),
where Rp is

—1 * —1
1®(JZ(B)) s(B)

N(BeS(X(B))") ~ 5(B)@ 5(S(X(B)))" ———— E(B) @ X(B)" —[;
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if f: B — C is an arrow in B, we define R(f) = f®@S(X(f~1))*. Now, to obtain
a natural transformation v, let us consider an object (N,n: £(N) — I) in KerX.
Up to the monoidal structure of X, the component of v at the point (B, (N, n))
is given by the following composition

B® N ® S(2(B) @ S(N))*
1®1®S(1®n~1)*

B® N ® S(X(B)@ I)*

B® N ® S(3(B))*

1@y

B® S(E(B)*®@ N

2) = 1) : Now we look for a functor S: CokerI' — B (the natural transformation
0: 8- Py, = lookerr Will be the obvious one). Let X be an object in CokerI', we
put S(X) = X @ I'(R(X))*. Consider now an arrow [f, A]: X — Y in CokerT,
with Ain A and f: X - Y ® I'(A) in B. We define S[f, 4] by
X T(R(X))*
lf@bF(R(fl))*
YRTI(A) T (RY @T'(A4)))*
ll@l@F(yY}A)*
YT(4) @ D(R(Y) ® A)* = Y @ T(R(Y))"

It is easy to check that S is well defined; its functoriality follows from the
coherence of v. O

The lack of symmetry in Proposition 9.5 can be corrected. Indeed, since
> is monoidal, the natural transformation o can be equivalently replaced by a
natural transformation X(B ® S(C)) — X(B) ® C.

The difference between extensions and F-extensions is stressed by the fol-
lowing fact.

Proposition 9.7 Let (T, ¢,%X): A — B — C be an F-extension in SCG.
b
1) moA Tl moB S moC is an extension of abelian groups ;

r b
2) mA BULLN m B BN mC s a split extension of abelian groups.
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Proof. Since (T, ¢, X) is an extension, in particular it is 2-exact. This implies
the exactness of the two sequences of abelian groups (see Proposition 3.1 in [27]).
Moreover, I is injective, because I is faithful, and myX is surjective, because
¥ is essentially surjective. By part 2 in Lemma 9.6, mol' - mgR = 1,4, so that
ol is injective and the mp-sequence is an extension of abelian groups. As far as
the mi-sequence is concerned, we assume that the section (S, 0) is normalized
(Lemma 9.6). In this way, we can still define 71.5: mC — mB by

x St
I—1 +— T S(I)

and it is a morphism of groups because S is a functor. Finally, using once again
the condition of Lemma 9.6, one checks that 715 - m 3 = 1,,¢, so that the m;-
sequence is a split extension of abelian groups. O

Example 9.8 If, in Definition 9.4, we ask that the section (S, ) is only at a
graph-theoretical level, we get another proper class strictly contained between
F and EXT.

Example 9.9 An extension (I';p,X): A — B — C of symmetric cat-groups
is a mi-extension if (mI',mX): mA — mB — m;C is an extension of abelian
groups. Equivalently, (I', ¢, ¥) is a m-extension when m ¥ is surjective. Since
w1 preserves pullbacks, 7;-extensions are a proper class.

Example 9.10 An extension (I'; o, ¥): A — B — C of symmetric cat-groups
is a mp-extension if (meI', moX): mpA — mB — mC is an extension of abelian
groups. Equivalently, (T, ¢, X)) is a mp-extension when 7o is injective. Since g
preserves pushouts, mp-extensions are a proper class.

Example 9.11 From Propositions 5.1 and 5.2, we know that morphisms in
SCG which are full functors are stable under pullbacks and pushouts. Therefore,
one can wonder if, adding the conditions that I' and ¥ are full, one gets a
proper class of extensions. This is not the case, because the trivial extension
A — A x C — C is not of this kind, apart when A is equivalent to a one-
object cat-group and C is equivalent to a discrete cat-group. There are no other
possibilities. In fact, we have the following lemma.

Lemma 9.12 Let (', o, %X): A — B — C be an extension.
1) T is full if and only if m (C) = 0;
2) ¥ is full if and only mo(A) = 0.

Proof. We prove part 1, part 2 is dual.
If: Tt follows from 1.3.8 in [16], because C is equivalent to CokerT'.
Only if: Tt follows from 1.3.2 in [16], because I' is equivalent to ey. O
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Full extensions, that is extensions with I and ¥ full, provide a quick clas-
sification of symmetric cat-groups in the following way. Let A and B be two
abelian groups and call Ep(A, B) (Ep stays for “Epinglage”, see [21]) the fol-
lowing 2-category:

- an object is a triple (B, a,c) with B in SCG and a: m(B) — A, ¢: mo(B) — C
two isomorphisms of groups;

- a l-cell F: (B,a,c) — (B',d’,¢') is a morphism F: B — B’ in SCG such that
the following diagrams commute

71 (F)

o(B) —————> 7,

71 (B) — oy (B) D o)
N A S

C

-a 2-cell \: F'= F’ is simply a 2-cell in SCG.

Proposition 9.13 Let A and C be two abelian groups. The 2-categories Ep(A, C)
and EXT(C[0], A[1]) are biequivalent.

Proof. Given a symmetric cat-group B, there is a canonical extension 7 (B)[1] —
B — m(B)[0]. Conversely, if (T',¢,X): A[1] — B — (0] is an extension, by
Corollary 2.7 we have an exact sequence

w1 (I o (2
0 A2 (B) 0 0 mo(®) s o 0

so that 71 (T') and mp(X) are isomorphisms. Finally, to check that these two
constructions give a biequivalence, observe that in a 1-cell

A ¢ s § ClO]

NP

]B/

a is reduced to a; which, by monoidality, is determined by I', 8 and I'’; moreover,
since C0] is discrete, v simply amount to say that mo(8) - mo(X') = mo(X). O

This classification does not seem very deep. Nevertheless, observe that a full
extension (I', ¢, X): A[l] — B — C[0] always has a functorial section for ¥, so
that full extensions are a special case of F-extensions. Therefore, we can apply
to full extensions the cohomological classification of Section 15. Since the choice
of a functorial section of ¥ amount to the choice of a set-theoretical section of
mo(X) together with a clivage of B, Theorem 15.2 and the previous proposition
give the classification of symmetric cat-groups obtained by Sinh in [21].

32



10 The fundamental 2-exact sequences

In this section we use the functors induced by the 2-functors of Proposition 6.4
on the classifying groupoids. We use the same notations :

— . E: Hom(D,C) Ext(D, A)
G- —: Ext(C,A) Ext(D, A)
E - —: Hom(A, D) Ext(C, D)

— - F: Ext(C,A) ———— = Ext(C,D) .

All these groupoids are pointed groupoids, and the various functors are functors
of pointed groupoids (in fact, they are all in SCG, but the structure of symmetric
cat-group of Ext(C, A) will be discussed later) : the point in Hom(D, C) is the
zero functor 0: D — C, the point in Ext(C, A) is the trivial extension T'(A, C).
We say that a diagram in the 2-category Grpd* of pointed groupoids

is a 2-exact sequence if the comparison functor I'g: A — KerX is full and essen-
tially surjective.

The next lemma is a step towards Proposition 10.2. It is an obvious exercise
on the left exactness of representable 2-functors.

Lemma 10.1 Consider a symmetric cat-group D, a 1-cell ¥: B — C in SCG
and its kernel

In the next diagram, the comparison functor K is an equivalence

Hom(D, KerY) — <= Hom(D, B) —— > Hom(D, C)

Ker(—-%) .
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Proposition 10.2 Let E = (T', ¢, %)

be an extension in SCG and fix a symmetric cat-group D. The sequence in Grpd*

Hom(D, A) —— > Hom(D, B) —— > Hom(D, C)
_.E

Ext(D, A) Ext(D, B) — Ext(D, C)

(equipped with the pointed natural transformations specified in the proof) is 2-
exact at each point.

If P is a proper class of extensions and if E € P(C,A), the same result holds
replacing EXT by P.

Proof. The 2-exactness of

Hom(D, A) 4 Hom(D, C)
\ —T'TV’ /
—.T -3
Hom(D, B)

is attested by Lemma 10.1. We give now a detailed proof of the 2-exactness
in Ext(D, A). The argument for the 2-exactness in Hom(ID, C) and Ext(D, B) is
similar and we give only the description of the pointed natural transformations
involved. We use Lemma 4.5 and its consequence discussed at the end of Section
4, as wall as the dual argument.

2-exactness in Ext(ID, A) : let G: D — C be in Hom(ID, C) and consider the
pullback along ¥ and the pushout along T, i.e. the extension (G- E) - T, as in
the following diagrams

PG ®r,o PG

¥r,o D

, A P
A B C B—Q ¥

r b3l in

with ¢o: ¢ro-pg = 0 and ¥g: ir - = 0. Using ¢r, we get a retraction in SCG
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in the following way

H

A
1=
B

E——
3
N r

o<_—r
ﬁ

=
=
i
i
R |

%

v
B
This gives the component at G of a pointed natural transformation &: (— - E) -
(--T)=0.

Consider now the factorization through the kernel of (—
previous natural transformation

I') induced by the

Hom(D, C) —— 2~ Ext(D,A) — > Ext(D, B)

T |

Ker(—-T)

1) A is essentially surjective on objects

: consider an extension (L, u, M): A —
E — D, its pushout along T’

HE
ILl
L

H

@%9

and the factorization

making commutative the following diagram

T

I'-jr-¥g r-0 0
iF,L'ELH/ ﬂll
Lig-%, — L-M.
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Assume that there is a retraction in SCG

1
B———B

N A

L

Using this retraction, we can construct a 2-cell in SCG

sl .T.e
i Loip T Y e T ., - T % —t= [.y=—=0.

Since (M, ) is a cokernel of L, we get G: D — C in Hom(ID,C) and a 2-cell
7 M -G =iy -T-% in SCG such that the following diagram commutes

e
L-M-G————0-G
L-T’\H/ \H]

Lip-T-%———0.

Consider now the extension G - E as at the beginning of the proof. We look for
a l-cell (o, 0,7): (L,p, M) — G - E in EXT(D, A). The universal property of
the pullback P gives a factorization

E

ir T s\ M
Ly 2

By P D

such that
Bopg D=2, . T-%

ﬂ‘PZ,G\H WT’

-

commutes. We can construct two 2-cells in SCG

L-
ag: L-B-pa Lo M —= 0 —2 ®r,o PG

L§ ) ir T ) It op’
azLﬁpzﬁLzl‘TﬁF]LT T ()01"70‘1)2.

Since ag and ayx are compatible with pyx; ¢, the universal property of the pull-
back P gives a unique 2-cell a: L - 3 = ¢ro in SCG such that a - pg = ag
and « - py = ayx. In particular, the equation « - p¢ = ag express the con-
dition on («,3,7v) to be a l-cell (L,u,M) — G - E in EXT(D,A). Tt re-
mains to prove that (a,3,7) is a morphism in the kernel of (— - T'). For this,
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observe that the universal property of the pushout L gives a factorization
q¢:L—Q, m:ir-q= B-ip, n: jr-q= ir such that

ir,L-q

' jr-q L-ip-q

p.nﬂ ﬂm

I ip=—=¢ro-lo<—=0L-0 i,
ir,e iy

commutes. Now we have two retractions of jr, : (7T,t) and the one given by

B————>B
jL\L = Q T TR
L

q Q.

1

/

We have also a 2-cell in SCG

and, since the following diagram commutes

ir.L-qR . .

F»n-RH/ ﬂLﬂ'ﬂ

I'ir-R L-p-ps
F-pﬂ HL«S
T P T IL T e L-ip T7

the universal property of the pushout L gives a unique 2-cell in SCG, A: T =
q - R, such that

LA LA
jp T=—2E=—j.-q-R i T ——%2 =i, -q-R
tﬂ Mn-R 6ﬂ H/m»R
1s 1z ir- R 5‘P2<:ﬁm B-ip- R

commute. In particular, the first equation exactly means that A commutes with
the retraction.

2) A is full : consider G, G in Hom(D, C), the extensions G - E and G - E and
a l-cell (o, 3,7): G- E — G- E in EXT(D, A). Consider also the retractions in



SCG

Q Q

The universal property of the pushout Q gives a factorization ¢, a,b as in the

following diagram
Q P
d boe )
B P.
F

7

In this way we have a second retraction for ir :

1p
B B
i 7 ]
00— 3.

Assume that there is a 2-cell \: R = ¢ - R in SCG making commutative the
following diagram

i
ip-R%l -q-
1IB%<:ZP

We can build up the following 2-cell

A2
T:pa - E:>Z¢ R- Ez“’:>%J q- R- Z:>

g7 _ Brs _ ~G

Biy R-N—es Py S—rt s B p G ——— - G

Since the diagram




commutes, the universal property of (pg, ¢o) (it is the cokernel of ¢r ) gives a
unique 2-cell p: G = G in SCG making commutative the following diagram

PGl —
v -G < pa -G

pPy.G /

Py - X

It remains to prove that («, 3,7) and p - E coincide as arrows in Ext(D, A). The
functor part of p- E is given by the following factorization through the pullback

P
P
\L pc
M
%\{
P—>D
G

We need a 2-cell z: M = 3 in EXT(D, A) and, for this, we can consider

N

P

AN

25 PG
L 2
B?}P’?D

=

where y is given by the following composition

_ g R e A
ﬁ~p2:>ﬂ-z¢-R:>z¢-q-Rw:>Z@-Rﬂ:>pz

Since the following diagram commutes

B-rs @

ERSZORDY ’ B

by - E:>Z7G G:W paG -

«i?ﬁ

the universal property of the pullback P gives a unique 2-cell z: M = 3 in SCG
such that

commute. The verification that x satisfies also the first condition of 2-cell in
EXT(DD, A) needs a full description of i - F (see Lemma 6.2) and we omit it.
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2-exactness in Hom(ID, C) : let F': D — B be in Hom (D, B) and consider the
following pullback
D

B?C

H

<7'ﬁ

We get a section of py in SCG in the following way

Via Lemma 4.5, the section (Sg,or) gives the component at F of a pointed
natural transformation ¢: (—-%)-(—- E) = 0.

2-exactness in Ext(D,B) : let L = (F,9,G): A — E — D be an extension of
A by D. Consider the following pushouts and factorizations

Un?

@%'@
Y=
ﬁ%@
Bl
™

A E B—Q

pl ir:g le zi ig@ lw\

IB%*> ‘r C?R (2>
A\ T

@(.... _lz/g

BN

and, finally, a factorization
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making commutative the following diagram

.
Z.ZE.Rp:Z

iF'QVR‘H/ WS

’L'r~’L'Q~RiF;T>iF-O'.

In particular, via the dual of Lemma 4.5, the retraction (R, p) of ix gives the
component at the point L of a pointed natural transformation x: (—-I')-(—-X) =
0. ]

Let us write explicitly the duals of Lemma 10.1 and Proposition 10.2.

Lemma 10.3 Consider a symmetric cat-group D, a 1-cellT: A — B in SCG
and its cokernel

A—2 > Cokerl
\\ “r /
In the next diagram, the comparison functor K is an equivalence

T.—

Hom(CokerT', D) Hom(B, D) Hom(A, D)
x TP(F,_)
Ker(T'-—) .

Proposition 10.4 Let E = (T, p, %)

o

A—C
@
f
A
B
be an extension in SCG and fix a symmetric cat-group D. The sequence in Grpd*

o r—

Hom(C, D) Hom(B, D) Hom(A, D)
E—
Ext(C,D) — Ext(B, D) — Ext(A, D)

(equipped with four specific pointed natural transformations) is 2-exact at each
point.

If P is a proper class of extensions and if E € P(C,A), the same result holds
replacing EXT by P.
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11 Projective objects

In this section we consider projective objects in SCG. Definitions and properties
for injective objects are dual and are left to the reader. We fix a proper class P
of extensions. The notion of P-projective object corresponding to our definition
of extension is the following one.

Definition 11.1 Let A be a symmetric cat-group ; A is P-projective if, for any
P-epi F: B — A, there exists a section in SCG (i.e. a 1-cell S: A — B and a
2-cello: S+ F =14 in SCG).

Using pullbacks in SCG (see Section 5), the previous definition can be re-
stated in the following way : a symmetric cat-group A is P-projective if, for each
1-cell G: A — C in SCG and for each P-epi F': B — C, there exist G': A — B
and g: G’ - F = G in SCG.

Corollary 11.2 Let A be in SCG ; the following conditions are equivalent :
1) A is P-projective ;
2) For each B in SCG, any P-extension of B by A splits ;

3) For each B in SCG, the classifying groupoid clP(A,B) of P(A,B) is con-
nected.

In the next corollary we use that the sequence of Proposition 10.4 (as well as
that of Proposition 10.2) is a 2-exact sequence of symmetric cat-groups, and not
only of pointed groupoids (the cat-group structure of clP is discussed in Section
13). By Proposition 6.2 in [16], we can then translate its 2-exactness saying
that the factorizations through the appropriate cokernels are full and faithful
functors.

Corollary 11.3 Consider an extension E = (T',¢,X): A - B — C of A by C.
Assume that B is a P-projective object in SCG and that E € P(C,A). Then, for
any symmetric cat-group D, clP(C,D) is equivalent in SCG to the cokernel of

' —: Hom(B,D) — Hom(A, D).
Proof. By Proposition 10.4, we have a 2-exact sequence

Hom(A, D) — 2=~ cIP(C, D) ——— > cIP(B, D)

and then its image by mg: SCG — Ab is an exact sequence of abelian groups.
Moreover, by Corollary 11.2, mo(cIP(B,D)) = 0, so that mo(E - —) is surjec-
tive. Equivalently, E - — is essentially surjective on objects. Consider now the
factorization € of E - — through the cokernel of I" - —

Hom(B,D) — > Hom(A,D) — 2~ ¢IP(C, D)

——

Coker(T" - —)
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By 2-exactness in Hom(A, D) of the sequence in Proposition 10.4, € is full and
faithful. It is also essentially surjective, because E - — is essentially surjective.
O

12 Exactness of Hom
In this section we show that EXT measures the non exactness of representable

2-functors. We consider the case of covariant representable 2-functors and we
leave to the reader the controvariant case.

0 K

A

T
A

H

be a 2-exact sequence in SCG. The functor F' is essentially surjective if and only

if mo(G) = 0.

Lemma 12.1 Let

G

Proof. Onlyif : Since mo(F) is surjective, Cokermo(F') = 0. But Cokermg(F) ~
mo(CokerF'), and 7 (G) factors through 7o(CokerF).

If : Since (mo(F),70(G)): mo(G) — mo(H) — mo(K) is exact and 7o(G) = 0,
then 7o (F') is surjective, that is F' is essentially surjective. O

Proposition 12.2 Let E = (T, ¢, X): A — B — C be an extension. Consider
a symmetric cat-group D and the morphism — - E: Hom(D,C) — Ext(D, A).
The sequence (—-T', — -, — - X): Hom(D, A) — Hom(D,B) — Hom(ID, C) is an
extension if and only if mo(— - E) = 0.

Proof. By Lemma 10.1, we know that — - I is equivalent to the kernel of
— - Y. Hence, the result follows applying the previous lemma to the sequence

Hom(D,B) — >~ Hom(DD, C) —— =~ Ext(D, A)

which is 2-exact by Proposition 10.2. O

Corollary 12.3 Let D be a symmetric cat-group. The following conditions are
equivalent :

1) D is projective (i.e. P-projective for P=EXT) ;
2) For any essentially surjective morphism X: B — C, the functor
—-Y: Hom(D,B) — Hom(ID, C)

is essentially surjective ;
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3) For any extension (I', p,X): A — B — C, the sequence
(—-I,—-p,—-%): Hom(D, A) — Hom(D,B) — Hom(D, C)
1S an extension.

Proof. The non-trivial implication is 1) = 2), which follows from Proposition
12.2 and Corollary 11.2. O

We consider now F-extensions (Example 9.3). In this case, Proposition 12.2
has a slightly different (and a little bit more difficult to prove) formulation.

Proposition 12.4 Consider an F-extension E = (I, %): A — B — C in
SCG and a symmetric cat-group D. The diagram (D, E):

Hom(DD, A) 0 Hom(DD, C)
v T
Hom(D, B)

is an F-extension if and only if the 2-functor
— - E: Hom(D,C) — F(D, A)

s isomorphic to the 2-functor which sends each 1-cell G: D — C into the trivial
extension T'(A,D) and each 2-cell p: G = G’ into the identity of T(A,D).

Proof. By Lemma 10.1, we have to deal only with a functorial section for

— - 2. We use the notations of Lemma 6.1 and Lemma 6.2.
(<) Assume that we have a 2-natural transformation

This means that, for each G: D — C in Hom(ID, C), we have a 1-cell
(ag,9¢,7¢): T(A,D) — G- FE in F(D,A)

AxD
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and, for each p: G = G’ in Hom(ID, C), we have a 2-cell 0,,: (aq,0c,7v¢) - (1 -
E) = (ag,0¢,7¢). Now we can define T: Hom(DD, C) — Hom(D, B) by

NG

NG

and it is functorial by 2-naturality of 6.
We need a natural transformation

Hom(D,C) Hom(D,C)

\/

Hom(D, B)

For each G € Hom(DD,C), we define 7(G): T(G) - ¥ = G by the following
diagram

i 0 =
D—2>AxD—>¥nG2>B—>C
G rs,.G
= v J{pc v
Pp
G
1]]; ]D)

The naturality of 7 comes from the compatibility of 3 with ps ¢ and ps g and
from the fact that 6, is a 2-cell in F(ID, A).
(=) Assume that we have a functorial section

Hom(D, C) Hom(D, C)

\/

Hom(D,B)

and consider, for G in Hom(D, C), the 2-cell 7(G): T(G) - ¥ = G in SCG. By
the universal property of the pullback ¥ N G, we obtain g, g1, g2 in SCG as in
the following diagram



making commutative the following diagram

9-p=,G
g~p2-2:>g~pG-G

gz'zﬂ/ ﬂgl-G

T(G) L —m
(@) ———3.

In particular, (g, g1) is an object of Split(pg). By Lemma 4.5, (g, g1) corresponds
to a l-cell (ag,ba,7q): T(A,D) — G- E in F(D,A).

Now, let p: G = G’ be in Hom(D,C). We need a 2-cell in F(D,A) as in the
following diagram

T(A,D)

agrfarvar)
(ac,aca’YG)i eu\\
=

G-ETG/~E.

By Lemma 4.5, we can equivalently look for an arrow
gy 91 ;o 91
Ap (9B, 9B por =—————=9 Pc=—=1p )= (9, ¢ par == 1p)

in Split(pgr), where ¢, g1 and g} are as in the following diagram

Consider the 2-cells

g1 (g7 *

)\Dtg'ﬂ'pc/%g'pG

g2 T ()

.5 /=1
Xs:g-fB Py =—=g P T(G) T(G’)%g’-p’z.

Using the three equations satisfied by 3,4, s, 9,91, 92, 9, 91, g4 and the naturality
of 7, one can check that the following diagram commutes

9-8-ps,c!
g~ﬂ~p&:~2ﬁg.ﬁ.pG,.G/

/\B-E\H/ \H/)\D'G/

g’p%z:g'pc,(;/

Ql'p):,c/
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The universal property of the pullback ¥ NG’ gives then a unique 2-cell A,: g-
B = ¢ such that A\, - pgr = Ap and A, - p§5; = Ag. The first of these equations
precisely means that A, is an arrow in Split(pgr). O

13 Baer sum

In this section, we introduce Baer sum for extensions of symmetric cat-groups.
The construction closely follows the 1-dimensional analogue and we don’t give
the proof. If A, C are two abelian groups, the group of extensions of A by
C is in fact the group of connected components of the category of extensions
of A by C, which is a symmetric cat-group. In the same way, the structure
of symmetric cat-group on Ext(C,A), for A and C two symmetric cat-groups,
could be extended to a monoidal structure on the 2-groupoid EXT(C, A). We
limit our attention to the groupoid Ext(C, A) only for sake of simplicity.

Lemma 13.1 With the notations of Definition 8.1.

1) Consider an extension E = (T, ¢, %), a 1-cell G: D — C in SCG and the
following 1-cell G- E — E (see Lemma 6.1)

For any 1-cell (F,a,8,v,G): E' - FE

A/FH/B/H,D

Fi il ﬁi U lc
A—F>B—F>C
there is a 1-cell (F' o/, 5',v',G"): E' — G- E and a 2-cell
(2,5,2): (F, 0!, 6,7, G) - (L or P D51, G) = (F 0,7, G).

Moreover, for any other 1-cell (F”,a",8",v",G"): E' — G - E with a
2-cell

(’U;,’U,’LU)I (Fllaa//7ﬁ”7fy/l7G//) : <1AaSDF7p2ap£}GaG) = (F,Oé,ﬁ,’}’,G%

there is a unique 2-cell (a,b,c): (F',o', 3,7 ,G") = (F",a",5",+",G")
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making commutative the following diagram

(F/,O/,ﬂ/,’)//, I) . (1A7¢Fap2ap£}GaG)

K&

(a7bvc)'(1A1p21G) (F7O[,6,’)/,G)

%

(F”, a//aﬁ,/,7/,7 G//) . (1A; SDIHPEJ)E}G’ G) .

2) An analogue universal property holds if one considers an extension E =
(T,0,%), a I-cell F: A — D in SCG and the 1-cell E — E - F as in
Lemma 6.3

A—>B—= >
Fl ?ulr irl S J{m
D—> FUT 5~ C.

Corollary 13.2 Consider an extension E = (I',p,%): A — B — C and four
1-cells in SCG

A—Lsp-HoF c—X-g—S-cC.

The following pairs of functors are naturally isomorphic in a canonical way :

Ext(C,D) — 1~ Ext(C,F)
—(F-H)

1) Ext(C,A)

and Ext(C,A)

Ext(C,F) ;
2) Ext(C,A) — =~ Ext(E,A) — "~ Ext(G, A)

(K-G)-—

and Ext(C,A) Ext(G,A) ;

3) Ext(C,A) — X~ Ext(C,D) — %~ - Ext(E,D)

and Ext(C,A) — =~ Bxt(E,A) — =~ Ext(E,D) ;

4) Hom(A,D) — =+ Ext(C,D) — <~ - Ext(E,D)
and Hom(A,D) (@B Ext(E, D) ;

5) Hom(E,C) — 2~ Ext(E,A) — > Ext(E, D)

—(E-F
and Hom(E,C) =5 Ext(E,D) .
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We can now describe the monoidal structure of the groupoid Ext(C, A).
Given two extensions

A % C
\ w1 / \ <P2 /
we get a new extension considering

A x A

591><<P2

BlXBQ

This construction extends to a 2-functor
@: EXT(C,A) x EXT(C,A) — EXT(C x C,A x A).
Consider now the diagonal and codiagonal 1-cells in SCG
A:C—-CxC V:CxC—C.

Using part 3 of Corollary 13.2, we can define the tensor product in Ext(C, A)
in the following way

®: Ext(C,A) x Ext(C,A) —2 > Ext(C x C,A x A) =Y

Ext(C, A) .

The unit object is given by the trivial extension T'(A,C) and the inverse of
an extension E is E - (1}), where 15: A — A is the 1-cell in SCG defined by
1
P x Ly
It is a (very) long but essentially straightforward work to complete this defini-
tion with associativity, commutativity and unit isomorphisms, and to check the
axioms for a symmetric cat-group. For example, the associativity isomorphism
is given by the canonical natural isomorphisms in the following diagram (where
we write (C, A) instead of Ext(C, A)) :

. @((C,A)x(@A)x((C,A)@
AX/ \Xl
(C,A) x (Cx C,A x A) o o (CxC,A xA)x(CA)
— e —

1x(A=-V) (CxCxC,AxAxA) (A—V)x1

14

(C.4) x(C.A) A)—(IxV)  (Ax1)—(VX (C,4) < (C,A)
ey Ve
(CxC,AxA) (CxC,AXxA)
A=V (€. A) AV



Remark 13.3 Observe that the functors listed at the beginning of Section 10
are now 1-cells in SCG. In particular, the sequences of Propositions 10.2 and
10.4 are 2-exact sequences in SCG.

Remark 13.4 The results of this section hold if we replace EXT by a proper
class P of extensions, provided that the 2-functor @&: EXT(C, A)xEXT(C, A) —
EXT(C x C, A x A) restricts to P. This is the case for all the examples given in
Section 9.

14 Cobords and cocycles

In [20], extensions of (non necessarily symmetric) cat-groups are classified. A
cat-group A is a bicategory with only one object, and we can consider the bicat-
egory Bieq(A) of biequivalences from A to A. Clearly, Bieq(A) is a monoidal
bicategory under composition. Given another cat-group C, we can look at
it as a monoidal bicategory with only identity 2-arrows. The main result in
[20] is a biequivalence EXT(C, A) ~ Bimon(C, Bieq(A)), where an object in
Bimon(C, Bieq(A)) is a morphism of bicategories C — Bieq(A) which takes into
account the monoidal structures in a sense made precise in [20]. (The referee
pointed out to us that F-extensions (Definition 9.4) correspond to those objects
of Bimon(C, Bieq(A)) such that the underlying homomorphism of bicategories
is equivalent to the null homomorphism.)

In this section and in the next one, we look for a cohomological classification
of extensions more on the line of Schreier theory. Having in mind factor sets,
the class of extensions which seems appropriate for such a theory is the class
of F-extensions. Once again, for the reasons explained in the introduction, we
restrict our attention to symmetric cat-groups.

The first step towards a cohomological classification of F-extensions is to
find an appropriate notion of cocycle. For this, consider A and C in SCG and
let us look for a monoidal structure on A x C such that

AxC

is an extension (necessarily, an F-extension).
Let us call for a moment x: A x C x A x C — A x C the new tensor product in
A x C. If we assume that

(A, X)* (B,Y) = ((A, 1) * (B, 1)) @ (I, X) * (I,Y))

(where ® is the point-wise tensor product in A x C), we get that (4, X)*(B,Y)
must be equal to (A® B® F(X,Y),X®Y), for F: C x C — A any functor.
Moreover, the associativity, unit and symmetry isomorphisms for (A x C, x) give
rise to four natural isomorphisms (compare with 5.2.1.11, 5.2.1.14 and 5.2.1.15
in [20])
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- ep(X,Y,Z): F(X,Y)® F(X®Y,Z) — F(Y,2)® F(X,Y ® Z);
- rp(X): F(X, T

S 1p(Y): F(IY) = I;

) — 1

- sp(X,Y): F(X,Y) - F(Y, X).

Finally, the four coherence axioms for the isomorphisms in (A x C, %) are equiv-
alent to the following four axioms on cp, rg, lp and sp, expressed in terms of
commutative diagrams (we omit the associativity isomorphism in A) :

(C1) The two following compositions coincide

FX)Y)Q F(XQY,Z) F(X®Y)®Z W)
1®@cr (XQY,Z,W)
FXY) FZ W) F(X®Y,ZeW)
7®1

FZW)o FX,)Y)9F(X®Y,ZeW)

1Qcr (X,Y,ZQW)

FZW)FY,ZW) F(X,)Y ® (ZeW))

FX,Y)® FX®Y,Z) F(X®Y)® Z,W)
cr(X,Y,Z)®F(a,l)
FY,2)9 F(X,Y®Z)@ F(X® (Y ® Z),W)
1Qcr (X, YRZ,W)
FY,Z)9 F(Y ® ZW)® F(X,(Y ® Z) @ W)

cr(Y,.ZW)®F(1,a)

FZW)RQFY,ZeW) F(X,)Y ® (ZaW))
(C2)

er(X,1,2
F(X,))2 F(X®1,2) r(L7) F(I,Z) o F(X,I® Z)

re(X)®F(rx,1 F(Z)QF(1,lz)

I®F(X,Z);
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FIX,Y)o F(X®Y,2) —"YD _ py.7)0 F(X,Y ® 2)

SF(X,Y)®F(%1)l il@sp(X,Y@Z)

FY,X)® F(Y ® X, Z) F(Y,Z)® F(Y © Z,X)
cF(Y,X,Z)l iCF(Y,Z,X)

FX,2) F(Y,X®Z) FZ,X)FY,Z® X);

_—
sr(X,Z)QF(1,v)

F(X,Y) F(X,Y)

srp(X,Y) sp(Y,X)

F(Y,X) .
Definition 14.1 Let A, C be two symmetric cat-groups.

1) A symmetric 2-cocycle of C with coefficients in A (a cocycle, for short) is
given by F = (F,cp,rp,lp,sp) where F: Cx C — A is a functor and
Cer(X,Y,2): F(X,Y) e F(X @Y, Z) — F(Y,2) & F(X,Y © 7),
-rp(X): F(X,I)—1T,
-lp(Y): FUI,Y)— I,
sp(X,Y): F(X,Y) — F(Y, X)
are natural isomorphisms satisfying the axioms (C1),(C2), (C3) and (C4).

2) Given two cocycles F' and F', a morphism of cocycles is a natural trans-
formation a: F = F' making commutative the following diagrams

(MC1)

FX,Y)® F(X®Y,2) —=XY) _ piy, 20 F(X,Y © 2)
QX,Y®QX®Y‘Z\L lay,z®0tx,y®z
F(X,Y)® FI(X®Y,2) FI(Y,Z)® F/(X,Y © Z) ;

c'F(X,Y,Z)
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(MC2)

X14>F’XI IY—>F’IY
(MC3)
SF(X,Y)

F/(X,Y) F(Y, X).

s (X,Y)

3) A normalized 2-cobord of C with coefficients in A (a cobord, for short) is
given by G = (G, Gy), where G: C — A is a functor and Gr: I — GI is
an arrow in A.

4) Given two cobords G and G', a morphism of cobords is a natural transfor-
mation a: G = G’ making commutative the following diagram

GI = Q'T
I.

Proposition 14.2 Let A, C be in SCG.

1) The data of the previous definition give a category Z%(C,A) of cocycles
and a category B*(C,A) of cobords ;

2) Z%(C,A) and B%(C,A) have a structure of symmetric cat-groups induced
point-wise by that of A.
If G € B?(C, A), we can construct a functor 6G: C x C — A in the following
way :
- (OXYY)=GXeY)eGY )@ GX)*
-if f: X - X' and g: Y — Y’ are in C, then (6G)(f,9) = G(f ® g) ®
Glg™ ) @G

Moreover (using Gy, the symmetry of C and A and, for csg, unit and counit of
GX®Y)4G(XeY) and GY ® Z) 41 G(Y ® Z)*) one can construct four
natural isomorphisms csg, Tsa, lsa, Ssa so that dG becomes a cocycle. More
precisely, we have the following lemmas.
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Lemma 14.3 The previous construction gives rise to a 1-cell in SCG
§: B*(C,A) — Z3(C,A) .
Lemma 14.4 The kernel of ¢ is equivalent, in SCG, to Hom(C, A).

Proof. We only explain the construction of the equivalence. First, observe
that there is a forgetful functor U: Hom(C,A) — B?(C,A) which sends G =
(G,Gr1,Gxy) into G = (G, Gy). Clearly, U is a 1-cell in SCG. Moreover, Gx y
precisely gives a 2-cell in SCG

Hom(C, A) 0 Z2(C,A)
i
x /
B2(C, A)

so that U factors through the kernel of 6. This factorization is in fact an equiv-
alence. 0

To end this section, let us point out some formal consequences of the axioms
defining a cocycle. They are useful to complete some proof in the next section.

Lemma 14.5 Let F = (F,cp,rp,lp,sr) be a cocycle. The following equations
hold:

(C5) lp(I) =rr(I);

(C6)
FILY)o FI®Y,Z) YD) p(Y,Z) e F(I,Y @ Z)
lF(Y)®F(lYa1)i il@l;:(Y@Z)
1 P, 2) ———n (Y, 2) = F(V2) 0 1
(C7)
F(X,Y)® F(X®Y,1) cr(XYD) FY,1)® F(X,Y ® )
1®T‘F(X®Y)i iT‘F(Y)®F(1,T‘y)

F(X,Y)®1 F(X,Y)~—— I®F(X,Y);

TF(X,Y) 1F<ny)
(08) SF(X, I) . ZF(X) = TF(X) 5 SF(I,Y) . ’I“F(Y> = ZF(Y) ;
(C9) sp(1,1)=1pur) -

Proof. Similar to that for monoidal categories (see [17] or [15]). O
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15 Classification of F-extensions

From the discussion at the beginning of Section 14, we know that each cocycle
F € Z%(C, A) induces a symmetric monoidal structure on the groupoid A x C,
where the tensor product

rp: (AxC)x(AxC)—AxC
is defined by
(A4, X)®r (B)Y)=(A®B@F(X,Y), X®Y),

the identity object is (I, ) and the structural isomorphisms are induced by the
natural isomorphisms cg, 7, [ and sp. We denote by A xp C the category
A x C equipped with this structure. It is in fact a symmetric cat-group, a dual
being given by (A, X)* = (4* ® F(X, X*)*, X*).

Proposition 15.1 Let A and C be in SCG.
1) The previous construction extends to a functor
£: Z*(C,A) - F(C,A) ;
2) The functor £ is essentially surjective on objects ;
3) The functor € is a 1-cell in SCG.

Proof. 1) It is a routine verification. Let us only write explicitly the action
of £. If F € Z%(C,A), then £(F) is

A 0 C
A

AXF(C

If \: F = F’is a morphism in Z2(C, A), then £()\) is

AXF(C
/ K
A Olf B wﬂA C
AXF/(C

where «y and ) are identity natural transformations and 3y is the identity as
a functor, but its monoidal structure is determined by A in the following way

(A, X)®r (B,Y)=(A®BR F(X,Y),X®Y)
J{(1®1®/\X,Y71®1)

(A, X)®p (B,Y) =(A®BRF'(X,)Y),XQY).
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2) Let E=(T,p,%): A — B — C be an F-extension with a section

1
C—>C
#
s b
B
pointed by S7: I — S(I). Since I'g: A — KerX is an equivalence, we look for

a cocycle Fp: C x C — KerX. If X and Y are in C, we define Fp(X,Y) =
BFX)@SY)®S(X®Y)*, oxy), where

oxy: D(S(X) @ S(Y) @ S(X @Y)") = B(S(X)) @ B(S(Y)) & Z(S(X @ V)"

J/UX®UY® ox®y)

XY (XeY)*

\L"x@y

and Fg(f,9) =S(f)®S(g) @ S(f~*®g~1)* for f and g two arrows in C. Now
we describe the structure of cocycle of Fi:

- rpy(X): Fp(X,I) — (I,X;': X(I) — I) is given by

@S @S (ry)”
SX)®SI)@S(X®I)*

- lpy (Y) is similar ;
- spp(X,Y): Fr(X,Y) — Fg(Y, X) is given by
’)/S(X)’S(y)(@S(’y)_(}Y)*: S(X)RS(Y)RS(XQY)* — SY)S(X)S(YRX)*;

- ep (XY, Z): Fp(X,Y)® Fg(X ®Y,Z) — Fg(Y,2) ® Fg(X,Y ® Z) is
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given by

SX)SY)eSXY)esSXeY)®esS(Z)eS(XeY ® 2Z)*
1®1Qes(xpy)®1®1
SX)eSY)eS(2)S(XeY ®2)
191Q1Qe gy g 7, @1
SX)eSY)2S(2)S(Y®Z) oS(Y®2Z2)eS(X®Y ® 2)*

YS(X).8(Y)@S(2)®s(Y®z)* ®1®1

SY)S(Z)eS(Y 2 @S5(X)eSY®2Z2)95(XY ®2)*.

It remains to find a 1-cell in F(C,KerX) as in the following diagram

KerX il ¢

T
k /

KerY xp, C
As far as ( is concerned, if B is in B, put
B(B) = (B® S(Z(B))", (In(m) @ (055)") - 15(p)» Z(B))

and 3(g) = (9@ S(2(g71))*,X(g)) if g is an arrow in B. The monoidal structure
of B is given by that of ¥ on the second component, and, up to symmetry, by
the counits eg(x(4)) and eg(s(p)) on the first component (A, B being two objects
in B). Finally, the 2-cell 7y is the identity natural transformation, and the 2-cell
a is given, for an object (B,b: (B) — I) in Ker:, by (1® S(X(b71))*,b).

3) Consider now F,F’ € Z2(C,A), the direct sum E(F) & E(F’) and the F-
extension built up using the pullback along the diagonal A: C — C x C as in
the following diagram

pa

P

/ lp N TA |

AxpCxAxp C

iaXia pcXpe

A x A

An object in P is given by (4, X,B,Y,C,z,y), with A,B in A, X,Y,C in C
and z: X — Cly: Y — C; the arrows are the obvious ones. The functor
i: A x A — P sends (A,B) into (A,I,B,I,1,1,1). Consider also FF ® F’ in
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Z2(C,A) and the F-extension

i pc
4 AXF@F’(C—>(C.

E(FRF): A

The monoidal structure of £ results from showing that the following diagram is
a pushout in SCG :

A x A P

vl - s

AﬁAXF®F/C,

where A sends (A, X, B,Y,C,z,y) into (A® B,C). If (A, X', B".Y',C" 2", y)
is a second object in P, the monoidal structure of A is given, on the second
component, by F(z,z') and F'(y,y’). To show that the previous diagram is a
pushout in SCG, consider any diagram of the form

AxA—" o p
vl - iH
A————E.

We need a factorization in SCG

A XFQF' C
7 A
k ‘I’\L h
4 4
A e E T P

and, for that, we put

-P(AX) = KA e HI,X,I,X,X,1,1), with the monoidal structure
induced by 7;

- kis induced by H;: I — H(I) :

- his defined, using lr, [ - and the monoidal structure of H, in the following
way :
q)(A(A7 X> B7 Ya 07 Z, y)) =

T;,lB ®1

= K(A® B) ®g H(C)

H(A,I,B,I,1,1,1) ®g H(C) ~

~ H((A,I,B,I,1,1,1)®p (I,C,I,C,C,1,1))
),C,B® F'(1,C),C,C,1,1)

~
~

H(l,z"'1,y~ ")

H(A,X,B,Y,C,z,y).

~ H(A,C,B,C,C,1,1)
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Finally, given another factorization in SCG

AXF®F/(C
A A
m v !
I l I
A — E — P,

since i (A) Qprer AI,C,1,C,C,1,1) = (ARI® F(I,C)® F'(I,C),I®C) ~
(A, C), we have

U(A,C) ~T(ia(A) ®e ¥(AU,C,I,C,C,1,1))
lmmzu,a,,am,n
®A,C)=KA)eeH(I,C,I1,C,C1,1).
t

To get a cohomological classification of F-extensions, we need a 2-cell in

SCG
B

2(C, A) 0 F(C,A)
X b /
22(C, A) :

For this, let us fix a cobord G € B%(C, A) and let us describe the following 1-cell
in F(C,A)

AXg(;(C
AR
alf el 7{? C

AxC .

We put ¢g(4,X) = (A® G(X)*, X) for (A,X) an object of A x5 C, and
da(f,g9) = (fG(g~1)*, g) for (f,g) an arrow in A x s¢C. Its monoidal structure
is induced by the unit ng(xgy). As far as the 2-cells are concerned, ¢ is the
identity natural transformation, and a¢ is induced by Gr: I — G(I). If A: G =
G’ is a morphism in B?(C, A), the naturality of ¢ is attested by the following
2-cell in F(C,A) :

AX(SGC gox AX(SG/C

LY
s
%] el

AxC
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where, for (A, X) an object in A x5 C, we have :
oA X) =122, 1) (A G (X)), X) - (AR G(X)", X) .
Consider now the cokernel of 9 :
B(C,A) —2> Z2(C, A) —2> Cokers .
Using its universal property and the 2-cell ¢: § - £ = 0, we get a 1-cell
&': Cokerd — F(C,A)
which extends £: Z2(C,A) — F(C, A).
Theorem 15.2 The 1-cell in SCG
&' Cokerd — F(C,A)
s an equivalence.

Proof. Because of point 2 of Proposition 15.1, it is enough to prove that &’
is full and faithful. By Proposition 6.2 in [16], this is equivalent to prove that
the factorization

§': B3(C,A) — Ker€

of ¢ through the kernel of £ (factorization induced by the 2-cell ¢: § - € = 0) is
full and essentially surjective on objects.

Essentially surjective : Consider an object in Ker&, that is F € Z2(C, A) to-
gether with a section in SCG

We get a pointed functor
G=Spy: C—=AxpC——=A

and we need an isomorphism F' ~ §G. For this, observe that S(X) ~ (G(X), X)
(because of o), so that the monoidal structure of S gives the following chain of
natural isomorphisms : (G(X ®Y),X®Y)~ S(X®Y) ~ S(X)®r S(Y) =~
(G(X),X)er (GY),Y)=(G(X)GY)® F(X,Y),X ®Y). Its first compo-
nent gives a natural isomorphism F(X,Y) ~G(X ®Y) @ G(Y)* ® G(X)*, as
requested. It remains to prove that this isomorphism is an arrow in Ker€.
But this is attested by the following chain of natural isomorphisms, where
B:AXxC — AxpCisinduced by i4: A - AXxpCand S:C —- A xpC

b(B(A, X)) = 66((A,I) @ (G(X), X)) = 6a(A® G(X) & F(I,X),] ® X)
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¢G(A®G(X)7X) = (A®G(X) ®G(X)*7X) ~ (4, X).

Full : Consider now G1,Go € B%(C,A) and let \: 6G; = §G5 be in Z2(C, A).
Assume also that there is a 2-cell s: ¢g, = i - ¢, in EXT(C, A). In partic-
ular, for each X in C, there is a natural isomorphism s xy: (G1(X)*, X) —

(Go (X)),

X). Its first component induces a natural isomorphism sx: G1(X) —

G2(X) and, using that s is monoidal, one can check that 6(3) = A. O
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