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Abstract. This paper is a first step in the study of symmetric cat-
groups as the 2-dimensional analogue of abelian groups. We show
that a morphism of symmetric cat-groups can be factorized as an
essentially surjective functor followed by a full and faithful one, as
well as a full and essentially surjective functor followed by a faithful
one. Both these factorizations give rise to a factorization system, in
a suitable 2-categorical sense, in the 2-category of symmetric cat-
groups. An application to exact sequences is given.
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Introduction

A cat-group is a monoidal groupoid in which each object is invertible, up
to isomorphisms, with respect to the tensor product [7, 10, 16, 24]. Cat-groups
are a useful tool for ring theory, group cohomology and algebraic topology (for
example, small and strict cat-groups correspond to crossed modules) [2, 5, 6,
13, 15, 21, 22, 25]. Symmetric cat-groups, together with symmetric monoidal
functors and monoidal natural transformations, constitute a 2-category which
can be seen as a 2-dimensional analogue of the category of abelian groups.
Several algebraic problems can be considered in this setting, and some of them,
especially the study of exact sequences and of extensions, lead in a natural way
to the search of convenient classes of surjections and injections between cat-
groups. The aim of this note is to discuss two different factorization systems
for symmetric cat-groups. The problem of factorizing a (monoidal) functor has
been discussed, from different points of view, also in [1, 8, 18, 19, 20].

After recalling some preliminary facts on cat-groups (section 1), in section
2 we show how to factorize a morphism of symmetric cat-groups. The idea is
quite simple : in any abelian category, a morphism can be factorized through
the kernel of its cokernel or through the cokernel of its kernel, and these two
factorizations are essentially the same. But this is a gift of the one-dimensional
(abelian) world ! Since we have the appropriate notion of kernel and cokernel for
symmetric cat-groups, we can do the same with a morphism between symmetric
cat-groups, and we obtain two different factorizations. In section 3 we develop
a little bit of the theory of factorization systems in a 2-category and finally, in
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section 4, we prove that both factorizations constructed in section 2 give rise
to factorization systems. In the last section we use our results to discuss the
notion of 2-exact sequence of cat-groups. This notion has been introduced in
[24] in order to study the Brauer and Picard cat-groups of a commutative ring.

The reason why the two factorizations obtained in section 2 are different is
a quite surprising fact, explained in detail in section 5 : in the 2-category of
symmetric cat-groups, we can give a suitable definition of mono, epi, kernel and
cokernel. As expected in the 2-dimensional analogue of the category of abelian
groups, each epi is a cokernel and each mono is a kernel, but in general cokernels
fail to be epis and kernels fail to be monos.

Acknowledgment: We would like to thank W. Tholen and the referee for
some useful comments and suggestions. We especially thank the referee for
having suggested to us a link with homotopical algebra. This link is probably
deeper and more interesting than the few lines at the end of section 1 show.

1 Categorical groups

We start recalling some basic facts about cat-groups.

Definition 1 A (symmetric) cat-group G is a (symmetric) monoidal groupoid
G = (G,⊗, I, . . . ) such that for each object A there exists an object A∗ and an
arrow ηA : I → A⊗A∗.

The asymmetry in the previous definition is only apparent, in fact we have
the following

Proposition 2 Let G be a cat-group ; for each object A it is possible to find a
morphism εA : A∗ ⊗A→ I such that

D = (A∗ a A, ηA, εA)

is a duality in G. The choice, for each A, of such a duality induces a monoidal
equivalence

( )∗ : G
op → G .

One of the main tools of this paper is the cokernel of a morphism of cat-
groups. Since we have an explicit description of it only in the case of symmetric
cat-groups, from now on we limit our attention to symmetric cat-groups. We de-
note by SCG the 2-category having symmetric cat-groups as objects, monoidal
functors preserving the symmetry as arrows, and monoidal natural transforma-
tions as 2-cells. Observe that in this 2-category, 2-cells are invertible. We use
the same name, SCG, for the category obtained from the previous 2-category
forgetting 2-cells. We write H(SCG) for the category with the same objects
as SCG, but with 2-isomorphism classes of morphisms as arrows. There is an
obvious functor

H : SCG→ H(SCG) .
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If G is a symmetric cat-group, π0(G) is the (possibly large) set of isomor-
phism classes of objects of G, and π1(G) = G(I, I) is the set of endomorphisms
of the unit object. Both π0(G) and π1(G) are abelian groups and give rise to
two functors

π0 : SCG→ Ab , π1 : SCG→ Ab

(where Ab is the category of abelian groups) which factor through H.
If G is an abelian group, D(G) is the discrete symmetric cat-group with the

elements of G as objects, and G! is the symmetric cat-group with a single object
and with the elements of G as arrows. In this way we obtain two functors

D : Ab→ SCG , ! : Ab→ SCG

which are full and faithful, as well as their composite with H. Moreover, the
following adjunctions hold :

! · H a π1 , π0 a D · H a π0 .

More precisely, for each symmetric cat-group G we have

- a full and faithful morphism π1(G)! → G which is an equivalence iff
π0(G) = 0 ;

- a full and essentially surjective morphism G → D(π0(G)) which is an
equivalence iff π1(G) = 0 .

Let F : G → H be a morphism of symmetric cat-groups. From [24] we recall
an explicit description of its kernel and its cokernel.

Kernel: the kernel of F is given by a symmetric cat-groupKerF, a morphism
eF : KerF → G, and a 2-cell λF : eF · F ⇒ 0 (where 0 : KerF → H is the zero-
morphism, i.e. the functor which sends each arrow of KerF to the identity of
the unit object of H) :

- the objects of KerF are pairs (X,λX) where X is an object of G and
λX : F (X) → I is an arrow of H;

- an arrow f : (X,λX) → (Y, λY ) in KerF is an arrow f : X → Y in G such
that

F (X)
F (f) //

λX

!!DD
DD

DD
DD

F (Y )

λY

}}{{
{{

{{
{{

I

commutes;

- the functor eF forgets the arrow λX of (X,λX);

- the component at (X,λX) of λF is given by λX .

Cokernel: the cokernel of F is given by a symmetric cat-group CokerF, a
morphism PF : H → CokerF, and a 2-cell πF : F · PF ⇒ 0 :
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- the objects of CokerF are those of H;

- an arrow [f,N ] : X • // Y in CokerF is a class of equivalence of pair
(f,N) with N an object of G and f : X → Y ⊗ F (N) an arrow of H; two
pairs (f,N) and (g,M) are equivalent if there exists an arrow α : N →M

in G such that

X
f

zzuu
uu

uu
uu

uu
g

$$JJ
JJ

JJJ
JJ

J

Y ⊗ F (N)
1⊗F (α)

// Y ⊗ F (M)

commutes;

- the functor PF sends an arrow X → Y of H to [X → Y ' Y ⊗ I '
Y ⊗ F (I), I] : X • // Y ;

- if N is an object of G, the component at N of πF is [F (N) → I ⊗

F (N), N ] : F (N) • // I .

The kernel and the cokernel are special instances of bilimits (see [17]) and
are determined, up to monoidal equivalences, by their universal property, which
is discussed in detail in [24]. In section 2 we use the explicit description of
the kernel and of the cokernel, but in section 4 we essentially use their universal
property. For this we recall here the universal property of the kernel (that of the
cokernel is dual). For any morphism G : K → G and for any 2-cell ϕ : G ·F ⇒ 0,
there exists a morphism G′ : K → KerF and a 2-cell ϕ′ : G′ · eF ⇒ G such that
the following diagram commutes

G′ · eF · F
G′·λF +3

ϕ′·F

��

G′ · 0

��
G · F ϕ

+3 0

If moreover (G′′, ϕ′′) satisfies the same condition as (G′, ϕ′), then there exists a
unique 2-cell ψ : G′′ ⇒ G′ such that

G

G′′ · eF

ϕ′′

7?
wwwwwwww

wwwwwwww

ψ·eF

+3 G′ · eF

ϕ′

_g FFFFFFFF

FFFFFFFF

commutes.
We list here some facts we will use later.

Proposition 3 Let F : G → H be a morphism of symmetric cat-groups;
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1) π0(KerF ) and π1(CokerF ) are isomorphic groups;

2) the functor eF is faithful; it is full iff π1(H) = 0;

3) the functor PF is essentially surjective; it is full iff π0(G) = 0;

4) the factorization of π1(eF ) through the kernel of π1(F ) is an isomorphism;

5) the factorization of π0(PF ) through the cokernel of π0(F ) is an isomor-
phism;

6) F is faithful iff π1(F ) is injective iff π1(KerF ) = 0;

7) F is essentially surjective iff π0(F ) is surjective iff π0(CokerF ) = 0;

8) F is full iff π0(F ) is injective and π1(F ) is surjective iff π0(KerF ) = 0 iff
π1(CokerF ) = 0;

9) F is an equivalence iff π0(F ) and π1(F ) are isomorphisms iff KerF and
CokerF are equivalent to the cat-group with a single arrow.

To end this section, let us establish a link with homotopical algebra. The cat-
group KerF just described satisfies also the following strict universal property
(and a dual one is satisfied by CokerF ) : given a morphism G : K → G and a
2-cell ϕ : G · F ⇒ 0, there exists a unique morphism G′ : K → KerF such that
G′ ·eF = G and G′ ·λF = ϕ. In other words, KerF is also a standard homotopy
kernel, or homotopy fibre, and CokerF is also a standard homotopy cokernel, or
mapping cone (and they are determined up to isomorphisms by these universal
properties), while the more general universal properties we are considering can
be viewed as providing a “general” homotopy kernel or cokernel, determined
up to equivalences, consistently with Mather’s original definition for topological
spaces [14]. M. Grandis has developed in [9] an axiomatic for homotopical
algebra based on homotopy kernels and cokernels. Following his approach, the
discrete cat-groups

D(π1(G)) = Ker(1 → G)

(1 is the cat-group with a single arrow) is the object of loops Ω(G), so that
π1(G) = π0(Ω(G)). Moreover, the cat group

π0(G)! = Coker(G → 1)

is the suspension Σ(G), so that π0(G) = π1(Σ(G)). Finally, the morphisms
π1(G)! → G and G → D(π0(G)) are precisely the counit and the unit of the
adjunction Σ a Ω; this adjunction is a straightforward consequence of the strict
universal properties defining these functors.
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2 Factorizations of a morphism

In this section we construct two factorizations of a morphism of symmetric cat-
groups. Anticipating what will be explained in section 5, we can think of the
first factorization as a (epi, regular mono) factorization and of the second one
as a (regular epi, mono) factorization.

First factorization: let F : G → H be a morphism of symmetric cat-groups.
Consider its cokernel PF : H → CokerF and the kernel of PF , which we call
image, jF : ImF → H. The universal property of ImF gives us a morphism
F̂ : G → ImF and a 2-cell F̂ · jF ⇒ F. Moreover, it is possible to choose (in a
unique way) the morphism F̂ so that the 2-cell is the identity. In other words,
the following is a commutative diagram in SCG

G
F //

F̂ ""EE
EE

EEE
E H

ImF

jF

<<yyyyyyyy

Proposition 4 With the above notations,

1) the functor jF is faithful;

2) the functor F̂ is full and essentially surjective.

Proof: 1) jF is a kernel, so it is faithful by point 2 of proposition 3.
2) Explicitely, an object in ImF is a class of triples (X, f,N) with X an object
of H, N an object of G and f : X → F (N); we identify (X, f,N) with (X, f ′, N ′)
if there exists α : N → N ′ such that

X
f

||yy
yy

yy
yy f ′

""FFFF
FFF

F

F (N)
F (α)

// F (N ′)

commutes. An arrow λ : [X, f,N ] • // [Y, g,M ] is an arrow λ : X → Y such

that there exists an arrow l : N →M making commutative the diagram

X
λ //

f

��

Y

g

��
F (N)

F (l)
// F (M)

The functor F̂ : G → ImF sends µ : A→ B into

F (µ) : [F (A), 1F (A), A] • // [F (B), 1F (B), B] .
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• F̂ is essentially surjective: let [X, f,N ] be an object of ImF, then

f : [X, f,N ] • // F̂(N)

is an arrow in ImF because

X
f //

f

��

F (N)

1F (N)

��
F (N)

F (1N )
// F (N)

commutes.

• F̂ is full: let A,B be in G and consider an arrow λ : F̂(A) • // F̂(B) in

ImF. This means that λ : F (A) → F (B) is an arrow in H and there exists
l : A→ B in G such that

F (A)
λ //

1F (A)

��

F (B)

1F (B)

��
F (A)

F (l)
// F (B)

commutes. And then λ = F̂ (l) in ImF.

♦

Corollary 5 Let F : G → H be a morphism of symmetric cat-groups; the fol-
lowing conditions are equivalent:

1) F is a kernel, that is there exists a morphism G : H → K such that F ·G is
isomorphic to the zero-morphism and the induced morphism G → KerG

is an equivalence;

2) F is the kernel of its cokernel, that is F̂ is an equivalence;

3) F is faithful.

Proof: If F is faithful, then F̂ is faithful and then it is an equivalence. The
implications 2) ⇒ 1) ⇒ 3) are obvious.

♦

Second factorization: let F : G → H be a morphism of symmetric cat-groups.
Consider its kernel eF : KerF → G and the cokernel of eF , which we call coim-
age, F ′ : G → CoimF. As for the first factorization, the universal property of
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CoimF gives us a morphism iF : CoimF → H making commutative the follow-
ing diagram

G
F //

F ′

##HHHHH
HHHH

H

CoimF

iF

;;vvvvvvvvv

Proposition 6 With the above notations,

1) the functor F ′ is essentially surjective;

2) the functor iF is full and faithful.

Proof: 1) F ′ is a cokernel, so it is essentially surjective by point 3) of propo-
sition 3.
2) Objects of CoimF are those of G. An arrow [f,N, λN ] : X • // Y in
CoimF is a class of triple (f,N, λN ) with N in G, λN : F (N) → I and f : X →
Y ⊗ N ; we identify (f,N, λN ) with (g,M, λM ) if there exists α : N → M such
that

X
f

{{ww
ww

ww
ww

w
g

##GG
GG

GG
GG

G

Y ⊗N
1⊗α

// Y ⊗M

and F (N)
F (α) //

λN

!!DD
DD

DD
DD

F (M)

λM

||zz
zz

zz
zz

z

I

commute. The functor iF sends [f,N, λN ] : X • // Y into

F (X)
F (f) // F (Y ⊗N) ' F (Y ) ⊗ F (N)

1⊗λN// F (Y ) ⊗ I ' F (Y ).

• iF is faithful : consider two parallel arrows in CoimF,

[f,N, λN ], [g,M, λM ] : X • // Y

and suppose iF [f,N, λN ] = iF [g,M, λM ]. Using f : X → Y ⊗ N and
g : X → Y ⊗M, we obtain β = f−1 · g : Y ⊗N → Y ⊗M and

α : N ' I ⊗N
ε
−1
Y

⊗1
// Y ∗ ⊗ Y ⊗N

β // Y ∗ ⊗ Y ⊗M
εY ⊗1 // I ⊗M 'M

It remains to check the two conditions on α :
- the first one, that is the equation f · (1 ⊗ α) = g, becomes β = 1 ⊗ α,

which follows from a diagram chase ;
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- as far as the second one is concerned, consider the following diagram

F (Y ⊗N)

F (1⊗α)

��

// F (Y ) ⊗ F (N)

1⊗F (α)

��

1⊗λN // F (Y ) ⊗ I

1

��

%%JJJJJJJJJ

F (X)

F (f)
99ssssssssss

F (g) %%LLLLLLLLLL
F (Y )

F (Y ⊗M) // F (Y ) ⊗ F (M)
1⊗λM

// F (Y ) ⊗ I

99ttttttttt

The left-hand triangle commutes because f · (1 ⊗ α) = g, the first square
commutes because F is monoidal, and the hypothesis iF [f,N, λN ] =
iF [g,M, λM ] precisely means that the outer diagram is commutative. Since
all the arrows are isomorphisms, it follows that the second square is com-
mutative. Finally, this commutativity implies the second condition on α,

that is F (α) ·λM = λN , because F (Y ) is invertible, so that tensoring with
F (Y ) is an autoequivalence of H.

• iF is full : recall that we have a natural transformation

πeF
: eF · F ′ ⇒ 0

and that F ′ is the identity on objects. Consider two objects X,Y in
CoimF and an arrow h : iF (X) = F (X) → F (Y ) = iF (Y ) in H. We can
build up an object (Y ∗ ⊗X,λ) of KerF with λ defined by

λ : F (Y ∗ ⊗X) ' F (Y ∗) ⊗ F (X)
1⊗h // F (Y ∗) ⊗ F (Y ) '

' F (Y ∗ ⊗ Y )
F (εY ) // F (I) ' I

Using the component at (Y ∗⊗X,λ) of the transformation πeF
, we obtain

the following arrow in CoimF

k : X • // I ⊗X • // Y ⊗ Y ∗ ⊗X •
1⊗πeF

(Y ∗⊗X,λ)
// Y ⊗ I • // Y.

Finally, using the triangular identities of the duality (Y ∗ a Y, ηY , εY ), one
checks that iF (k) = h.

♦

Corollary 7 Let F : G → H be a morphism of symmetric cat-groups; the fol-
lowing conditions are equivalent:

1) F is a cokernel;
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2) F is the cokernel of its kernel;

3) F is essentially surjective.

Proof: If F is essentially surjective, then iF is an equivalence.

♦

3 Factorization systems in a 2-category

The notion of factorization system in a category is a well-established one. To
give its natural 2-categorical version, and to prove some elementary facts, we
closely follow the review of factorization systems given in [3] (see also [12]).

In this section, C is a 2-category with invertible 2-cells. Given two arrows
f : A → B and g : C → D, we say that f has the fill-in property with respect
to g, in symbols f ↓ g, if for each pair of arrows u : A → C, v : B → D and for
each 2-cell ϕ : f · v ⇒ u · g

A
f //

u

��

B

v

��

ϕ

z� ~~
~~

~~
~

~~
~~

~~
~

C g
// D

there exists an arrow w : B → C and two 2-cells α : f · w ⇒ u , β : w · g ⇒ v

such that the following diagram commutes

f · w · g
f ·β +3

α·g
 (

II
II

II
II

I

II
II

II
II

I
f · v

ϕ
w� xx

xx
xx

xx

xx
xx

xx
xx

u · g

(we say that (α,w, β) is a fill-in for (u, ϕ, v)); moreover, if (α′, w′, β′) is another
fill-in for (u, ϕ, v), then there exists a unique ψ : w ⇒ w′ such that

f · w
f ·ψ +3

α
�%

DDD
DDD

D

DD
DDD

DD
f · w′

α′

x� yy
yy

yy
yy

yy
yy

yy
yy

u

and w · g
ψ·g +3

β
�%

CC
CC

CC
CC

CC
CC

CC
CC

w′ · g

β′

x� zz
zz

zz
zz

zz
zz

zz
zz

v

commute. (See [4] for an interpretation of this conditions in terms of bilimits.)
If H is a class of arrows of C, we use the following notations :

H↓ = {g s.t. h ↓ g for each h in H}

H↑ = {f s.t. f ↓ h for each h in H}

Clearly, if H1 ⊂ H2 then H↓
1 ⊃ H↓

2 and H↑
1 ⊃ H↑

2
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Definition 8 A factorization system (E ,M) in C is given by two classes E and
M of arrows in C such that :

1) E and M contain equivalences and are closed under composition with
equivalences ;

2) E and M are stable under 2-cells (this means that if e is in E and there
is a 2-cell e′ ⇒ e, then also e′ is in E , and the same holds for M) ;

3) for each arrow f of C, there exist e ∈ E , m ∈ M and a 2-cell ϕ

I

m

��?
??

??
??

?

ϕ

��
A

e

??�������

f
// B

(we say that (e, ϕ,m) is a (E ,M)-factorization for f) ;

4) for each e ∈ E and for each m ∈ M, one has e ↓ m.

Proposition 9 Let (E ,M) be a factorization system in C ;

1) if f is in E and in M, then f is an equivalence ;

2) E = M↑ and M = E↓ ;

3) E and M are closed under composition ;

4) E is stable under bi-pushout and M is stable under bi-pullback ;

5) if (E ′,M′) is another factorization system in C, then E ⊂ E ′ iff M ⊃ M′.

Proof: The proof is a quite long but essentially straightforward 2-categorical
version of that of the corresponding 1-categorical properties. To give the flavor
of the proof, we check that M↑ is closed under composition. Consider the
following diagram

A
f //

u

��

B
g // C

v

��

ϕ

s{ nnnnnnnnnnnnnn

nnnnnnnnnnnnnn

D m
// E

with f, g ∈ M↑ and m ∈ M. Since f ↓ m, there exists a fill-in (α,w, β) for
(u, ϕ, g · v). Since g ↓ m, there exists a fill-in (ε, z, µ) for (w, β−1, v). In this way
we obtain a fill-in

( f · g · z
f ·ε +3 f · w

α +3 u , z, µ)
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for (u, ϕ, v). Now suppose that (η, z, µ) is another fill-in for (u, ϕ, v). This implies
that (η, g · z, g · µ) is a fill-in for (u, ϕ, g · v), so that there exists a unique
ψ : w ⇒ g · z such that the following diagrams commute

f · w
f ·ψ +3

α
�%

DDD
DD

DD

DD
DD

DDD
f · g · z

η
w� ww

ww
ww

ww

ww
ww

ww
ww

u

w ·m
ψ·m +3

β �'
GG

GG
GG

GG
G

GG
GG

GG
GG

G
g · z ·m

g·µv~ uu
uu

uu
uu

u

uu
uu

uu
uu

u

g · v

This implies that (ψ−1, z, µ) is a fill-in for (w, β−1, v), so that there exists a
unique σ : z ⇒ z such that the following diagrams commute

g · z
g·σ +3

ε
�%

DD
DD

DD
DD

DD
DD

DD
DD

g · z

ψ−1

y� zz
zz

zz
z

zz
zz

zz
z

w

z ·m
σ·m +3

µ
�&

EE
EE

EE
EE

EE
EE

EE
EE

z ·m

µ
x� yy

yy
yy

yy

yy
yy

yy
yy

v

and then commutes also

f · g · z
f ·g·σ +3

f ·ε

��

f · g · z

η

��
f · w

α
+3 u

It remains to check that if σ′ : z ⇒ z is another 2-cell making commutative

f · g · z
f ·g·σ′

+3

f ·ε

��

f · g · z

η

��
f · w

α
+3 u

z ·m
σ′·m +3

µ
�&

EE
EE

EE
EE

EE
EE

EE
EE

z ·m

µ
x� yy

yy
yy

yy

yy
yy

yy
yy

v

then σ = σ′. For this, it suffices to prove the commutativity of

g · z
g·σ′

+3

ε
�%

DD
DD

DD
DD

DD
DD

DD
DD

g · z

ψ−1

y� zz
zz

zz
z

zz
zz

zz
z

w

that is to prove that w
ε−1

+3 g · z
g·σ′

+3 g · z satisfies the conditions which

characterize ψ. The first one coincides with the first assumption on σ′, the
second one follows from the fact that (ε, z, µ) is a fill-in for (w, β−1, v).

♦

We leave it as an exercise for the reader to formulate the correct notion of
functoriality and uniqueness for the (E ,M)-factorization. To end this section,
observe that in general a factorization system in C does not induce a factorization
system (in the usual sense) neither in the underlying category of C, nor in the
homotopy category of C.
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4 Factorization systems in SCG

In this section we show that the factorizations of a morphism between symmetric
cat-groups constructed in section 2 satisfy the axioms introduced in section 3.

First factorization: we need two simple lemmas.

Lemma 10 Consider the following morphisms in SCG

L
G // K

K //

H
// H

and assume that G is full and essentially surjective ; for each 2-cell µ : G ·K ⇒
G ·H there exists a unique 2-cell µ : K ⇒ H such that G · µ = µ.

Proof: LetX be an object of K and choose an objectAX in L and a morphism
x : X → G(AX) ; we can put

µX : K(X)
K(x) // K(G(AX))

µAX // H(G(AX))
H(x−1) // H(X)

This definition does not depend on the choice of AX and x because G is full:
if x′ : X → G(A′

X) is another choice, there exists a z : AX → A′
X such that

G(z) = x−1 · x′; now the naturality of µ implies that K(x) · µAX
· H(x−1) =

K(x′) · µA′

X
· H(x′

−1
). In particular, if X = G(A), we can choose AX = A

and x = 1A, so that µG(A) = µA, that is G · µ = µ. Now let f : X → Y be a
morphism in K and choose x : X → G(AX) , y : Y → G(AY ). Once again, the
fullness of G gives us a morphism ϕ : AX → AY such that G(ϕ) = x−1 · f · y.
The following diagram commutes in each part, so that µ is natural

K(X)
K(x) //

K(f)

��

K(G(AX))
µAX //

K(G(ϕ))

��

H(G(AX))
K(x−1) //

H(G(ϕ))

��

H(X)

H(f)
��

K(Y )
K(y)

// K(G(AY ))
µAY

// H(G(AY ))
H(y−1)

// H(Y )

As far as the uniqueness of µ is concerned, observe that its naturality implies
the commutativity of

K(X)
µ

X //

K(x)

��

H(X)

H(x)

��
K(G(AX))

µG(AX )

// H(G(AX))

so that the condition G · µ = µ forces our definition of µ. Finally, it is easy to
check that if µ is monoidal, then also µ is monoidal.

♦

13



Lemma 11 Consider three morphisms H,K and F in SCG and the kernel of
F, as in the diagram

G

λF

��

F

��@
@@

@@
@@

L

K //

H
// KerF

eF

<<xxxxxxxxx

0
// H

let ρ : K · eF ⇒ H · eF be a 2-cell in SCG such that

K · eF · F
ρ·F +3

K·λF

��

H · eF · F

H·λF

��
K · 0 +3 H · 0

commutes. There exists a unique 2-cell ρ : K ⇒ H such that ρ · eF = ρ.

Proof: It suffices to check the particular case where H = 0, and this case
follows easily from the universal property of the kernel.

♦

Proposition 12 Consider the following classes of morphisms in SCG :

E1 = full and essentially surjective morphisms ;

M1 = faithful morphisms.

(E1,M1) is a factorization system in the sense of Definition 8.

Proof: Clearly, E1 and M1 contain equivalences, are closed under com-
position with equivalences and are stable under 2-cells. The existence of an
(E1,M1)-factorization has been proved in Proposition 4, so that it remains to
prove the fill-in condition. For this, consider G : L → K in E1 and let

G

F

��@
@@

@@
@@

λF

��
KerF

eF

<<xxxxxxxxx

0
// H

be the kernel of a morphism F. We start showing that G ↓ eF . Consider two
morphisms U : L → KerF , V : K → G and a 2-cell ϕ : G · V ⇒ U · eF . We
obtain a new 2-cell

µ : G · V · F
ϕ·F +3 U · eF · F

U·λF +3 U · 0 +3 G · 0

14



and, by Lemma 10, there exists a unique 2-cell µ : V ·F ⇒ 0 such that G ·µ = µ.

Now the universal property of the kernel gives us a morphism W : K → KerF

and a 2-cell β : W · eF ⇒ V such that

W · eF · F
β·eF +3

W ·λF

��

V · F

µ

��
W · 0 +3 0

commutes. We obtain a 2-cell

ρ : G ·W · eF
G·β +3 G · V

ϕ +3 U · eF

making commutative the following diagram

G ·W · eF · F
ρ·F +3

G·W ·λF

��

U · eF · F

U·λF

��
G ·W · 0 +3 U · 0

By Lemma 11, there exists a unique 2-cell ρ : G ·W ⇒ U such that ρ · eF = ρ.

This means that (ρ,W, β) is a fill-in for (U,ϕ, V ). Suppose now that (α,W, β)
is another fill-in for (U,ϕ, V ). The condition to be a fill-in implies the commu-
tativity of

G ·W · eF · F
G·β·F+3

G·W ·λF

��

G · V · F

G·µ

��
G ·W · 0 +3 G · 0

By Lemma 10, this implies the commutativity of

W · eF · F
β·F +3

W ·λF

��

V · F

µ

��
W · 0 +3 0

so that, by the universal property of the kernel, there exists a unique ψ : W ⇒W

such that

W · eF
ψ·eF +3

β
�&

FFFFFF
FF

FF
FFFFF

F
W · eF

βx� xx
xx

xx
xx

xx
xx

xx
xx

U

15



commutes. It remains only to check the commutativity of

G ·W
G·ψ +3

ρ
�&

EE
EE

EE
EE

EEE
EE

EE
E G ·W

α
x� yy

yy
yy

yy

yy
yy

yy
yy

U

and to do this we use once again the universal property of the kernel. Consider
the 2-cell

U · eF · F
U·λF +3 U · 0 +3 0 ;

it factors through the kernel of F in two ways : the obvious one, that is (U,U ·eF ),
but also (G·W,ρ·eF ). By the universal property, there exists a unique σ : G·W ⇒
U such that

G ·W · eF
σ·eF +3

ρ·eF "*LLLLLLL
LLL

LLLL
LLLLLL

U · eF

U·eFv~ uu
uu

uu
uu

u

uu
uu

uu
uu

u

U · eF

commutes. Clearly, we can take ρ as σ, but also

G ·W
G·ψ +3 G ·W

α +3 U

can be taken as σ. By uniqueness of σ, we have finished.
Now we turn to the general case. Let G be in E1 and F in M1 ; we have to
prove that G ↓ F. For this we consider the factorization of F

G
F //

F̂ ""EE
EE

EEE
E H

ImF

jF

<<yyyyyyyy

By Proposition 4, F̂ is an equivalence. By a general argument (see [11]) we can
choose a quasi-inverse F : ImF → G and two natural transformations ε : F̂ ·F ⇒
Id , η : Id ⇒ F · F̂ in such a way that (F , F̂ , η, ε) is an adjoint equivalence in
SCG. By the first part of the proof, we have G ↓ jF ; it is now straightforward,
even if quite long, to prove G ↓ F.

♦

Second factorization: as for the first factorization, we need two preliminary
lemmas.

Lemma 13 Consider the following morphisms in SCG

H

K //

H
// K

G // L

and assume that G is full and faithful ; for each 2-cell µ : K ·G ⇒ H · G there
exists a unique 2-cell µ : K ⇒ H such that µ ·G = µ.

16



Proof: For each object A in H, there exists a unique µA : K(A) → H(A)
such that G(µA) = µA. The naturality of µ as well as its uniqueness follows
from the faithfulness of G. It is easy to check that if µ is monoidal, then also µ
is monoidal.

♦

Lemma 14 Consider three morphisms H,K and F in SCG and the cokernel
of F, as in the diagram

H

πF

��

PF

$$HHHHHHHHH

G

F

??~~~~~~~

0
// CokerF

K //

H
// L

let ρ : PF ·K ⇒ PF ·H be a 2-cell in SCG such that

F · PF ·K
F ·ρ +3

πF ·K

��

F · PF ·H

πF ·H

��
0 ·K +3 0 ·H

commutes. There exists a unique 2-cell ρ : K ⇒ H such that PF · ρ = ρ.

Proposition 15 Consider the following classes of morphisms in SCG :

E2 = essentially surjective morphisms ;

M2 = full and faithful morphisms.

(E2,M2) is a factorization system in the sense of Definition 8.

Proof: The proof follows the same lines as the proof of Proposition 12. Once
again, it is easier to start showing that, if G is in M2 and F is any morphism,
then PF ↓ G. The general case follows from this using that, by Proposition 6,
the morphism iF in the second factorization of F

G
F //

F ′

##HHHHH
HHHH

H

CoimF

iF

;;vvvvvvvvv

is an equivalence if F is essentially surjective.

♦

17



5 More on morphisms in SCG

In this section we want to invert Lemma 10 and Lemma 13.

Lemma 16 Let F : G → H be a morphism in SCG ; the following conditions
are equivalent :

1) F is faithful ;

2) for each symmetric cat-group K, the functor induced by F

− · F : SCG(K,G) → SCG(K,H)

is faithful ;

3) given two morphisms K,H : L → G and a 2-cell ρ : K · F ⇒ H · F such
that

K · F · PF
ρ·PF +3

K·πF

��

H · F · PF

H·πF

��
K · 0 +3 H · 0

commutes, then there exists a unique 2-cell ρ : K ⇒ H such that ρ ·F = ρ.

Proof: 1) ⇒ 3) : This follows from Lemma 11 because, by Corollary 5, F is
the kernel of PF .
3) ⇒ 2) : If ρ is of the form α · F for a 2-cell α : H ⇒ H, then the condition on
ρ holds and then β · F = ρ = α · F implies β = ρ = α.

2) ⇒ 1) : Consider the abelian group Z and take K = Z!, so that − ·F becomes
π1(F ). Now − · F faithful means π1(F ) injective, so that F is faithful by point
6) in Proposition 3.

♦

Proposition 17 Let F : G → H be a morphism in SCG ; the following condi-
tions are equivalent :

1) F is full and faithful ;

2) for each symmetric cat-group K, the functor induced by F

− · F : SCG(K,G) → SCG(K,H)

is full and faithful ;

Proof: 1) ⇒ 2) : This is exactly Lemma 13.
2) ⇒ 1) : By Lemma 16, we already know that F is faithful. Now take K =
D(Z), and the fulness of − · F means that F is full.

♦
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Proposition 18 Let G : L → K be a morphism in SCG ; the following condi-
tions are equivalent :

1) G is full and essentially surjective ;

2) for each symmetric cat-group H, the functor induced by G

G · − : SCG(K,H) → SCG(L,H)

is full and faithful ;

Proof: 1) ⇒ 2) : This is exactly Lemma 10.
2) ⇒ 1) : Consider the class E ′

1 of the morphisms which satisfy condition 2).
Since E1 ⊂ E ′

1 (because 1) ⇒ 2)), each morphism in SCG has a (E ′
1,M1)-

factorization. Moreover, clearly E ′
1 contains equivalences, it is closed under

composition with equivalences and it is stable under 2-cells. To prove that
E1 = E ′

1, it remains to show that, for each G in E ′
1 and for each F in M1, one

has G ↓ F. But this is exactly what we have done in the proof of Proposition
12.

♦

Let us close this section with a point of terminology. In view of Proposition
17, it is reasonable to call “monomorphism” a full and faithful morphism (and,
dually, “epimorphism” a full and essentially surjective morphism). This is be-
cause in any 2-category C with invertible 2-cells, the following conditions on an
arrow f : A→ B are equivalent :

i) for each object C of C, the functor

− · f : C(C,A) → C(C,B)

is full and faithful ;

ii) the diagram

A
1A //

1A

��

A

f

��

f

{� ~~
~~

~~
~

~~
~~

~~
~

A
f

// B

is a bi-pullback ;

iii) there exist two morphisms f0, f1 : P → A and a 2-cell ϕ : f0 ⇒ f1 such
that the diagram

P
f0 //

f1

��

A

f

��

ϕ·f

{� ~~
~~

~~
~

~~
~~

~~
~

A
f

// B

is a bi-pullback.

19



In the introduction, we say that SCG can be seen as the 2-dimensional analogue
of the category of abelian groups. The results stated in this paper follow this
idea, and in fact cokernels coincide with strong epis (= morphisms orthogonal
to monos) and kernels coincide with strong monos (= morphisms orthogonal to
epis), each morphism can be factorized as an epi followed by a kernel or as a
cokernel followed by a mono, each mono is a kernel and each epi is a cokernel.
The surprise is that in this 2-dimensional world a kernel fails to be a mono and
a cokernel fails to be an epi (the failure being measured respectively by π1 and
π0).

6 Exact sequences

In order to study some classical exact sequences of abelian groups associated
with a morphism of commutative unital rings, in [24] the notion of 2-exact
sequence of symmetric cat-groups has been introduced.

For a sequence of morphisms of abelian groups, the notion of exactness can
be stated in several equivalent ways, and this is a relevant fact to make exact
sequences easy to use. We want to show here that the same can be done in the
framework of symmetric cat-groups, but using in the appropriate way both the
factorizations we have.

We need some preliminary constructions. Consider two morphisms in SCG
together with their factorizations as in the following diagram

KerG
0 //

eG

""FF
FF

FF
FF

F CoimG

G′

$$HHHHHHHHH

g

��
A

F //

F̂ ""FF
FF

FF
FF

F B
G

//

PF

##HHHHHHHHH

λPF

��

PeG

;;vvvvvvvvv

πeG

KS

C

ImF

ePF

<<xxxxxxxxx

f

KS

0
// CokerF

with the following commutative diagrams

F̂ · ePF
· PF

f ·PF +3

F̂ ·λPF

��

F · PF

πF

��
F̂ · 0 +3 0

eG · PeG
·G′

eG·g +3

πeG
·G′

��

eG ·G

λG

��
0 ·G′ +3 0

Now fix a 2-cell ϕ : F · G ⇒ 0 and consider the factorizations given by the
universal properties of KerG and CokerF

A
0 //

F ��?
??

??
??

CokerF

G̃

$$HHHHHHHHH

ϕ̃

��
B

πF

KS

G
//

PF

;;vvvvvvvvv
C

A
F //

F ""FF
FF

FF
FF

F B

G

��?
??

??
??

λG

��
KerG

ϕ

KS

0
//

eG

<<xxxxxxxxx

C
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with the following commutative diagram

F · eG ·G
ϕ·G +3

F ·λG

��

F ·G

ϕ

��

F · PF · G̃
F ·ϕ̃ks

πF ·G̃

��
F · 0 +3 0 0 · G̃ks

Consider the 2-cell

β : F̂ · ePF
·G

f ·G +3 F ·G
ϕ +3 0 +3

F̂ · 0 ;

since F̂ is full and essentially surjective, by Lemma 10 there exists a unique
α : ePF

·G⇒ 0 such that F̂ ·α = β. The universal property of KerG gives us a
factorization

KerG
eG

""FF
FF

FF
FF

F

µ

��
ImF

P

::uuuuuuuuu

ePF

// B

such that the following diagram commutes

P · eG ·G
µ·G +3

P ·λG

��

ePF
·G

α

��
P · 0 +3 0

Since the diagram

F̂ · P · eG ·G
F̂ ·µ·G+3

F̂ ·P ·λG

��

F̂ · ePF
·G

f ·G +3 F ·G

ϕ

��
F̂ · P · 0 +3 0

commutes, the universal property of KerG gives a unique 2-cell ν : F ⇒ F̂ · P
such that the following diagram commutes

F · eG

ϕ

��

ν·eG +3 F̂ · P · eG

F̂ ·µ

��
F F̂ · ePFf

ks

Analogously, start with the 2-cell

δ : F · PeG
·G′

F ·g +3 F ·G
ϕ +3 0 +3 0 ·G′ ;
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since G′ is full and faithful, by Lemma 13 there exists a unique γ : F · PeG
⇒ 0

such that γ ·G′ = δ. The universal property of CokerF gives a factorization

CokerF
Q

&&MMMMMMMMMM

θ

��
B

PF

;;vvvvvvvvv

PeG

// CoimG

with the commutative diagram

F · PF ·Q

πF ·Q

��

F ·θ +3 F · PeG

γ

��
0 ·Q +3 0

Furthermore, the universal property of CokerF gives a unique η : G̃ ⇒ Q · G′

with the commutative diagram

PF · G̃

ϕ̃

��

PF ·η +3 PF ·Q ·G′

θ·G′

��
G PeG

·G′
g

ks

Finally, consider the 2-cell

x : F̂ · ePF
· PeG

f ·PeG +3 F · PeG

γ +3 0 +3
F̂ · 0 ;

since F̂ is full and essentially surjective, there exists a unique u : ePF
· PeG

⇒ 0
such that F̂ · u = x. In the same way, consider

y : ePF
· PeG

·G′
ePF

·g
+3 ePF

·G
α +3 0 +3 0 ·G′ ;

since G′ is full and faithful, there exists a unique v : ePF
· PeG

⇒ 0 such that
v ·G′ = y.

Lemma 19 With the previous notations, u = v.

Proof: Since F̂ is full and essentially surjective and G′ is full and faithful, by
Lemmas 10 and 13 it is enough to check that F̂ · u ·G′ = F̂ · v ·G′. This easily
follows from the previous commutative diagrams.

♦

Proposition 20 With the previous notations, the following conditions are equiv-
alent :
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1) F : A → KerG is full and essentially surjective ;

2) P : ImF → KerG is an equivalence ;

3) Q : CokerF → CoimG is an equivalence ;

4) G̃ : CokerF → C is full and faithful.

Proof: 1) ⇒ 2) : Using µ : P · eG ⇒ ePF
, we can deduce the faithfulness of P

from that of ePF
. Using ν : F ⇒ F̂ · P, we can deduce the essential surjectivity

of P from that of F , and the fulness of P from the fact that F is full and F̂ is
essentially surjective.
2) ⇒ 1) : Since F̂ is full and essentially surjective, if P is an equivalence, then
the composite F̂ ·P is full and essentially surjective. But then also F is full and
essentially surjective because of ν : F ⇒ F̂ · P.
In a similar way, one can prove the equivalence of conditions 3) and 4).
3) ⇒ 2) : Consider the following diagram in SCG

KerPF
ePF //

P

��

B

IdB

��

PF // CokerF

Q

��
KerG

eG //

��

B

PeG //

G
$$IIIIIIIIIII Coker(eG)

KerPeG

ePeG

;;xxxxxxxxx

C

since eG is faithful, by Corollary 5 we know that the comparison KerG →
KerPeG

is an equivalence. Now if Q is an equivalence, also P is an equivalence.
2) ⇒ 3) : Similar to 3) ⇒ 2), but using Corollary 7.

♦

Definition 21 A sequence in SCG

B

ϕ

��

G

��?
??

??
??

A

F

??�������

0
// C

is 2-exact if it satisfies one of the equivalent conditions of the previous proposi-
tion.

Observe that the first condition in Proposition 20 is the definition of 2-exact
sequence used in [24].
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Proposition 22 (with the previous notations) Consider the following sequences
in SCG

B

ϕ

��

G

��?
??

??
??

A

F

??�������

0
// C

B

u=v

��

PeG

##GGGGG
GGGG

ImF

ePF

<<zzzzzzzz

0
// CoimG

B

α

��

G

��?
??

??
??

ImF

ePF

<<zzzzzzzz

0
// C

B

γ

��

PeG

##GGGGG
GGGG

A

F

??�������

0
// CoimG

The following conditions are equivalent :

1) the sequence (F, ϕ,G) is 2-exact ;

2) the sequence (ePF
, α,G) is 2-exact ;

3) the sequence (F, γ, PeG
) is 2-exact ;

4) the sequence (ePF
, u = v, PeG

) is 2-exact.

Proof: 1) ⇐⇒ 2) : Same argument as in 1) ⇐⇒ 2) of Proposition 20,
because P is always faithful.
1) ⇐⇒ 3) : Same argument as in 3) ⇐⇒ 4) of Proposition 20.
1) ⇐⇒ 4) : Come back to the diagram in the proof of Proposition 20 and con-
sider the factorization H : KerPF → KerPeG

of ePF
through ePeG

. We have:
(F, ϕ,G) is 2-exact iff P is full and essentially surjective iff H is full and essen-
tially surjective (because KerG → KerPeG

is an equivalence) iff (ePF
, u, PeG

)
is 2-exact.

♦
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VII (1975).

[17] R. Street: Fibrations in bicategories, Cahiers Topologie Géométrie
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