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Introduction

An essential localization is a reflective subcategory such that the reflector
has a left adjoint. In [12], Roos gave an abstract characterization of essential
localizations of module categories, proving that they are those complete and
cocomplete abelian categories with a regular generator, satisfying the following
conditions (we write the conditions in a non-abelian style, more convenient for
the general framework of this work)

(AB4*) Regular epimorphisms are product-stable ;

(AB5) Filtered colimits are exact, i.e. commute with finite limits ;

(AB6) Given a small family of functors (Hi : Ai → A)I defined on small filtered
categories, the canonical comparison τ is an isomorphism

τ : colim(
∏

I

Ai →
∏

I

A → A) −→
∏

I

(colimHi) .

In a subsequent paper [13], Roos introduced a weaker form of (AB6) :

(WAB6) With the same notations as in (AB6), the comparison morphism τ is a
regular epimorphism.

It is then natural to look for a representation of the abelian categories satisfying
the same list of conditions as in Roos’s theorem, but replacing (AB6) with
(WAB6).
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The first aim of this paper is to prove that this set of conditions, which seems
weaker, still characterizes essential localizations of module categories. In fact
we prove a more general result : Roos’s theorem has recently been generalized
by Adámek, Rosický and the author to a non-additive context [1]. They have
characterized essential localizations of (multi-sorted, finitary) varieties as those
complete and cocomplete Barr-exact categories with a small regular generator,
satisfying (AB4*), (AB5) and (AB6). We show that in this characterization
(AB6) can be replaced by (WAB6). Since abelian varieties are exactly module
categories, as a particular case we obtain the new formulation of Roos’s theorem.

A similar analysis can be done for Roos’s characterization of essential Gro-
thendieck topoi (i.e. essential localizations of presheaf categories) [10, 11]
(see also Section 4 in [1] for a different approach). In fact we prove that the
complete distributivity involved in Roos’s theorem can be weakened : instead
of an isomorphism, the comparison morphism can be assumed to be a regular
epimorphism.

To obtain our results, we use in a systematic way the exact completion of a
category with weak limits [5, 6]. This uniform approach stresses one more time
the striking analogy between the varietal context and the presheaf context: not
only the results are similar, but also the proof technique is essentially the same.

In dealing with essential localizations, we need the infinitary extension of the
exact completion. This has been studied in [6]. Unfortunately, the proof of the
main theorem in [6] is not complete. The claim that a left exact functor which is
left covering with respect to small products is continuous, used to end the proof
of Theorem 3.4, is not true, as we show with a counterexample. The second aim
of this paper is then to give a complete proof of the universal property of the
infinitary exact completion.

I would like to thank P.T. Johnstone for his help concerning Example 8.

1 The infinitary exact completion

For basic definitions and results on regular and exact categories, the reader can
see [2, 5]. We assume familiarity with the exact completion as described in [5]
and with the theory of left covering functors developed therein. Left covering
functors are called flat functors in [6]. We write

Γ: C → Cex

for the exact completion of a weakly left exact category C. As far as the infinitary
completion is concerned, we will deal only with arbitrary small limits ; in fact
the ranked case runs exactly as the general case.

A main difference between limits and weak limits is that in the weak case
the usual reduction to small products and equalizers of pairs of parallel arrows
does not work. One has to use small products and equalizers of small families
of parallel arrows (we call them small equalizers). The next three lemmas are
the infinitary version of Proposition 1, Lemma 28 and Proposition 27 in [5].
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Lemma 1 If a category C has weak small products and weak small equalizers,
then it has weak small limits.

Proof The proof is similar to that of the finitary case. We give some details in
view of Lemma 3.
I) Consider a small diagram of arrows with the same codomain (fi : Xi → X)I ,

a weak product (πi :
∏

I Xi → Xi)I and a weak small equalizer

E
e // ∏

IXi
πi·fi

:
// X ;

then the cone (e · πi : E → Xi)I is a weak limit over (fi : Xi → X)I (a weak
small pullback).
II) Let L : D → C be a functor with D a small category ; consider a weak
product (πD :

∏

D
L(D) → L(D))D and, for each arrow d : D → D′ in D, a

weak equalizer

Ed
ed // ∏

D
L(D)

πD′ //

πD ·L(d)
// L(D′) ;

consider also a weak small pullback (εd : E → Ed)d on the diagram (ed : Ed →
∏

D
L(D))d . Then (εd · ed · πD : E → L(D))D is a weak limit of L : D → C. �

Recall that a category B is completely regular if it is regular, complete and
regular epimorphisms are stable under small products (a condition which is
redundant in the finitary case).

Lemma 2 Let B be a completely regular category.

1) If in the following commutative diagram, where the horizontal arrows rep-
resent small equalizers, f1 is a regular epimorphism and f2 is a mono,
then the unique factorization f is a regular epimorphism

E
e //

f

��

A1

f1

��

ai

:
// A2

f2

��
L

l
// B1

bi

:
// B2

2) Consider two naturally connected small families of arrows with common
codomain (that is ai · f = fi · bi for each i in a small set I)

Ai

fi

��

ai // A

f

��
Bi

bi

// B

and the unique factorization ϕ : P → Q between the corresponding small
pullbacks ; if f is a mono and each fi is a regular epimorphism, then ϕ is
a regular epimorphism.
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Lemma 3 Let C be a category with weak small limits and B a completely regular
category. If a functor F : C → B is left covering w.r.t. weak small products and
weak small equalizers, then it is left covering w.r.t. weak small limits.

Proof I) F is left covering w.r.t. weak small pullbacks : consider a small family
of convergent arrows in C and a weak pullback as described in the first step of
Lemma 1

E
e //

∏

IXi
πi // Xi

fi // X

Applying F we obtain

F (E)
Fe //

t
!!D

DD
DD

DD
D

F (
∏

IXi)
F (πi·fi) //

p

��

F (X)

1

��

S

s

::vvvvvvvvv

q

}}zz
zz

zz
zz

z

L //
∏

IF (Xi) pi

// F (Xi)
Ffi

// F (X)

where s is the equalizer of the F (πi · fi)’s and the bottom line is the pullback
of the F (fi)’s computed using products and equalizers in B. By assumption, p

is a regular epi, so that by Lemma 2 also q is a regular epi. Also t is a regular
epi by assumption, so that the comparison t · q : F (E) → L is a regular epi.
II) F is left covering w.r.t. weak small limits : consider a functor L : D → C

with D small, and a weak limit as in the second step of Lemma 1

E
εd // Ed

ed //
∏

D
L(D)

πD // L(D) .

In the same way we build up the limit of L · F : D → C → B :

L
λd // Ld

ld //
∏

D
F (LD)

π̃D // F (LD) .

Let us call l = λd · ld : L →
∏

D
F (LD) ; it is the limit of





∏

D
F (LD)

π̃D·F (Ld) //

π̃D′

// F (LD′)





d

and then it is a mono. Now consider the pullback

L
l //

∏

D
F (LD)

P

p′

OO

l′
// F (

∏

D
LD)

p

OO
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By assumption, p is a regular epi and then also p′ is a regular epi. Moreover,
the mono l′ : P → F (

∏

D
LD) is the limit of



 F (
∏

D
LD)

F (πD)·F (Ld) //

F (πD′ )
// F (LD′)





d

But this limit can be obtained in two steps : first taking for each d the equalizer

Sd

sd // F (
∏

D
LD)

F (πD)·F (Ld) //

F (πD′ )
// F (LD′)

and then taking the pullback (σd : P → Sd)d of the family of convergent arrows
(sd : Sd → F (

∏

D
LD))d . By assumption, the factorization qd : F (Ed) → Sd

is a regular epi ; then, by Lemma 2, the factorization q : Q → P is a reg-
ular epi, where (jd : Q → F (Ed))d is the pullback of the convergent family
(F (ed) : F (Ed) → F (

∏

D
LD))d . Moreover, by the first part of this lemma, the

factorization t : F (E) → Q is a regular epi. Finally, the comparison

F (E)
t // Q

q // P
p′

// L

is a regular epi because each part is a regular epi. �

The fact that, if C has weak small limits, then Cex is completely regular, is
stated without proof in [5]. In the next lemma, we add an explicit description of
small products in Cex. This description will be used in the proof of Proposition
6.

Lemma 4 Let C be a category with weak small limits. Its exact completion Cex

is completely regular and Γ: C → Cex is left covering w.r.t. weak small limits.

Proof The last fact follows from the fact that C is a projective cover of the
complete category Cex. The fact that in Cex regular epis are product-stable
follows from the fact that they are of the form

R //

����

S

����
X

1
// X

and from the description of products in Cex given hereunder.
Consider a family of objects



 Ri

ri
0 //

ri
1

// Xi





I
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in Cex ; their product is given by

E
ei //

e1

��
e0

��

Ri

ri
1

��
ri
0

��
∏

IXi πi

// Xi

where πi :
∏

I Xi → Xi is a weak product in C and E is a weak limit in C as in
the following diagram

E

e0

||yyyyyyyy

ei

��

e1

""EEEEEEEE

∏

IXi

πi

��

∏

IXi

πi

��
Xi Ri

ri
0

oo
ri
1

// Xi

�

The next lemma generalizes Proposition 20 in [5]. Since the proof runs as in
the finitary case, we omit it.

Lemma 5 Let F : A → B be a functor between complete categories. If F is left
covering w.r.t. small limits, then it is continuous.

The next proposition is the main result of this section. It completes the
preparatory work to establish the universal property of the infinitary exact
completion. In the proof, we give an explicit description of small equalizers in
Cex.

Proposition 6 Let C be a category with weak small limits, B an exact and
completely regular category and F : C → B a functor left covering w.r.t. weak
small limits. Then the exact extension F̂ : Cex → B is continuous.

Proof Recall that F̂ sends an object of Cex, that is a pseudo equivalence relation
r0, r1 : R

// // X , to the coequalizer of the pair (Fr0, F r1). This coequalizer
exists because, by Theorem 26 in [5], the jointly monic part of the regular epi-
jointly mono factorization of (Fr0, F r1) is an equivalence relation. F̂ extends to
morphisms via the universal property of the coequalizer. By Lemma 5, to prove
that F̂ is continuous is enough to prove that F̂ is left covering w.r.t. small
limits. By Lemma 3, it suffices to prove that F̂ is left covering w.r.t. small
products and small equalizers.
I) Consider a small product in Cex

E
ei //

e1

��
e0

��

Ri

ri
1

��
ri
0

��
∏

IXi πi

// Xi
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Using F and F̂ we obtain the following commutative diagram

F (
∏

IXi)
λ //

q

��

∏

IF (Xi)

Q

I
qi

��
F̂ (e0, e1) µ

// ∏
I F̂ (ri

0, r
i
1)

Each qi is a regular epi, so that
∏

I qi is a regular epi because B is completely
regular ; by assumption λ is a regular epi, so that also µ is a regular epi.
II) Small equalizers in Cex : let

R
fi

:
//

r0

��
r1

��

S

s0

��
s1

��
X

fi

:
// Y

be a small family of parallel arrows in Cex and consider the diagram which
contains all the diagrams of the form

S
s0

��~~
~~

~~
~

s1

��

Y

X

fi

>>~~~~~~~

fj

// Y

for each i 6= j, all the subdiagrams being connected by the identity on X. Take
now a weak limit E of such diagram

E
ϕi,j //

e

��

S
s0

��~~
~~

~~
~

s1

��

Y

X

fi

>>~~~~~~~

fj

// Y

and a weak limit R as in the diagram below

E

e

��

R
e0oo e1 //

e

��

E

e

��
X Rr0

oo
r1

// X
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The equalizer in Cex is

R
e //

e0

��
e1

��

R

r0

��
r1

��
E e

// X

III) Consider a small equalizer in Cex as in the previous step

R
e //

e0

��
e1

��

R

r0

��
r1

��

fi

:
// S

s0

��
s1

��
E e

// X
fi

:
// Y

and apply F̂ : Cex → B. We obtain

FR
Fe //

Fe0

��
Fe1

��

FR

Fr0

��
Fr1

��

Ffi

:
// FS

Fs0

��
Fs1

��

p

%%KKKKKKKKKK

FE

q1

��

Fe
// FX

q2

��

Ffi

:
// FY

q3

��

N(q3)
n1

oo
n0oo

F̂ (e0, e1)
F̂ [e] //

t

��

F̂ (r0, r1)
F̂ [fi]

:
// F̂ (s0, s1)

L

h

88rrrrrrrrrrr

where the triangle on the right is the regular epi-jointly mono factorization of
(Fs0, F s1) and the triangle on the bottom is the factorization of F̂ [e] through
the equalizer of the F̂ [fi]’s. We have to prove that t : F̂ (e0, e1) → L is a regular
epi. For this, consider the limit A in B of the following diagram (a subdiagram
for each i 6= j, all the subdiagrams connected by the identity of F (X))

A
ki,j //

i

��

N(q3)

n0

{{wwwwwwww

n1

��

FY

FX

Ffi

<<xxxxxxxx

Ffj

// FY

Using the morphisms ϕi,j : E → S, we obtain a factorization σ : FE → A making
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commutative the following (solid) diagram

FE
σ //

q1

��

A

i

��

τ

��

F̂ (e0, e1)

t

��

FX

q2

��
L

h
// F̂ (r0, r1)

Observe that h is a mono, and assume that σ is a regular epi (we will prove this
later), so that there exists τ : A → L making commutative the two triangles. If
we can show that τ is a regular epi, we have that also t is a regular epi, as we
need. To show that τ is a regular epi, we can check that it is the pullback of q3

along h. This can be done using that (n0, n1) is the kernel pair of its coequalizer
q3 (because B is exact) and i is a mono (because (n0, n1) are jointly monic). It
remains to prove that σ : FE → A is a regular epi. For this, consider the limit
A in B of the following diagram (with the usual conventions)

A
Ki,j //

i

��

FS
Fs0

||yy
yyy

yyy

Fs1

��

FY

FX

Ffi

<<xxxxxxxx

Ffj

// FY

Since F : C → B is left covering, the unique factorization α : FE → A such
that α · i = Fe and α · Ki,j = Fϕi,j is a regular epi. Moreover, comparing the
construction of A and of A, we see that the unique factorization m : A → A

such that m · i = i and m · ki,j = Ki,j · p, is a regular epi (use part 2 of Lemma
2). Finally, composing with the mono i : A → FX, we check that σ = α · m. �

Corollary 7 Let C be a category with weak small limits and consider its exact
completion

Γ: C → Cex .

For each exact and completely regular category B, the composition with Γ induces
an equivalence between the category of exact and continuous functors from Cex

to B and the category of functors from C to B left covering w.r.t. small limits.

Bearing in mind the fact that a left exact functor which preserves small
products is continuous, and that a functor between complete categories is left
covering w.r.t. small limits iff it is continuous (Lemma 5), one could think
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that a left exact functor which is left covering w.r.t. small products is indeed
continuous. This is wrong. In fact, let C and B be as in Corollary 7 and assume
F : C → B be left covering w.r.t. weak finite limits and weak small products. A
glance at the proof of Proposition 6 shows that the exact extension F̂ : Cex → B

is (left exact and) left covering w.r.t. small products. Now, if F̂ is continuous,
then F is left covering w.r.t. weak small limits. The following example shows
that this is not always true.

Example 8 Let C be a small category and let i : B → [Cop, Set] be a per-
sistent localization of the presheaf category [Cop, Set], i.e. the left adjoint
F : [Cop, Set] → B is left exact and units are regular epis (see [7]). First of
all, observe that B, being a Grothendick topos, is exact and extensive and has
a family of regular generators. Moreover, since units are regular epis, the gen-
erators are regular projective and indecomposable objects (see [9]). Then B is
equivalent to a presheaf category and then (as any exact and complete category
with enough regular projective objects) it is completely regular. Let us now
prove that the reflector is left covering w.r.t. small products. Consider a family
of objects (Xj)J in [Cop, Set] and their product in [Cop, Set] and in B. Consider
also the comparison e : F (

∏

J Xj) →
∏

J F (Xj) ; we have to show that e is a
regular epi. Consider the following commutative diagram

i(F (
∏

JXj))
i(e) // i(

∏

JF (Xj)) '
∏

J i(F (Xj))

∏

JXj

ηQ

J Xj

ffMMMMMMMMMM
Q

JηXj

55kkkkkkkkkkkkkkk

(where ηX : X → i(F (X)) is the unit at the point X). Since units are regular
epis and [Cop, Set] is completely regular, i(e) is a regular epi. But, since i is full
and faithful and left exact, it reflects regular epis, and then e is a regular epi. To
finish the argument, we need an example of a persistent localization of a presheaf
category such that the reflector is not continuous. Such an example is provided
by Example 2.6 in [7] : let M be a semilattice with a non-principal ideal I and
take as B the full subcategory of the category M -Set of those objects on which
the elements of I act trivially. B is a persistent localization, but the reflector
does not preserve small products, as communicated to me by P.T. Johnstone.

2 Essential localizations of varieties

Let B be a complete and cocomplete category and consider the following condi-
tions:

(LM) B is exact and has a small regular generator G. This means that G = (Gj)J

is a small family of objects in B such that, for each object X in B, the
canonical arrow x is a regular epimorphism

x :
∐

j∈J,B(Gj ,X)

Gj −→ X ;
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(AB4*) Regular epimorphisms are product-stable ;

(AB5) Filtered colimits are exact, i.e. commute with finite limits ;

(AB6) Given a small family of functors (Hi : Ai → B)I defined on small filtered
categories, the canonical comparison τ is an isomorphism

τ : colim(
∏

I

Ai →
∏

I

B → B) −→
∏

I

(colimHi) ;

(WAB6) With the same notations as in (AB6), the comparison morphism τ is a
regular epimorphism.

It is known that

i - Condition (LM) characterizes localizations of monadic categories over a
power of Set [14] ;

ii - Conditions (LM) and (AB4*) characterize continuous localizations of mo-
nadic categories over a power of Set [1] (continuous localization means
that the reflector is continuous) ;

iii - Conditions (LM) and (AB5) characterize localizations of (multisorted, fini-
tary) varieties [15] ;

iv - Conditions (LM), (AB4*), (AB5) and (AB6) characterize essential local-
izations of varieties [1] (essential localization means that the reflector has
a left adjoint).

The aim of this section is to give a new proof of the last mentioned character-
ization using the theory developed in the first section, and replacing condition
(AB6) with the weaker version (WAB6).

Proposition 9 A complete and cocomplete category B is equivalent to an essen-
tial localization of a variety if and only if it satisfies conditions (LM), (AB4*),
(AB5) and (WAB6).

Proof To avoid heavy notations, let us write the proof in the one-sorted case, i.e.
when the small regular generator G is reduced to a single regular generator G.

Following [15], we consider the subcategory C of B having as objects copowers
S •G of G, for S varying in Set. An arrow G → S •G is in C if it factors through
the canonical arrow S′ • G → S • G for some finite subset S′ of S. There is a
finitary monad over Set given by

T : Set
−•G // C

C(G,−)// Set

The non-full inclusion F : C → B is left covering w.r.t. weak finite limits, so that
it has an exact extension F̂ : Cex → B. Moreover, F̂ has a full and faithful right
adjoint, so that B is a localization of Cex. But C is equivalent to the category
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of free T-algebras, so that Cex is equivalent to the variety of T-algebras. Since
Cex is locally finitely presentable, B is locally presentable [3]. Then to prove
that F̂ has a left adjoint it suffices to prove that it is continuous [2]. According
to Proposition 6 and Lemma 3, we have to show that F is left covering w.r.t.
weak small products and weak small equalizers.
I) F : C → B is left covering w.r.t. weak small products. Consider a small
family of sets (Si)I , the corresponding objects Si • G in C and their product
(πi :

∏

I(Si • G) → Si • G)I in B. There is a canonical arrow

Σ: C(G,
∏

I

(Si • G)) • G −→
∏

I

(Si • G)

where C(G,
∏

I

(Si • G)) = {x : G →
∏

I

(Si • G) s.t. ∀i ∈ I x · πi is in C}.

Since a weak product in C of the Si •G’s is obtained precomposing the πi’s with
Σ, to prove that F is left covering w.r.t. small products means to prove that Σ
is a regular epi. If each Si is finite, then C(G,

∏

I(Si • G)) = B(G,
∏

I(Si • G)),
so that Σ is a regular epi because G is a regular generator. In general, each Si

is the filtered colimit of its finite subsets,

Si = colimPf(Si)S
′
i, and then Si • G = colimPf(Si)(S

′
i • G) .

For each choice (S′
i) ∈

∏

I Pf(Si), there is a canonical arrow

λ : C(G,
∏

I

(S′
i • G)) • G −→

∏

I

(S′
i • G)

which is a regular epi because each S′
i is finite ; taking the colimit, we obtain a

regular epi Λ. Moreover, a diagram chase shows that there is an arrow µ making
commutative the following diagram

C(G,
∏

I(Si • G)) • G
Σ //

∏

I(Si • G) =
∏

I(colimPf(Si)S
′
i • G)

colimQ

IPf (Si)(C(G,
∏

I(S
′
i • G)) • G)

Λ
//

µ

OO

colimQ

IPf (Si)(
∏

I(S
′
i • G))

τ

OO

Since Λ is a regular epi and, by condition (WAB6), τ is a regular epi, it follows
that Σ is a regular epi.
II) F : C → B is left covering w.r.t. weak small equalizers. Consider a small
family of parallel arrows in C

(

S • G
fi

:
// R • G

)

I

with S, R ∈ Set, and their equalizer e : E → S • G in B. There is a canonical
arrow Σ: C(G, e) • G → E, where

C(G, e) = {x : G → E s.t. x · e is in C}
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Since a weak equalizer in C of the fi’s is given by Σ · e : C(G, e) • G → S • G,

to prove that F is left covering w.r.t. small equalizers means to prove that Σ is
a regular epi. If S is finite, then C(G, e) = B(G, E) so that Σ is a regular epi
because G is a regular generator. In general,

S = colimPf (S)S
′, and then σS′ : S′ • G → S • G = colimPf (S)(S

′ • G)

is a filtered colimit. For each S′ ∈ Pf (S), consider the following small equalizer

ES′

eS′ // S′ • G
σS′ ·fi

:
// R • G ;

there is a canonical arrow λS′ : C(G, eS′) • G → ES′ which is a regular epi
because S′ is finite. Taking the colimit, we obtain a regular epi Λ. Moreover,
the various σS′ ’s give rise to a canonical arrow η, and a diagram chase shows
that there is an arrow µ making commutative the following diagram

C(G, e) • G
Σ // E

colimPf(S)(C(G, eS′) • G)
Λ

//

µ

OO

colimPf(S)ES′

η

OO

To end the proof, we will show that η is an isomorphism. For this, we apply to
the diagram

(

S • G
fi

:
// R • G

)

I

the usual formula to compute a limit as an equalizer of a pair of arrows between
two small products, and we obtain

E // S • G × R • G
α //

β
//
∏

I(R • G) × S • G × R • G

We do the same with the diagram

(

S′ • G
σS′ ·fi

:
// R • G

)

I

and we obtain

ES′

εS′ // S′ • G × R • G

aS′ //

bS′

//
∏

I(R • G) × S′ • G × R • G
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Taking the colimit, we obtain the following commutative diagram

L

n

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

l

&&

colimPf (S)ES′

η //

m

OO

ε

��

E

��
colimPf (S)(S

′ • G × R • G)
γ //

a

��
b

��

S • G × R • G

α

��
β

��
colimPf (S)(

∏

I(R • G) × S′ • G × R • G)
δ

// ∏
I(R • G) × S • G × R • G

where l is the equalizer of a and b. Since in B filtered colimits commute with
finite limits, the arrows m, γ and δ are isomorphisms, and then also n is an
isomorphism. This implies that η is an isomorphism. �

3 Essential localizations of presheaf categories

In [10, 11] and [1], the following theorem is proved : a category is equivalent to
an essential localization of a presheaf category if and only if it satisfies conditions
(LM) and (AB4*), it is infinitary extensive [4] (i.e. small sums are disjoint and
universal) and the following complete distributivity holds

(CD) let I be a small set and, for each i ∈ I, consider a small family (Ai,j)j∈Ji

of objects. The canonical comparison τ is an isomorphism

τ :
∐

f∈
Q

Ji

(
∏

i∈I

Ai,f(i)) −→
∏

i∈I

(
∐

j∈Ji

Ai,j) .

Similarly to what we have done for varieties, the aim of this section is to prove
the above characterization replacing the last condition by its weaker version
(WCD) in which the comparison τ is assumed to be a regular epimorphism.

Proposition 10 A complete and cocomplete category B is equivalent to an es-
sential localization of a presheaf category if and only if it is infinitary extensive
and satisfies conditions (LM), (AB4*) and (WCD).

Proof Let G = (Gj)J be the small regular generator, which can be seen as a
full subcategory of B. The classical Giraud’s theorem shows that B is a local-
ization of [Gop, Set] (see [5] for a proof of Giraud’s theorem using the (finitary)
exact completion). The presheaf category [Gop, Set] is equivalent to the exact
completion of FamG, the sum-completion of G (this is because the subcategory
spanned by sums of representables is a projective cover of [Gop, Set]). Moreover,
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FamG can be described as the following non-full subcategory C of B : an ob-
ject of C is a sum of generators, that is an object of the form

∐

s∈S Gf(s) for
f : S → J a map in Set ; an arrow

∐

S Gf(s) →
∐

R Gg(r) in C is an arrow in
B such that, for each s ∈ S, there is an rs ∈ R and an arrow Gf(s) → Gg(rs)

making commutative the following diagram

∐

SGf(s)
//
∐

RGg(r)

Gf(s) //

σs

OO

Gg(rs)

σrs

OO

Up to the equivalence [Gop, Set] ' Cex, the left exact reflector [Gop, Set] → B is
given by the exact extension F̂ : Cex → B of the inclusion F : C → B. As in the
case of varieties, to prove that F̂ has a left adjoint it is enough to prove that
it is continuous. For this, we have to show that F is left covering w.r.t. weak
small products and weak small equalizers.
I) F : C → B is left covering w.r.t. weak small products. Observe that, given
a small category D and a functor L : D → C, a weak limit of L in C can be
computed in the following way : let (πD : L → F (LD))D be the limit in B of
L · F and consider the canonical morphism

λ :
∐

j∈J,C(Gj ,L)

Gj −→ L

where C(Gj , L) = {f : Gj → L s.t. ∀D ∈ D f · πD is in C}

A weak limit of L is obtained precomposing the πD’s with λ. To prove that F

is left covering w.r.t. small products then means to prove that λ is a regular epi
when D is discrete, say D = I for a set I. If, for each i ∈ I, L(i) is in G, then
C(Gj , L) = B(Gj , L) and λ is a regular epi because G is a regular generator. In
general, let us write Xi = L(i) for i ∈ I. Each Xi is a sum of generators, say
Xi =

∐

j∈Ji
Ai,j with Ai,j ∈ G, and we can consider the following diagram

F (
∐

f∈
Q

Ji
(
∏

i∈IAi,f(i)))
a // F (

∏

IXi)

λ

��
∏

IFXi '
∏

i∈I(
∐

j∈Ji
FAi,j)

∐

f∈
Q

Ji
(F (

∏

i∈IAi,f(i))) c
//

'

OO

∐

f∈
Q

Ji
(
∏

i∈IFAi,f(i)))

b

OO

The arrow a is the image under F of the canonical morphism
∐

(
∏

Ai,j) →
∏

Xi

in C ; the two isomorphisms depend on the fact that sums in C are computed in
B ; the arrow b is a regular epi by condition (WCD) ; the arrow c is a regular epi
because it is sum of regular epis, each F (

∏

I Ai,j) →
∏

I FAi,j being a regular
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epi for the particular case previously discussed. Finally, since the diagram is
commutative, λ is a regular epi.
II) F : C → B is left covering w.r.t. weak small equalizers. Once again, the proof
is very similar to that for varieties and we omit details. Let us only point out
that, imitating the constructions done in step II of the proof of Proposition 9,
one arrives at a diagram in which two equalizers (of pairs of parallel arrows) are
compared, and one has to prove that they are connected by two isomorphisms.
This is the case because of the universality of sums in B (in the varietal case we
used the exactness of filtered colimits). �
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