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Abstract

In this work we establish a 2-categorical analogue of Beck’s theorem
characterizing monadic functors. We show that a 2-functor (a pseudo-
functor) U is monadic iff it is a right pseudo-adjoint, it reflects adjoint
equivalences and it creates U -absolute pseudo-coequalizers of codescent
objects.

MSC 2000 : 18C15, 18D05.

Introduction

One of the most famous theorem in category theory is Beck’s theorem char-
acterizing monadic functors. It was proved in 1966 and since then has found an
impressive number of applications to one-dimensional categorical algebra. On
the other hand, starting from the fundamental papers by Gray [8] and Kelly and
Street [13], 2-dimensional categorical algebra has been developped. In this paper
we establish a 2-categorical analogue of Beck’s theorem, replacing adjunctions
and monads by pseudo-adjunctions and pseudo-monads on 2-categories.

Let us recall here the classical theorem : consider an adjunction F a U : A →

C and the comparison functor K : A → CT (where T is the monad induced by
the adjunction F a U and CT is the category of T-algebras). The functorK is an
equivalence if and only if U is conservative and, given two parallel arrows u and
v in A having a split (and then absolute) coequalizer in C, then u and v have a
coequalizer preserved by U. This situation plainly transposes to the 2-categorical
setting : any pseudo-adjunction between 2-categories F a U : A → C induces a
pseudo monad T on C and a comparison pseudo-functor K : A → CT (CT being
now the 2-category of pseudo-T-algebras) ; the condition to be conservative
becomes, in dimension 2, to reflect adjoint equivalences. It remains, and this is
the main point, to understand the appropriate analogue of coequalizer of two
parallel arrows. This analogue is provided by the notion of pseudo-coequalizer
of a codescent object, introduced by Street in [18, 19].

The paper is organized as follows. In the first section we fix our notations
and we establish some preliminary results. Full definitions and basic facts on
pseudo-adjunctions and pseudo-monads can be found in [5, 8, 11, 14, 15]. In
section 2 we discuss the notion of pseudo-coequalizer of a codescent object and
we show its link with pseudo-algebras. Section 3 is devoted to the main results.
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In the last section, we specialize our main results to the case where the pseudo-
monad induced by a pseudo-adjunction is a KZ-doctrine. For expository reasons,
we have stated Beck’s theorem for pseudo-monads in terms of absolute pseudo-
coequalizers instead of split pseudo-coequalizers. Moreover, for sake of clarity,
we have restricted ourselves to pseudo-adjunctions where the pseudo-functors
are 2-functors. All the results remain true when one considers the adjoints to be
pseudo-functors : the length of the proofs slightly increase, but the techniques
employed remain the same. Applications of our results already appear in [1, 2],
where the equational hull of some important 2-categories is studied.

1 Notations and preliminary results

In the case of ordinary adjunctions, the right adjoint functor is full (faithful)
if and only if the components of the counit are split monomorphisms (are epi-
morphisms), and dually for left adjoints. A similar analysis can be done for
pseudo-adjunctions. We recall the notations for a pseudo-adjunction.

Definition 1.1 Let A and C be two 2-categories and let U and F in the diagram

A
U

// C
Foo

be 2-functors. F is a left pseudo-adjoint to U if there exists

1. pseudo-natural transformations η : 1 → UF and ε : FU → 1

2. invertible modifications s : 1F ⇒ (εF ) ◦ (Fη) and t : (Uε) ◦ (ηU) ⇒ 1U

such that the following equations hold [8]:

1
η //

η

��

η(η)
⇐

UF

UFη

��
Us
⇐

1

η

��

= η

��

=

UF
ηUF

//

tF
⇐

UFUF

UεF
III

I

$$II
II

UF UF
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FU

Ft
⇒FηU

III
I

$$II
II

sU
⇒

FU

ε

��

= ε

��

FUFU
FUε //

ε(ε)
⇒εFU

��

FU

ε

��

=

FU ε
// 1 1

Proposition 1.2 With the previous notations.

1. U is locally full iff for each A,A′ ∈ A the functor A(εA, A
′) : A(A,A′) →

A(FUA,A′) is full.

2. U is locally faithful iff for each A,A′ ∈ A the functor A(εA, A
′) is faithful.

3. U is locally essentially surjective on objects iff for each A,A′ ∈ A the
functor A(εA, A

′) is essentially surjective.

4. U is locally an equivalence iff for each A,A′ ∈ A the functor A(εA, A
′) is

an equivalence.

Proof. Let A,A′ ∈ A, then the functors

A(A,A′)
UA,A′

// C(UA,UA′)
χA,A′

// A(FUA,A′)

where χA,A′ is an adjoint equivalence natural in A and A′, and

A(A,A′)
A(εA,A

′)// A(FUA,A′)

are isomorphic, the isomorphism being given by ε(f) for f ∈ A(A,A′). The
pseudo-naturality of ε ensures that we do get a natural transformation. Hence
we get:

• UA,A′ is faithful ⇔ χA,A′UA,A′ is faithful ⇔ A(εA, A
′) is faithfull

• UA,A′ is full ⇔ χA,A′UA,A′ is full ⇔ A(εA, A
′) is full

• UA,A′ is e.s.o. ⇔ χA,A′UA,A′ is e.s.o. ⇔ A(εA, A
′) is e.s.o.

• UA,A′ is an equivalence ⇔ χA,A′UA,A′ is an equivalence ⇔ A(εA, A
′) is an

equivalence

where e.s.o. is essentially surjective on objects. �
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Observe that for each A′ ∈ A the hom-functor A(f,A′) : A(A,A′) →

A(B,A′) induced by an arrow f : B → A, is essentially surjective on objects
iff f has a pseudo-retraction, i.e., there exists an arrow f∗ : A → B and an
invertible 2-cell

A
f∗

  B
BB

BB
BB

B

B

f
??~~~~~~~ ∼=

B .

Having in mind 2.6 and 2.7 in [7] or Section 5 in [10], we call the arrow f a
pseudo-epi if for each A′ ∈ A the functor A(f,A′) is full and faithful (f.f.), so
that we can restate the previous proposition in the following way:

Proposition 1.3 The following conditions are equivalent:

1. U is locally an equivalence,

2. for each A ∈ A, the arrow εA is a pseudo-epi and has a pseudo-retraction,

3. for each A ∈ A, the arrow εA is an equivalence.

Proof. 3) implies 1). If εA is an equivalence, then A(εA, A
′) is an equivalence.

1) implies 2). If U is locally an equivalence then A(εA, A
′) is f.f. and e.s.o., so

εA is a pseudo-epi and has a pseudo-retraction.
2) implies 3). Suppose that εA is a pseudo-epi and has a pseudo-retraction,
then we have an arrow ε∗A and an isomorphism α : ε∗A ◦ εA ∼= 1FUA. As εA
is a pseudo-epi, there exists a unique isomorphism β : εA ◦ ε∗A

∼= 1A such that
βεA = εAα. �

As far as the left pseudo-adjoint is concerned, Proposition 1.2 holds when
one replaces U by F , the co-unit ε by the unit η and A(εA, A

′) by C(C′, ηC) for
C,C′ ∈ C. Finally, say that an arrow g : C → D of C has a pseudo-section if
there exists an arrow g∗ : D → C and an invertible 2-cell γ : g ◦ g∗ ∼= 1D. Call
g a pseudo-mono if for each C ∈ C the functor

C(C′, g) : C(C′, C) → C(C′, D)

is full and faithfull. Proposition 1.3 becomes:

Proposition 1.4 The following conditions are equivalent:

1. F is locally an equivalence,

2. for each C ∈ C, the arrow ηC is a pseudo-mono and has a pseudo-section,

3. for each C ∈ C, the arrow ηC is an equivalence.

We recall now the notations for pseudo-monads and pseudo-algebras.
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Definition 1.5 Let C be a 2-category. A pseudo-monad on C is a six-tuple
(T, η, µ, l, r, a) where T : C → C is a 2-functor, η : 1 → T and µ : T 2 → T are
pseudo-natural transformations and l, r, a are the following modifications which
are isomorphisms:

T
ηT //

l
⇐

AA
AA

AA
AA

AA
AA

AA
AA

T 2

µ

��

T
Tηoo
r
⇐

}}
}}

}}
}}

}}
}}

}}
}}

T

T 3
Tµ //

a
⇒µT

��

T 2

µ

��
T 2

µ
// T

satisfying two compatibility conditions (equations (1) and (2) on page 95 of
[15]).

It is well known that a pseudo-adjunction (U,F, η, ε, s, t) : A → C generates
an associated pseudo-monad T given by T = UF , ηT = η, µT = UεF , lT = tF ,
rT = Us and aT = Uε(εF ).

Definition 1.6 Let T = (T, η, µ, l, r, a) be a pseudo-monad on the 2-category
C. A pseudo-T-algebra is a quadruple (C, c, c0, c) where C is an object of C,
c : TC → C is an arrow in C, and c0 and c are the following 2-cell isomorphisms

C
ηC //

c0
⇐

BB
BB

BB
BB

BB
BB

BB
BB

TC

c

��

T 2C
Tc //

c
⇒µC

��

TC

c

��
C TC c

// C

satisfying two compatibility conditions (equations (6) and (7) on page 96 of
[15]).

A morphism of pseudo-T-algebras is a double (f, f) : (C, c, c0, c) → (D, d, d0, d)
where f : C → D is an arrow in C and f is the following invertible 2-cell:

TC
Tf //

f
⇒c

��

TD

d

��
C

f
// D

satisfying two compatibility conditions (equations (9) and (10) on page 97 of
[15]).

A 2-cell α : (f, f) ⇒ (g, g) between morphisms of pseudo-T-algebra is simply
a 2-cell α : f ⇒ g in C satisfying a compatibility condition (equation (11) on
page 97 of [15]).
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Let us denote by CT the 2-category of pseudo-T-algebras. There is an
evident forgetful 2-functor UT : CT → C defined by UT( (C, c, c0, c) ) = C,
UT( (f, f) ) = f and UT(α) = α. The 2-functor UT has a pseudo-adjoint FT

given by FT(D) = (TD, µD, aD, lD), FT(h) = (Th, µ(h)) and FT(β) = Tβ.
The unit ηT of this pseuso-adjunction is given by the pseudo-natural transfor-
mation η, the co-unit εT is given on objects by εT(C,c,c0,c) = (c, c) and on arrows

by εT
(f,f)

= f . The modification sT is defined by sTC = rC and the modification

tT is defined by tT(C,c,c0,c) = c0.

Given a pseudo-adjunction (U,F, η, ε, s, t) : A → C one obtains a comparison
2-functor K : A → CT, where T is the associated pseudo-monad, such that
UT ◦K = U and K ◦ F = FT:

A
K //

U   A
AA

AA
AA

A
CT

UT

}}||
||

||
||

C .

F

``AAAAAAAA
FT

==||||||||

The 2-functor K is given by K(A) = (UA,U(εA), tA, U(εεA)) on an object A of
A, K(f) = (Uf, U(εf)) on an arrow f of A, and K(α) = Uα on a 2-cell α of A.

From Proposition 1.2, we obtain the following fact:

Proposition 1.7 The 2-functor K is locally faithful if and only if for each
A,A′ ∈ A the functor A(εA, A

′) is faithful.

2 Codescent objects

In the ordinary case, a functor U is monadic if and only if it has a left adjoint,
reflects isomorphisms and creates coequalizers of U -split pairs of arrows (see
[3, 6, 16]). In order to generalize this theorem in dimension 2, we must replace
“pairs of parallel arrows” by codescent objects (see [18, 19]).

Definition 2.1 Let X be the 2-category generated by the following truncated
bi-cosimplicial diagram

X2

δ0 //
δ1 //

δ2

// X1

δ0 //

δ1

// X0ιoo

with the following invertible 2-cells

σij : δiδj ∼= δj−1δi i < j

n0 : δ0ι ∼= 1

n1 : 1 ∼= δ1ι.

A codescent object in a 2-category A is a 2-functor S : X → A. A morphism of
codescent objects is a pseudo-natural transformation φ : S → S′ : X → A, and
a 2-cell between morphisms of codescent objects is a modification.
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The appropriate notion of “coequalizer” of codescent objects is given by
a pseudo-colimit which we shall now describe. The weight that is necessary
is given by a 2-functor J : X op → Cat for which J(X0) = ∗ (the terminal
category), J(X1) = 0 ∼= 1, J(X2) = 0 ∼= 1 ∼= 2, the image of δi : X1 → X0

under J is the functor ∗ 7→ i for i = 0, 1, the image of δi : X2 → X1 by J is the
functor having as image in J(X2) the arrow 0 ∼= 1, 0 ∼= 2, 1 ∼= 2 for i = 0, 1, 2
respectively, and all two cells in X are sent to identity 2-cells in Cat.

Given a codescent object S in a 2-category A, the pseudo-coequalizer of S
is given by the pseudo-colimit J ∗ S where

A(J ∗ S,A) ' Psd[X op, Cat](J−,A(S−, A))

is natural in A. The category Psd[X op, Cat](J−,A(S−, A)) has pseudo-natural
transformations from J to A(S−, A) as objects and modifications as arrows.
Explicitly, an object of Psd[X op, Cat](J−,A(S−, A)) is a pair (a : S(X0) →

A,α : a ◦ S(δ1) ⇒ a ◦ S(δ0)) with α an invertible 2-cell such that

S(X0)

a

��>
>>

>>
>>

>

S(X0)

S(n0)⇑

S(ι) //

S(n1)⇑

S(X1)

S(δ0)zzz

<<zzz

α⇑

S(δ1)
DD

D

""D
DD

A = S(X0)

a
&&

‖

a

88 A

S(X0)

a

@@��������

S(X2)
S(δ0) //

S(σ01)
⇒

S(δ1)

��>
>>

>>
>>

S(σ12)
⇒

S(δ2)

��

S(X1)

S(δ0)

��>
>>

>>
>>

S(X2)
S(δ0) //

S(σ02)
⇒S(δ2)

��

S(X1)

S(δ0)

��>
>>

>>
>>

α
⇒

S(δ1)

��

S(X1)
S(δ0) //

α
⇒S(δ1)

��

S(X0)

a

��

= S(X0)

a

��

S(X1)

S(δ1) ��>
>>

>>
>>

S(X1)
S(δ0)

//

α
⇒

S(δ1) ��>
>>

>>
>>

S(X0)

a
��>

>>
>>

>>

S(X0) a
// A S(X0) a

// A ;

an arrow λ : (a : S(X0) → A,α : a◦S(δ1) ⇒ a◦S(δ0)) ⇒ (a′ : S(X0) → A,α′ : a′◦
S(δ1) ⇒ a′ ◦ S(δ0)) in Psd[X op, Cat](J−,A(S−, A)) is a 2-cell λ : a ⇒ a′ such
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that

S(X1)
S(δ0) //

S(δ1)

��

S(X0)

a′

��

α′

⇒

S(X0)

a′

''λ

⇑

a

77 A

= S(X1)
S(δ0) //

S(δ1)

��

S(X0)

a′

��

λ
⇒a

��

α
⇒

S(X0) a
// A .

A pseudo-coequalizer of S : X → A is an object (q : S(X0) → Q,ϕ : q ◦ S(δ1) ⇒
q ◦S(δ0)) in Psd[X op, Cat](J−,A(S−, Q)) such that for each object A of A the
obvious functor

κA : A(Q,A) → Psd[X op, Cat](J−,A(S−, A)

is an equivalence of categories.

Remark 2.2

The following fact is an obvious consequence of the universal property of a
pseudo-coequalizer. We observe it explicitly for future references. Let S′ : X →

A be a second codescent object in A and let (q′ : S′(X0) → Q′, ϕ′ : q′ ◦S′(δ1) ⇒
q′ ◦ S′(δ0)) be an object in Psd[X op, Cat](J−,A(S′−, Q′)). Consider a pseudo-
natural transformation (x−, y−) : S ⇒ S′ with

S(Xi)
S(f) //

yf
⇒

xi

��

S(Xj)

xj

��
S′(Xi)

S′(f)

// S′(Xj) .

By the universal property of the coequalizer of S : X → A we obtain an arrow
x : Q→ Q′ and an invertible 2-cell y : q′ ◦ x0 ⇒ x ◦ q such that

S(X1)
S(δ0) //

ϕ
⇒

S(δ1)

  A
AA

AA
AA

yδ1⇒

x1

��

S(X0)

q

��8
88

88
88

S(X1)
S(δ0) //

yδ0⇒
x1

��

S(X0)

q

��;
;;

;;
;;

y
⇒

x0

��

S(X0)
q //

y
⇒x0

��

Q

x

��

= Q

x

��

S′(X1)

S′(δ1)   A
AA

AA
AA

S′(X1)
S′(δ0)

//

ϕ
⇒

S′(δ0)   A
AA

AA
AA

S′(X0)

q′ ��;
;;

;;
;;

S′(X0)
q′

// Q′ S′(X0)
q′

// Q′ .
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The pair (x, y) is unique in the following sense : if (x : Q→ Q′, y : q′◦x0 ⇒ x◦q)
(with y invertible) satisfies the analogous equation, then there exists a unique
invertible 2-cell z : x⇒ x such that

S(X0)
q //

x0

��

Q

x

��

z
⇒x

��

y
⇒

S′(X0)
q′

// Q′

= S(X0)
q //

x0

��

S(X0)

x

��

y
⇒

S′(X0)
q′

// Q′ .

Moreover, if (x′−, y
′
−) : S ⇒ S′ is another pseudo-natural transformation induc-

ing a pair (x′ : Q→ Q′, y′ : q′◦x′0 ⇒ x′◦q) and if θ− : (x−, y−) ⇒ (x′−, y
′
−) : S ⇒

S′ is a modification with

S(Xi)

xi ,,
θi
⇓

x′

i

22
S′(Xi) ,

then there exists a unique 2-cell θ : x⇒ x′ such that

S(X0)
q //

x0

��

Q

x′

��

θ
⇒x

��

y
⇒

S′(X0)
q′

// Q′

= S(X0) q
//

x′

0

��

θ0⇒
x0

��

Q

x′

��

y′

⇒

S′(X0)
q′

// Q′ .

Lemma 2.3 Let T = (T, η, µ, l, r, a) be a pseudo-monad on a 2-category C. Let
(C, c, c0, c) be a pseudo-T-algebra. The canonical diagram

T 3C

T 2c //
TµC //
µTC

// T
2C

Tc //

µC
// TC,TηCoo

with the appropriate 2-cells, is a codescent object in C, and the arrow c : TC → C

with the invertible 2-cell c : c ◦ µC ∼= c ◦ Tc is an absolute pseudo-coequalizer of
this codescent object.

Proof. It is straightforward to prove that the above diagram is a codescent
object, which we will call S : X → C, and that (c : TC → C, c : c ◦ µC ∼= c ◦ Tc)
is an object in Psd[X op, Cat](J−, C(S−, C)). We must show that for each A ∈ C

the canonical map

κA : C(C,A) → Psd[X op, Cat](J−, C(S−, A))
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is an equivalence, i.e., fully faithful and essentially surjective on objects. We
shall show explicitly that the above cocone satisfies the required universal prop-
erty using the “splitting” given by the arrows ηC , ηTC , ηT 2C and the associated
canonical 2-cells.
κA is essentially surjective on objects: Let (a : TC → A,α : a ◦µC ⇒ a ◦Tc) be
an object in Psd[X op, Cat](J−, C(S−, A)). The factorization arrow is given by
k = a ◦ ηC and the invertible 2-cell π : a⇒ k ◦ c, given by the following pasting
diagram, is an isomorphism π : (a, α) → κA(k) :

TC
c //

η(c)
⇒

ηTC

""F
FF

FF
FF

F

l
−1
C⇒

C
ηC

!!D
DD

DD
DD

D

T 2C Tc //

α
⇒µC

||xxx
xx

xx
x

TC

a
}}zz

zz
zz

zz

TC a
// A .

κA is full: Let k′ : C → A be an arrow in C and consider an arrow π′ : (a, α) →
κA(k′). The following pasting diagram gives us a 2-cell ψ : k ⇒ k′

C

CC
CC

CC
CC

CC
CC

CC
CC

c0
⇒

ηC

��
TC c //

π′

⇒a

��

C

k′~~||
||

||
||

A ,

and one checks that

TC
c //

a

  A
AA

AA
AA

AA
AA

AA
AA

A C

k′

��

ψ
⇒k

��

π
⇒

A

= TC
c //

a

!!B
BB

BB
BB

BB
BB

BB
BB

BB
C

k′

��

π′

⇒

A .

κA is faithful: The arrow c has a pseudo-section as c0 : 1C ⇒ c ◦ ηC is an
isomorphism. This easily implies that κA is faithful.
Since the splitting of the pseudo-coequalizer is given by equations on the 2-cells,
it is automatically preserved by any 2-functor. �

3 Beck’s theorem

Definition 3.1 Let U : A → C be a 2-functor. A codescent object S : X → A

is said to be U -absolute if the codescent object U ◦S admits an absolute pseudo-
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coequalizer in C.

Proposition 3.2 Let T = (T, η, µ, l, r, a) be a pseudo-monad on a 2-category C.
The forgetful functor UT : CT → C creates pseudo-coequalizers of UT-absolute
codescent objects in CT.

Proof. Let S : X → CT be a UT-absolute codescent object. Let us write S
for the codescent object UT ◦ S in C. Thus we may define

• S(Xi) = (S(Xi), xi, x
0
i , xi),

• S(δi) = (S(δi), S(δi)),

• S(ni) = (S(ni), S(ni)).

Let (q : S(X0) → C,ϕ : q ◦S(δ1) ⇒ q ◦S(δ0)) be an absolute pseudo-coequalizer
of S. Thus applying T to the pseudo-coequalizer we get a new absolute pseudo-
coequalizer. The actions x0, x1 and x2 constitute a 2-cell (or a pseudo-natural
transformation) x : T ◦ S ⇒ S in the 2-category of codescent objects. Omitting
the 2-cells, we have the following diagram in C:

T (S(X2))
//////

x2

��

T (S(X1))
//
//

x1

��

T (S(X0))
Tq //oo

x0

��

TC

S(X2)
// //// S(X1)

//
// S(X0)

q //oo C.

Since the top line is a pseudo-coequalizer, we can apply Remark 2.2. In this
way we get a unique (up to isomorphisms) arrow c : TC → C and an invertible
2-cell q : q ◦ x0 ⇒ c ◦ Tq which is compatible with the rest of the diagram.

The 2-cells x0
0, x

0
1, x

0
2 constitute a modification x0 : x ◦ η → 1S : S ⇒ S.

By the universal property of pseudo-coequalizers, we have a unique induced
invertible 2-cell c0 : c ◦ ηC ⇒ 1C which is compatible with the diagram.

Similarly the 2-cells x0, x1, x2 constitute a modification x : x ◦ µS → x ◦Tx

which induces a unique invertible 2-cell c : c ◦ µC → c ◦ Tc as (T 2(q), T 2(ϕ)) is
a pseudo-coequalizer of T 2 ◦ S.

Since (S, x, x0, x) satisfies component-wise the equations of a T-algebra and
(q, ϕ), (T (q), T (ϕ)), (T 2(q), T 2(ϕ)), (T 3(q), T 3(ϕ)) are the (absolute) pseudo-
coequalizers of the codescent objects S, TS, T 2S, T 3S respectively, the quadru-
ple (C, c, c0, c) is forced to satisfy the equations of a T-algebra, (q, q) is a mor-
phism of T-algebras and ϕ is a 2-cell in CT. Furthermore the couple ((q, q), ϕ)
is a pseudo-coequalizer of the codescent object S. �

Corollary 3.3 Each pseudo-T-algebra is a pseudo-coequalizer of free pseudo-
T-algebras.

Proposition 3.4 Let T = (T, η, µ, l, r, a) be a pseudo-monad on a 2-category
C. The 2-functor UT reflects adjoint equivalences.

11



Proof. Let (f, f) : (C, c, c0, c) → (D, d, d0, d) be a morphism in CT such
that f forms part of an adjoint equivalence in C, i.e., there exists a morphism
g : D → C and invertible 2-cells α : 1 ⇒ gf , β : fg ⇒ 1 satisfying the triangle
equations. We have to show that g, α and β lift to the 2-category CT. For this,
it suffices to define the 2-cell g by the following diagram:

TD
Tg //

Tβ
⇒

TC

c

��
f−1

⇒

Tf
ooooo

wwooooo

TD

d

��

C

α
⇒fooooooo

wwoooooo

D. g
// C .

�

Theorem 3.5 Let (U,F, η, ε, s, t) : A → C be a pseudo-adjunction. The com-
parison functor K : A → CT is locally an equivalence iff for each A, the canon-
ical diagram, equipped with the obvious 2-cells,

FUFUFU(A)

FUFU(εA) //
FU(εFU(A)) //
εFUFU(A)

// FUFU(A)

FU(εA) //

εFU(A)

// FU(A)
εA //F (ηU(A))oo A

is a pseudo-coequalizer in A.

Proof. Suppose that the comparison functor K is locally an equivalence.
Applying the 2-functor K to the above diagram we obtain

K(FU)3A

KFUFUεA //
KFU(εFU(A)) //

KεFUFU(A)

// K(FU)2A

KFU(εA) //

KεFU(A)

// KFU(A)
KεA //KF (ηU(A))oo KA .

By Lemma 2.3, its image by UT is an absolute pseudo-coequalizer. Then,
by Proposition 3.2 and Proposition 3.4, it is a pseudo-coequalizer in CT. Let
S : X → A be the codescent object, with the appropriate 2-cells,

FUFUFU(A)

FUFU(εA) //
FU(εFU(A)) //
εFUFU(A)

// FUFU(A)

FU(εA) //

εFU(A)

// FU(A)F (ηU(A))oo

12



and J : X op → Cat be the weight used to define pseudo-coequalizers. Hence for
any B ∈ A we have the following commutative diagram

A(A,B) //

KA,B

��

Psd[X op, Cat](J−,A(S−, B))

Psd[X op,Cat](J−,KS−,B)

��
CT(KA,KB)

' // Psd[X op, Cat](J−, CT(S−, B)) ,

where the top and bottom horizontal lines are canonical arrows defined by the
composition with the cocones (εA : FUA → A, εεA) and (KεA : KFUA →

KA, εεA) respectively. The bottom line is an equivalence of categories since the
latter cocone is a pseudo-coequalizer of the codescent object KS. The vertical
lines are also equivalences since K is locally an equivalence. Hence it follows
that the top horizontal line is also an equivalence, i.e., that (εA : FUA→ A, εεA)
is pseudo-coequalizer of S.

Suppose now that for each A ∈ A the canonical diagram, with the appropri-
ate 2-cells,

(FU)2A

FUFU(εA) //
FU(εFU(A)) //
εFUFU(A)

// (FU)2A

FU(εA) //

εFU(A)

// FU(A)
εA //F (ηU(A))oo A

is a pseudo-coequalizer in A. Let us show that K is locally an equivalence.
• K is locally faithful:
Let α, α′ : f ⇒ g : A → B be a pair of 2-cells in A such that K(α) = K(α′).
Since UTK = U, it follows that U(α) = U(α′). It follows that, in the diagram

FU(A)
εA //

ε(g)
⇒

ε(f)
⇒

FU(g)

��

FU(α)
⇒FU(f)

��

A

g

��

α
⇒

α′

⇒

f

��
FU(B)

εB
// B ,

the two possible cylinders commute. In the following diagram the three 2-cells
(FU)3α, (FU)2α, FUα constitute a modification or a 2-cell in the 2-category

13



of codescent objects in A.

(FU)3A

(FU)2εA //
FUεFUA //
ε(FU)2A

//

��

(FU)3α
⇒

��

(FU)2A

FUεA //

εFUA
//

��

(FU)2α
⇒

��

FUA
εA //FηUAoo

��

FUα
⇒

��

A

��

α
⇒

α′

⇒

��
(FU)3B

(FU)2εB //
FUεFUB //
ε(FU)2B

// (FU)2B

FUεB //

εFUB
// FUB

εB //FηUAoo B

We know that the cocone (UεA, UεεA) is a pseudo-coequalizer of the top code-
scent object. By the universal property of pseudo-coequalizers α and α′ must
be equal.
• K is locally full:
Let f, g : A → B be a pair of arrows in A. Let β : Kf ⇒ Kg be a 2-cell in the
category of algebras CT, i.e., the following diagram commutes

UFU(A)
U(εA) //

U(ε(g))

⇒

U(ε(f))

⇒

UFU(g)

��

UF (β)
⇒UFU(f)

��

U(A)

U(g)

��

β
⇒U(f)

��
UFU(B)

U(εB)
// U(B).

Thus, in the diagram

(FU)3A

(FU)2εA //
FUεFUA //
ε(FU)2A

//

��

(FU)2Fβ
⇒

��

(FU)2A

FUεA //

εFUA
//

��

FUFβ
⇒

��

FUA
εA //FηUAoo

��

Fβ
⇒

��

A

f

��

α
⇒g

��
(FU)3B

(FU)2εB //
FUεFUB //
ε(FU)2B

// (FU)2B

FUεB //

εFUB
// FUB

εB //FηUAoo B ,

the 2-cells (FU)2Fβ, FUFβ, Fβ constitute a modification which, by the univer-
sal property of the pseudo-coequalizer (UεA, UεεA), induces a compatible 2-cell
α : f ⇒ g. We must now show that Kα = β or equivalently that Uα = β.

14



Applying U to the above diagram we get

U(FU)3A

U(FU)2εA //
UFUεFUA //

Uε(FU)2A

//

��

U(FU)2Fβ
⇒

��

U(FU)2A

UFUεA //

UεFUA

//

��

UFUFβ
⇒

��

UFUA
UεA //UFηUAoo

��

UFβ
⇒

��

UA

Uf

��

Uα
⇒

β
⇒

Ug

��
U(FU)3B

U(FU)2εB //
UFUεFUB //

Uε(FU)2B

// U(FU)2B

UFUεB //

UεFUB

// UFUB
UεB //UFηUAoo UB

where the horinzontal diagrams are pseudo-coequalizers. Since the three 2-cells
U(FU)2Fβ, UFUFβ, UFβ constitute a modification and the 2-cells Uα, β are
both compatible with this modification, it follows that they are equal.
• K is locally essentially surjective on objects:
Let A,B be objects of A and (h, h) : K(A) → K(B) a morphism in CT. The
triple (F (h), FUF (h), FUFUF (h)), with the appropriate invertible 2-cells, con-
stitutes a morphism between codescent objects, hence there exists an essentially
unique factorization (f, f) as (εA, εεA) is a pseudo-coequalizer:

(FU)3A

(FU)2εA //
FUεFUA //
ε(FU)2A

//

FUFUF (h)

��

(FU)2A

FUεA //

εFUA
//

FUF (h)

��

FUA
εA //FηUAoo

f
⇒F (h)

��

A

f

��
(FU)3B

(FU)2εB //
FUεFUB //
ε(FU)2B

// (FU)2B

FUεB //

εFUB
// FUB

εB //FηUAoo B .

Applying U to the above diagram we get

U(FU)3A

U(FU)2εA //
UFUεFUA //

Uε(FU)2A

//

(UF )3h

��

U(FU)2A

UFUεA //

UεFUA

//

(UF )2h

��

UFUA
UεA //UFηUAoo

(h)−1

⇒

Uf
⇒

UF (h)

��

UA

Uf

		

α
⇒h

��
U(FU)3B

U(FU)2εB //
UFUεFUB //

Uε(FU)2B

// U(FU)2B

UFUεB //

UεFUB

// UFUB
UεB //UFηUAoo UB ,

where α : h ⇒ U(f) is the unique invertible 2-cell compatible with two factor-
izations (h, (h)−1), (f, f) as (U(εA), U(εεA)) is a pseudo-coequalizer, which is in
fact absolute. Finally, one checks that α is an invertible 2-cell in the category
of pseudo-T-algebras. �
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Theorem 3.6 Let (U,F, η, ε, s, t) : A → C be a pseudo-adjunction. The com-
parison functor K : A → CT is a bi-equivalence iff U reflects adjoint equiv-
alences, A has pseudo-coequalizers of U -absolute codescent objects and U pre-
serves them.

Proof. (⇒): We know that U = UTK. It is easily shown that bi-equivalences
reflect adjoint equivalences. By Proposition 3.4, UT reflects adjoint equiva-
lences, hence U reflects adjoint equivalences.

Let S : X → A be a U -absolute codescent object, i.e, the pseudo-coequalizer
J ∗ US exists and is absolute, then KS is a UT codescent object. Hence the
pseudo-coequalizer J ∗KS exists in CT. As K is a bi-equivalence the pseudo-
coequalizer J ∗ S of the codescent object S exists. Since U = UTK, we have

U(J ∗ S) ' UT(J ∗KS) ' J ∗ (UTKS) = J ∗ US.

(⇐): Let A be an object of A. The image of the diagram (omitting the
evident 2-cells)

(FU)3A

(FU)2εA //
FUεFUA //
ε(FU)2A

// (FU)2A

FUεA //

εFUA
// FUA

εA //FηUAoo A

by U is an absolute pseudo-coequalizer in C. As U reflects adjoint equivalences
the cocone (εA, ε(εA)) is a pseudo-coequalizer. By Theorem 3.5, the comparison
2-functor is locally an equivalence.

Let C = (C, c, c0, c) be a pseudo-T-algebra. Consider the codescent object
(omitting the 2-cells), constructed from C:

(FU)2FC
FUFc //
FUεFC //
εFUFC

// FUFC

Fc //

εFC
// FC .FηCoo

Its image by U has an absolute pseudo-coequalizer (see Lemma 2.3), namely

T 3C

T 2c //
TµC //
µTC

// T
2C

Tc //

µC
// TC

c //TηCoo C .

By assumption, there exists a pseudo-coequalizer in A (f : FC → A,α) of the
above codescent object. Applying the 2-functor K to this pseudo-coequalizer
we get a cocone in CT which has, as image by UT, the above absolute pseudo-
coequalizer in C. As UT creates pseudo-coequalizers of UT-absolute codescent
objects and reflects adjoint equivalences, the cocone (Kf,Kα) is a pseudo-
coequalizer of the diagram (omitting 2-cells)

(KFU)2FC
KFUFc //
KFUεFC //

KεFUFC

// KFUFC

KFc //

KεFC

// KFC .KFηCoo

However, the pseudo-T-algebra (C, c, c0, c) is also a pseudo-coequalizer of this
codescent object. It follows that KA ' (C, c, c0, c), i.e., K is essentially surjec-
tive on objects up to equivalence. �
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Remark 3.7

A careful analysis of the proof of Lemma 2.3 leads to the definition of “split
pseudo-coequalizer”, which is the natural generalization of the classical notion
of split coequalizer (Definition 4.4.2 in [6]). Lemma 2.3 can be restated saying
that the diagram

T 3C

T 2c //
TµC //
µTC

// T
2C

Tc //

µC
// TC,TηCoo

with the appropriate 2-cells, has a split pseudo-coequalizer, and that each split
pseudo-coequalizer is an absolute pseudo-coequalizer. Once this done, also The-
orem 3.6 can be restated with U -split instead of U -absolute.

4 KZ-doctrines

A much easier kind of pseudo-colimits, namely pseudo-coinverters, are needed
in the case where the pseudo-monad induced by a pseudo-adjunction turns out
to be a KZ-doctrine. We pursue such a case in this section relying on definitions
and results in [14].

Definition 4.1 A diagram of the form

A

f
&&

g

88
�� ��
�� ξ B

h // C,

with hξ invertible, is called a split pseudo-coinverter if there exist adjunctions

(supscripts are unit and counit respectively) g
α,β�

t
γ,δ�
f
σ,π� u ; h

ϕ,ψ� s , with
t, u : B → A, and s : C → B arrows and with β and ψ invertible, together with
an invertible 2-cell

B
u //

h

��
����|� θ

A

g

��
C s

// B,

that satisfy the following conditions:

- ξ equals the 2-cell induced by g
α,β�

t
γ,δ�
f.

- If we call ζ : t→ u the 2-cell induced by the adjunction t
γ,δ�
f
σ,π� u , then
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the following equation holds:

B

t
&&

u

99
�� ��
�� ζ

h

��
{{{{y�
θ

A

g

��
C s

// B

= A
g

&&LLLLLL

B

t
99rrrrrr //

h %%LLLLLL

�� ��
�� β

�� ��
�� ϕ

B.

C
s

88rrrrrr

Lemma 4.2 Assume we have a split pseudo-coinverter as above and an arrow
l : B → D. If l coinverts ξ, then l coinverts ϕ.

Proof. Since fζ is invertible, we have that l coinverts

B

t
&&

u

88
�� ��
�� ζ

h

��
����|� θ

A

f

��
g

��
____ks
ξ

C s
// B.

This means that

A f

��
g --

������ ξ
B

t
;;vvvvvv

//

h ##H
HHHHH

�� ��
�� β

�� ��
�� ϕ

B
l // D

C
s

;;vvvvvv

is invertible. Since β and lξ are invertible, we obtain lϕ invertible. �

Now the following proposition is easy to prove:

Proposition 4.3 If A

f
&&

g

88
�� ��
�� ξ B

h // C is a split pseudo-coinverter, then it is

an absolute pseudo-coinverter.

Proof. For every object D, denote Cξ(B,D) the full subcategory of C(B,D)
consisting of those arrows that coinvert ξ. Now the equivalence is given by
precomposing with h in the direction C(C,D) → Cξ(B,D) and precomposing
with s in the opposite direction. The previous lemma is to insure that the
composition Cξ(B,D) → C(C,D) → Cξ(B,D) is isomorphic to the identity. �

We recall the definitions of KZ-doctrine and algebras for a KZ-doctrine:

Definition 4.4 A KZ-doctrine T in a 2-category C consist of a 2-functor T :
C → C together with pseudo-natural transformations η : 1 → T and µ : T 2 → T

and a fully faithful adjoint string Tη
k,l � µ

r,p�
ηT satisfying one compatibility

condition (equation (1) on page 26 in [14]).
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Definition 4.5 Let T = (T, η, µ, k, l, r, p) be a KZ-doctrine on the 2-category
C. A pseudo-T-algebra consists of an object C together with an adjunction

c
c0,c

0
� ηC , with c0 invertible.

As a corollary to Proposition 4.3, we obtain the following lemma:

Lemma 4.6 Given a pseudo-T-algebra c
c0,c

0
� ηC , let m : µC → Tc be the

2-cell induced by the co-fully-faithful adjoint string Tc a TηC a µC . Then

T 2C

µC
))

Tc

66
�� ��
�� m TC

c // C is an absolute pseudo-coinverter.

Proof. The given diagram is a split pseudo-coinverter with TηC , ηTC and ηC
as arrows going back (see (5) in [14]). �

The following proposition has a similar proof as Proposition 3.2:

Proposition 4.7 Let T be a KZ-doctrine. The forgetful functor UT : CT → C

creates pseudo-coinverters of UT-absolute pseudo-coinverters.

Assume we have a pseudo-adjunction (F,U, η, ε, s, t) : A → C whose induced
pseudo-monad T turns out to be a KZ-doctrine.

This in particular means that UsF a ηUF with counit tF and UFη a UsF

with unit Us. Denote by u : UFη → ηFU the arrow induced by the adjoint
string UFη a UsF a ηUF . With u we can construct a 2-cell v : εFU → FUε

as the pasting:

FU
FηU

((RRRRRRRRRRRRRR
1 //
�� ��
�� Ft−1

FU

FUFU

εFU

66llllllllllllll
FUFηU

,,

FηUFU

22
�� ��
�� FuU

�� ��
�� εFηU

1

99�� ��
�� sUFU−1

FUFUFU
εFUFU

// FUFU

FUε

77oooooooooooo

We will need a couple of properties of v:

Lemma 4.8 Uv is equal to the 2-cell induced by the adjunction UFη a UεF a

ηUF .

Lemma 4.9 Given A,B in A and h : KA → KB in CT, where K : A → CT

denotes the comparison functor, we have that the following equality holds:

FUFUA
FUFh //

FUεA

�� ������ Fr

FUFUB

εFUB

��
FUεB

��
____ks
vB

FUA
Fh

// FUB

= FUFUA

εFUA

��
FUεA

��
____ks
vA

FUFh //

������ ε−1
Fh

FUFUB

εFUB

��
FUA

Fh
// FUB,
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where r denotes the invertible 2-cell induced by h being a morphism of T-
algebras.

Proof. The key equation for the proof is

(tB ◦ h) · (UεB ◦ ηh) = (h ◦ tA) · (r ◦ ηUA),

which corresponds to (14) of [14] applied to the morphism h. �

The proof of the following two theorems follow the proofs of Theorems 3.5
and 3.6 respectively, using the previous two lemmas.

Theorem 4.10 Assume that the pseudo-adjunction (U,F, η, ε, s, t) : A → C

induces a KZ-doctrine T. The comparison functor K : A → CT is locally an
equivalence iff for each A the diagram

FUFU(A)

εFU ++

FUε

33
�� ��
�� vA FU(A)

εA // A

is a pseudo-coinverter.

Theorem 4.11 Assume that the pseudo-adjunction (U,F, η, ε, s, t) : A → C in-
duces a KZ-doctrine T. The comparison functor K : A → CT is a biequivalence
iff U reflects adjoint equivalences and A has and U preserves pseudo-coinverters
of U -absolute pseudo-coinverters in A.
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e.mail : quico@math.unam.mx

21


