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Résumé. Les groupes de Brauer et de Brauer-Taylor d’une catégorie
monöıdale symétrique C sont définis comme étant les groupes de Pi-
card de catégories monöıdales symétriques convenables construites
à partir de C. Si C est la catégorie des modules sur un anneau
commutatif unitaire, on retrouve les groupes usuels. On utilise cette
définition pour construire une suite exacte reliant le groupe de Pi-
card et le groupe de Brauer.

Introduction

If R is a commutative unital ring, the Brauer group B(R) of R is the group
of Morita-equivalence classes of Azumaya R-algebras. Several equivalent defi-
nitions of Azumaya R-algebra are known. Most of them can be used to define
an Azumaya C-monoid, where C is a symmetric monoidal category satisfying
some extra conditions as closure and some kind of completeness. The different
Brauer groups which arise in this way are not necessarily isomorphic, but each
of them coincides with the Brauer group B(R) if C is the category of modules
over R.

It is quite surprising that the simplest possible description of B(R) has been
neglected in all the previous categorical approaches to the Brauer group (at
least at my knowledge). In fact we can define B(R) as the Picard group of the
monoidal category of unital monoids of C, taking bimodules as arrows.

In section 1 we show that this definition is available in a monoidal category
C satisfying very weak conditions, that is C must be symmetric and must have
stable coequalizers. Then, assuming more on C, we point out that this definition
is equivalent to other possible definitions. We close the first section quoting some
examples.

In order to illustrate the usefulness of the simple definition of B(C), in section
2 we obtain, in a quite straightforward way, exact sequences between Brauer
groups and Picard groups.
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When R is a field, B(R) is isomorphic to the second tale-cohomology group
of R. If R is only a commutative unital ring, B(R) is the torsion subgroup of
the cohomology group. The full cohomology group is then isomorphic to the
so-called Brauer-Taylor group of R.

The third and the fourth sections are devoted to a categorical description of
the Brauer-Taylor group of a symmetric monoidal category C. It seems to me a
nice fact that, even when C is the category of modules over R, this categorical
description is simpler than the classical one.

I would like to thank F. Borceux for his lectures on the Brauer group at the
Category Seminar in Louvain-la-Neuve, and A. Carboni and F. Grandjean for
a lot of useful discussion on this topic. I have also benefitted from numerous
comments and suggestions the anonimous referee has made on an earlier version
of this work.

1 The Brauer group

Let us fix some notations. In all the work C = (C,⊗, I, ....) is a symmetric
monoidal category with stable coequalizers (that is, if

X -
-
f

g
Y -q Q

is a coequalizer, then, for each object Z of C,

X ⊗ Z -
-

f ⊗ 1

g ⊗ 1
Y ⊗ Z -q ⊗ 1

Q⊗ Z

is again a coequalizer; this condition is clearly satisfied if C is closed). A monoid
A = (A,mA:A⊗A -A) in C is always associative. If it is unital, we denote
by eA: I -A its unit. A module M = (M,µM :A⊗M -M) in C is always
associative, but not necessarily unital. In all the work R is a unital commutative
ring and RMod is the category of unital modules over R.

If M is a unital monoid (in Set), the obvious way to build up a group from
M is to take the set of invertible elements. This is the so called Picard group
Pic(M) of M and it is abelian if M is commutative. If M is a monoidal cate-
gory, the isomorphism classes of objects form a monoid (M0/ ') (commutative
ifM is symmetric). The Picard group Pic(M) ofM is, by definition, the Picard
group of the monoid (M0/ ').

Now the Brauer group: let C be a symmetric monoidal category as at the
beginning of the section. We can build up a new symmetric monoidal category
UMon(C) in the following way:

- objects are unital monoids
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- arrows are isomorphism classes of unital bimodules

- composition: given two bimodules M :A -B and N :B -C, the com-
posite of the corresponding classes is the class of the tensor product
M⊗BN :A -C (recall that M⊗BN is the coequalizer of

M ⊗B ⊗N -
-

µM ⊗ 1

1⊗ µN

M ⊗N )

- identities: the identity arrow on a monoid A is the class of A itself

- tensor product: the tensor of C.

The crucial point is that the tensor product of C gives rise to a functor

UMon(C)×UMon(C) -UMon(C)

We do not prove this fact here, because it follows from lemma 2.3. Let us only
observe that it can also be deduced, using the stability of coequalizers, from the
following lemma

Lemma 1.1 Consider two coequalizers in C

X -
-
f

g
Y -q Z X ′ -

-
f ′

g′
Y ′ -q

′
Z ′

if f and g have a common section (that is if there exists h:Y -X such that

h · f = 1Y = h · g) and if the same holds for f ′ and g′, then

X ⊗X ′ -
-

f ⊗ f ′

g ⊗ g′
Y ⊗ Y ′ -q ⊗ q′

Z ⊗ Z ′

is a coequalizer.

Let me insist on the fact that the commutativity of a diagram in UMon(C)
is up to isomorphisms in C. For example, two unital monoids A and B are iso-
morphic in UMon(C) (we will say equivalent) if there exist two unital bimodules
M :A -B and N :B -A such that M⊗BN and N⊗AM are isomorphic, in
C, respectively to A and B.

Now we define the first Brauer group B1(C) of C as the Picard group of
UMon(C) (the reason for the “first” will be clear at the end of the third section).
In other words, a unital monoid A is Azumaya if there exists a unital monoid
A∗ such that A⊗A∗ is equivalent to I. The first Brauer group is then the group
of equivalence classes of Azumaya C-monoids. It is known that, if C is RMod,
then B1(C) is the usual Brauer group of R (cf. [35]).

Let us now give a glance at the classical definition of Azumaya R-algebra
(cf. [2], [19], [25], [28], [35]). An R-algebra A is Azumaya if it satisfies one of
the following equivalent conditions:
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- there exists an R-algebra A∗ such that A⊗A∗ is Morita-equivalent to R

- A⊗Ao is Morita-equivalent to R (where Ao is the opposite algebra of A)

- A is a faithfully projective R-module and the canonical morphism

A⊗A -LinR(A,A)

is an isomorphism (where LinR(A,A) is the R-module of R-linear trans-
formations from A to A)

- A is central and separable.

With this situation in mind, let us look for equivalent definitions of Azumaya
C-monoid. We need some notations: the bimodule ηA: I -A ⊗Ao is A with
its natural structure of right A⊗Ao-module, the bimodule εA:Ao ⊗A - I is
A with its natural structure of left A⊗Ao-module.

Proposition 1.2 Let A be a unital C-monoid; the following conditions are

equivalent:

i - A is Azumaya

ii - εA:Ao ⊗A - I is an isomorphism in UMon(C)

iii - ηA: I -A⊗Ao is an isomorphism in UMon(C)

Proof: Recall that, in a monoidal category M, an object X is left adjoint
to an object X∗, X a X∗, if there exist two arrows η: I -X ⊗ X∗ and
ε:X∗ ⊗X - I such that the following diagrams are commutative

X ' I ⊗X -η ⊗ 1
X ⊗X∗ ⊗X X∗ ' X∗ ⊗ I -1⊗ η

X∗ ⊗X ⊗X∗

@
@

@
@@R

1
?

1⊗ ε
@

@
@

@@R

1
?

ε⊗ 1

X ' X ⊗ I X∗ ' I ⊗X∗

(cf. [18]). Moreover, if X ⊗ Y ' I and Y ⊗ X ' I, then X a Y and unit
and counit are invertible (this is a particular case of a 2-categorical argument:
given an equivalence, it is always possible to build up an adjoint equivalence (cf.
[17]). In UMon(C) we have that A a Ao with unit given by ηA: I -A ⊗ Ao

and counit given by εA:Ao ⊗ A - I. If A is Azumaya, then, by uniqueness
of the adjoint, A∗ is equivalent to Ao and ηA and εA are isomorphisms. The
converse implications are obvious.
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To say more on the notion of Azumaya C-monoid, we need some facts which
are part of Morita theory. The proof can be found in any of the sources quoted
in the first remark at the end of the section.

Proposition 1.3 Let P :A -B be a bimodule; the following conditions are

equivalent:

- P :A -B is an isomorphism in UMon(C)

- the functor between module categories P⊗B−:B − mod -A − mod

induced by P is an equivalence of categories

- the right adjoint P⊃A−:A−mod -B−mod of P⊗B− is an equivalence

of categories

- P is faithfully projective as A-module and B is canonically isomorphic (as

monoid of C) to P⊃AP

(Recall that the right adjoint P⊃A− certainly exists if C is closed and has
equalizers. Faithfully projective means that the internal compositions

P⊗P⊃AP (P⊃AA) -A and (P⊃AA)⊗AP - (P⊃AP )

are isomorphisms.)
We can apply the previous propositions to the bimodules ηA: I -A ⊗Ao

and εA:Ao ⊗A - I. We obtain respectively:

iv - an unital C-monoid A is Azumaya if and only if it is faithfully projective
in C and the canonical arrow A⊗Ao -A ⊃ A is an isomorphism

v - an unital C-monoid A is Azumaya if and only if it is faithfully projective in
Ao⊗A-mod and the canonical arrow I -A⊃Ao⊗AA is an isomorphism.

This last characterization needs a comment: when C is RMod, it is equivalent
to say that A is central and separable. Central because A⊃Ao⊗AA is the center
of A. As far as separability is concerned, recall that A is separable if the mul-
tiplication A⊗A -A admits a section A-linear on the left and on the right.
But this is equivalent to say that A is projective in Ao ⊗ A-mod. Clearly, A
is finitely generated as Ao ⊗ A-module. Finally, Auslander-Goldman theorem
asserts that if A is central and separable, then it is a generator for the category
Ao ⊗A-mod, so that it is faithfully projective in this category (cf. [2]).

Remarks and examples
I - Several categorical approaches to Morita theory are available in literature.

Among them, the items [3], [13], [20], [26], [31] in the bibliography. Each of
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them contains (some variant of) proposition 1.3. This proposition is certainly
true, for general enriched category theory reasons (cf. [20]), if C is a complete
and cocomplete symmetric monoidal closed category. But the assumption on
C to develop Morita theory can be weakened. For example, in [26], closure is
avoided (but to the detriment of the internal character of the theory) and in
[31] symmetry is not required.

II - We have just discussed the equivalence between five possible definitions of
Azumaya C-monoid. All of them, with the exception of the first one, have been
individually considered in other works in which a categorical approach to Brauer
group can be found. They are items [11], [12], [15], [26] in the bibliography.
Even the definition of separability via the existence of a Casimir-element has
been considered in [11] and [26].

III - In the works quoted in the previous remark, several examples of Brauer
groups are discussed from a categorical point of view. This means that a group
built up “ la Brauer” from a certain gadget is nothing that the Brauer group of
a suitable monoidal category. We recall here

- the Brauer group of a commutative ringed space, introduced in [1] and
considered in [12] and [15];

- the Brauer-Wall group, introduced in [33] (and generalized in [21]) and
considered in [11] and [12];

- the relative Brauer group, introduced in [30] and considered in [23];

- the Brauer group of module algebras for a cocommutative Hopf-algebra,
introduced in [22] and considered in [11] and [26].

IV - a quite different example arises if we consider, as base category, the
category SL of sup-lattices instead of the category of abelian groups. A monoid
in SL is a quantale so that it is possible to define the Brauer group of a commu-
tative unital quantale Q as the Brauer group of the monoidal category Q-mod of
modules over Q. The corresponding Morita-theory has been studied in [7] and
the key notion of faithfully projective Q-module turns out to be the following:

a Q-module P is faithfully projective if and only if there exist two sets X
and Y such that P is a retract of QX and Q is a retract of PY (where QX and
PY are the X-indexed and the Y -indexed powers of Q and P ).

By the way, the classical Brauer group B(R) is a small group. This is because
an Azumaya R-algebra is, in particular, a faithfully projective R-module and
the category of faithfully projective R-modules is small. This is no longer true
for Q-modules. It is an open problem to find conditions on C such that the
Brauer group of C is small.

V - Another example is provided by a commutative algebraic theory T. The
models of T constitute a complete and cocomplete symmetric monoidal closed
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category (cf. [6] and [34]). The corresponding Morita-theory has been studied
in [8] and [10]. This example requires some more efforts and will be discussed
in detail in a separated paper.

2 Exact sequences

In this section we build up an exact sequence between Picard groups and
Brauer groups.

Let us consider two symmetric monoidal categories with stable coequalizers
C = (C,⊗, I, . . .) and D = (D,⊗, J, . . .). Let F : C -D be a monoidal functor
such that

i - F preserves coequalizers

ii - F is strict on invertible bimodules and on Azumaya C−monoids (this
means that the morphism FX ⊗ FY -F (X ⊗ Y ) is an isomorphism
when X and Y are as above)

iii - the morphism J -F (I) is an isomorphism

For such a functor F, it is straightforward to prove the following lemma:

Lemma 2.1

- ifM :A -B is an invertible bimodule between two Azumaya C-monoids,

then FM :FA -FB is an invertible bimodule between Azumaya D-

monoids

- if A M-B N-C are invertible bimodules between Azumaya C-monoids,

then F (M⊗BN) is isomorphic to FM⊗FBFN.

The previous lemma allows us to build up a new symmetric monoidal cate-
gory F in the following way:

- objects are invertible bimodules of the form X:FA -FB, where A and
B are two specified Azumaya C-monoids

- an arrow between two objects (X:FA -FB) and (Y :FC -FD) is
a pair of invertible bimodules M :A -C and N :B -D such that the
following diagram is commutative

FA -X FB

FM
? ?

FN

FC -
Y

FD
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- composition and identities are the obvious ones

- the tensor product of (X:FA -FB) and (Y :FC -FD) is given by
(X ⊗ Y :F (A⊗ C) -F (B ⊗D))

- the unit of the tensor is given by (J :FI -FI).

Again a notation: ifM is a monoidal category, I(M) is the monoidal subcat-
egory of invertible objects and isomorphisms. Clearly, Pic(M) and Pic(I(M))
are equal.

Starting from the functor F : C -D, we can define the following four func-
tors:

(1) F : I(C) - I(D) which is simply the restriction of F : C -D

(2) F1: I(D) -F defined by

FI -X FI

h:X ' Y  FI
? ?

FI

FI -
Y

FI

(observe that an object of the form (X:FI -FI) is invertible with
respect to the tensor product of F)

(3) F2:F - I(UMon(C)) defined by

FA -X FB A⊗Bo

FM
? ?

FN  
?
M ⊗ (No)−1

FC -FD C ⊗Do

(4) F : I(UMon(C)) - I(UMon(D)) defined by

(X:A -B) (FX:FA -FB)

(this definition makes sense by lemma 2.1).

All these functors are strict monoidal functors, so that, passing to the Picard
groups, we obtain four group homomorphisms (square brackets are isomorphism
classes)

(1) f : Pic(C) -Pic(D) [X] [FX]
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(2) f1: Pic(D) -Pic(F) [Y ] [Y :FI -FI]

(3) f2: Pic(F) -B1(C) [X:FA -FB] [A⊗Bo]

(4) f :B1(C) -B1(D) [A] [FA]

Proposition 2.2 The sequence

Pic(C) f-Pic(D) f1-Pic(F) f2-B1(C) f-B1(D)

is a complex; moreover, it is exact in Pic(D) and in B1(C).

Proof:

- f · f1 = 0 because if X is in I(C), then (FX:FI -FI) is isomorphic in
F to (J :FI -FI); the isomorphism is given by

FI -FX
FI

FI
? ?

FX−1

FI -
J

FI

- f1 · f2 = 0 because I ⊗ Io is isomorphic (in C and then in UMon(C)) to I

- f2 · f = 0 because, if X:FA -FB is an invertible bimodule, then
FA ⊗ FBo is equivalent to FB ⊗ FBo and then to J (recall that B is
Azumaya)

- exactness in Pic(D): let Y be an object of I(D) and suppose that [Y ] ∈
Kerf1. This means that (Y :FI -FI) and (J :FI -FI) are isomor-
phic in F . Let

FI -Y FI

FM
? ?

FN

FI -
J

FI

be the isormorphism in F . One has that Y is isomorphic in D to F (M ⊗
N−1) so that [Y ] = [F (M ⊗N−1)] ∈ Imf

- exactness in B1(C) : let A be an object of I(UMon(C)) and suppose
that [A] ∈ Kerf. This means that there exists an invertible bimodule
X:FA -FI. One has f2[X:FA -FI] = [A⊗ Io] = [A].
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Let me now discuss the exactness in Pic(F). Let [X:FA -FB] be in
Kerf2. This means that A ⊗ Bo is equivalent to I. Then A is equivalent to B.
Let Y :B -A be the isomorphism. We have that

FA -X
FB

FA

? ?

FY

FA -
X⊗FBFY

FA

is an isomorphism in F . Clearly, if (X:FA -FB) is invertible with respect
to the tensor product of F , also (X⊗FBFY :FA -FA) is invertible. All this
means that, as representative of an element in Kerf2, we can always choose
an object of F of the form (X:FA -FA). We wonder if [X:FA -FA] is
in Imf1. This is not true in general. What is true is that [X:FA -FA] +
[FAo:FAo -FAo] is in Imf1. (Observe that [FAo:FAo -FAo] is in Pic(F)
because (FAo:FAo -FAo) is invertible with respect to the tensor product
of F , the inverse is given by (FA:FA -FA).)

To prove that [X ⊗ FAo:F (A ⊗ Ao) -F (A ⊗ Ao)] is in Imf1, we can
observe that

F (A⊗Ao) -X ⊗ FAo

F (A⊗Ao)

F (η−1
A )

?

@
@

@
@

@
@R

F (η−1
A )

FI -
F (ηA)⊗F (A⊗Ao)(X ⊗ FAo)⊗F (A⊗A0)F (η−1

A )
FI

is an isomorphism in F , so that

[X ⊗ FAo:F (A⊗Ao) -F (A⊗Ao)]

is equal to
f1[F (ηA)⊗F (A⊗Ao)(X ⊗ FAo)⊗F (A⊗Ao)F (η−1

A )]

It only remains to observe that the elements of the form [FA:FA -FA]
constitute a subgroup of Pic(F), say N , and that they are contained in the
kernel of f2 (exactly because A is Azumaya).

Let us consider the canonical projection π: Pic(F) -Pic(F)/N and let us
call f ′2: Pic(F)/N -B1(C) the unique factorization of f2 through π. We are
ready to prove the following proposition.
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Proposition 2.3 The sequence

Pic(C) f-Pic(D)f1 · π-Pic(F)/N f ′2-B1(C) f-B1(D)

is exact.

Proof: The fact that the sequence is a complex as well as the exactness in
B1(C) come from proposition 2.2 because π is an epimorphism.

- Exactness in Pic(D) : the argument is the same as in proposition 2.2, but
replacing J :FI -FI by FA:FA -FA and M ⊗N−1 by M⊗AN

−1.

- Exactness in Pic(F)/N : it follows from the previous discussion since
[X:FA -FA] and [X:FA -FA] + [FAo:FAo -FAo] are equal
in Pic(F)/N .

We have just constructed, in a very elementary way, an exact sequence be-
tween Picard groups and Brauer groups. Another way, classically used to build
up such a sequence, is based on standard K-theoretical arguments (cf. [5] and
[16]). This is possible also in our categorical framework, via the following propo-
sition. For the definitions of the Grothendieck group K0 and of the Whitehead
group K1, the reader can consult [5].

Proposition 2.4

i - the Grothendieck group K0(I(UMon(C))) is isomorphic to B1(C)

ii - the Whitehead group K1(I(UMon(C))) is isomorphic to Pic(C)

Proof: i - obvious because I(UMon(C)) is a monoidal groupoid in which each
object is invertible;

ii - consider the category Ω(I(UMon(C))) defined as follows

- objects are endomorphisms X:A -A in I(UMon(C))

- an arrow is a commutative diagram in I(UMon(C))

A -X A

M
? ?

M

B -
Y

B

- composition and identities are the obvious ones.
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In this category we can define a tensor product of X:A -A and Y :B -B

by X ⊗ Y :A⊗B -A⊗B and a composition of X:A -A and Y :A -A

by X⊗AY :A -A.

To obtain an isomorphism K1(I(UMon(C))) -Pic(C), we need a map on
objects

γ: Ω(I(UMon(C))) - I(C)

such that

1) γ sends isomorphic objects into isomorphic objects

2) γ preserves the tensor product

3) γ sends composition into tensor product

4) γ is essentially surjective

5) if γ(X:A -A) is isomorphic to I in I(C), thenX:A -A is isomorphic
to A:A -A in Ω(I(UMon(C)))

Conditions 1), 2) and 3) imply the existence of a group homomorphism

γ:K1(I(UMon(C))) -Pic(C)

which is surjective by condition 4). Condition 5), together with lemma 2.5,
implies the injectivity of γ. We define γ: Ω(I(UMon(C))) - I(C) by

(X:A→ A)  I -ηA
A⊗Ao -X ⊗Ao

A⊗Ao -η−1
A

I

Let us now verify the five conditions.

1) Let

A -X A

M
? ?

M

B -
Y

B

be an isomorphism in Ω(I(UMon(C))). Up to isomorphism in C, γ(Y ) is

I I

ηB

?

6

η−1
B

B ⊗Bo -M−1 ⊗Bo

A⊗Bo -X ⊗Bo

A⊗Bo -M ⊗Bo

B ⊗Bo
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Now observe that, since M is invertible,

I -ηB
B ⊗Bo -M−1 ⊗Mo

A⊗Ao

is a unit for the adjunction A a Ao in UMon(C). This implies that there
exists a unique invertible bimodule α:Ao -Ao such that the following
diagram commutes

I -ηB
B ⊗Bo

ηA

? ?

M−1 ⊗Mo

A⊗Ao -
A⊗ α

A⊗Ao

Finally, the following diagram is commutative in each part, so that γ(X)
is isomorphic in C to γ(Y ).

B ⊗Bo -M−1 ⊗Bo

A⊗Bo -X ⊗Bo

A⊗Bo -M ⊗Bo

B ⊗Bo

ηB

6

A⊗Mo

?

6

A⊗ (Mo)−1

?

η−1
B

I A⊗Ao A⊗Ao I

@
@

@
@

@
@

@@R

ηA
A⊗ α−1

?

6

A⊗ α

�
�

�
�

�
�

���

η−1
A

A⊗Ao -
X ⊗Ao A⊗Ao

2) straightforward, using the fact that, given two unital monoids A and B,

ηA⊗B is (isomorphic to) ηA ⊗ ηB

3) let A X-A Y-A be two composable objects of Ω(I(UMon(C))). The
following diagram is commutative
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A⊗Ao -(X⊗AY )⊗Ao

A⊗Ao

X ⊗Ao

?

6
Y ⊗Ao

A⊗Ao -
η−1

A

I -
ηA

A⊗Ao

so that γ(X⊗AY ) is isomorphic to γ(X)⊗Iγ(Y ), that is to γ(X)⊗ γ(Y )

4) let X be an invertible object of C and let A be any Azumaya C-monoid.
Then γ of X ⊗A:A ' I ⊗A - I ⊗A ' A is isomorphic to X

5) consider an object X:A -A in Ω(I(UMon(C))) such that the following
diagram commutes

A⊗Ao -X ⊗Ao

A⊗Ao

ηA

6

?

η−1
A

I -
I

I

that is such that γ(X) is isomorphic to I. An isomorphism

A -X A

M
? ?

M

A -
A

A

in Ω(I(UMon(C))) can be obtained taking as M the composition

A ' I ⊗A -ηA ⊗ 1
A⊗Ao ⊗A -1⊗ εA A⊗ I ' A

Lemma 2.5 Let M be a monoidal groupoid with unital object I and let A be

any object of M; in K0(Ω(M)) one has that the class of idA:A -A is equal

to the class of idI : I - I, which is the zero of K0(Ω(M)).

Proof: Easy from 1.2 in [4].
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To obtain an exact sequence between Picard groups and Brauer groups, it
only remains to observe that, if F : C -D is a functor as at the beginning of
the section, then the induced functor

F : I(UMon(C)) - I(UMon(D))

is cofinal (cf.[4]). In fact, if A is an object in I(UMon(D)), then there exists
an object B in I(UMon(D)) and an object C in I(UMon(C)) such that F (C) is
equivalent to A⊗B. It suffices to take Ao as B and I as C.

Remarks
I - The existence of an exact sequence between Picard groups and Brauer

groups has been established also in [15], using K-theoretical arguments and
working on categories which satisfy an analogue of proposition 1.3. If this
proposition holds, then two Azumaya C-monoids A and B are isomorphic in
UMon(C) if and only if there exist two faithfully projective objects P and Q

such that A ⊗ (P ⊃ P ) and B ⊗ (Q ⊃ Q) are isomorphic as monoids in C. In
[15] this fact is extensively used. This makes explicit calculations quite different
from those presented in this section.

II - As far as the assumptions on F : C -D are concerned, we refer to [15],
where these assumptions are discussed in some relevant examples. Let us only
observe here that an easy example is provided by the left adjoint of the change
of base functor induced by a morphism of unital commutative rings. This left
adjoint is, in fact, a strict monoidal functor.

III - A careful analysis of the proof of proposition 2.4, as well as the simple
proof of proposition 1.2, suggests that a further generalization of the theory
can be obtained taking as primitive the bicategory B = UMon(C) and defining
C as B(I, I). Such a theory could be so general to contain, as an example,
the categorical Brauer group, taking as B the bicategory of small C-categories
and C-distributors. The categorical Brauer group has, for elements, classes of
Azumaya C-categories and has been studied, for C = RMod, in [24]. For a more
general C, some elementary observations on the categorical Brauer group are
contained in [32], but much more remains to do in this direction.

3 The Brauer-Taylor group

The Picard group of R is isomorphic to the first tale-cohomology group
of R. On the contrary, the Brauer group is only the torsion subgroup of the
second tale-cohomology group (cf. [14]). A purely algebraic description of the
whole second cohomology group is provided by the Brauer-Taylor group (cf.
[29], [27] and [9]). In this and in the next section we look for a categorical
description of the Brauer-Taylor group. We will work as at the beginning of
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the first section. To start, we need some definitions: we want monoids and
modules not necessarily unital, but such that some points of Morita theory hold
(cf. lemma 4.2).

Definition 3.1

a) a monoid A is regular if the canonical map A⊗AA -A is an isomor-

phism

b) a monoid A is splitting if there exists ϕA:A -A ⊗ A such that the

following diagrams are commutative

A -1
A A⊗A -mA

A

ϕA

?�
�

�
�

���

mA
ϕA ⊗ 1

? ?

ϕA

A⊗A A⊗A⊗A -
1⊗mA

A⊗A

c) a module M is regular if the canonical map A⊗AM -M is an isomor-

phism

d) if A is a splitting monoid (with section ϕA), a module M is splitting (with

respect to ϕA) if there exists ϕM :M -A ⊗M such that the following

diagrams are commutative

M -1
M A⊗M -µM

M

ϕM

?�
�

�
�

���

µM
ϕA ⊗ 1

? ?

ϕM

A⊗M A⊗A⊗M -
1⊗ µM

A⊗M

In the next proposition we compare the notions of unital, splitting and reg-
ular modules.

Proposition 3.2

1) if A is unital and M is unital, then M is splitting (with ϕM given by

eA ⊗ 1:M ' I ⊗M -A ⊗M ; in particular, if A is unital, then A is

splitting
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2) if A is splitting and M is splitting, then M is regular; in particular, if A

is splitting, then A is regular

3) if A is splitting and M is regular, then M is splitting

4) if A is unital and M is splitting, then M is unital.

Proof: 1): obvious. 2): the associativity of M , the first condition of splitness
on A and the splitness of M say exactly that the following diagram is a splitting
fork (with sections given by ϕM :M -A⊗M and ϕA⊗1:A⊗M -A⊗A⊗M)
and then µM is an absolute coequalizer

A⊗A⊗M -
-mA ⊗ 1

1⊗ µM

A⊗M -µM
M

3): if t:A ⊗A M -M is the canonical isomorphism, it suffices to define the
section ϕM :M -A⊗M as

M -t−1
A⊗A M -ϕA ⊗A 1

A⊗A⊗A M -1⊗ t
A⊗M

(which is possible because the second condition of splitness on A says that
ϕA is A-linear on the right). 4): since A is unital, ϕA:A -A⊗A is given by
eA⊗1:A ' I⊗A -A⊗A. Then, using the fact that µM is an epimorphism and
the second condition of splitness on M , one can prove that ϕM :M -A⊗M

is given by eA ⊗ 1:M ' I ⊗M -A⊗M . Now the first condition of splitness
on M means that M is unital.

In definition 3.1, modules are left modules and the second condition on ϕA

means that it is right linear. Let us say that in this case A is right splitting.
One can consider left splitting monoids and the analogue of proposition 3.2
holds for right modules. We call a monoid A bisplitting if its multiplication
mA:A ⊗ A -A admits a right linear section and a left linear section (not
necessarily equal). The fundamental example of bisplitting monoids are the
elementary algebras which will be studied in the next section.

Now the Brauer-Taylor group. Given the symmetric monoidal category C,
we can build up a new symmetric monoidal category SMon(C) in the following
way:

- objects are bisplitting monoids

- arrows are isomorphism classes of regular bimudules

- composition: given two bimodules M :A -B and N :B -C, the com-
posite of the corresponding classes is the class of M ⊗B N :A -C

- identities: the identity arrow on a monoid A is the class of A itself
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- tensor product: the tensor of C.

Once again, the crucial point is that the tensor product of C induces a tensor
product in SMon(C). We give the proof of this fact in the following lemma.

Lemma 3.3 The functor ⊗: C× C -C induces a functor

SMon(C)× SMon(C) -SMon(C)

Proof: consider the bimodules A M-B N-C and D X-E Y-F . The
actions involved in the proof are µ:M ⊗ B -M,η:B ⊗ N -N,ϕ: X ⊗
E -X and ψ:E ⊗ Y -Y . We need to prove that

(M ⊗B N)⊗ (X ⊗E Y ) ' (M ⊗X)⊗B⊗E(N ⊗ Y )

The second object is the codomain of the coequalizer q of the following pair of
parallel arrows

M ⊗B ⊗N ⊗X ⊗ E ⊗ Y -
-

µ⊗ 1⊗ ϕ⊗ 1

1⊗ η ⊗ 1⊗ ψ
M ⊗N ⊗X ⊗ Y

Consider also the two coequalizers

M ⊗B ⊗N -
-

µ⊗ 1

1⊗ η
M ⊗N -q1

M ⊗B N

X ⊗ E ⊗ Y -
-

ϕ⊗ 1

1⊗ ψ
X ⊗ Y -q2

X ⊗E Y

(At this point if A and E are unital, one could use lemma 1.1 taking as common
sections the units and the proof would be achieved.) Clearly, q1⊗q2 coequalizes
µ ⊗ 1 ⊗ ϕ ⊗ 1 and 1 ⊗ η ⊗ 1 ⊗ ψ, so that there exists a unique arrow r: (M ⊗
X)⊗B⊗E(N ⊗Y ) - (M ⊗B N)⊗ (X⊗E Y ) such that q · r = q1⊗ q2. Now the
problem is to show that q coequalizes the two following pairs of parallel arrows

M ⊗B ⊗N ⊗X ⊗ Y -
-

µ⊗ 1⊗ 1⊗ 1

1⊗ η ⊗ 1⊗ 1
M ⊗N ⊗X ⊗ Y (1)

M ⊗N ⊗X ⊗ E ⊗ Y -
-

1⊗ 1⊗ ϕ⊗ 1

1⊗ 1⊗ 1⊗ ψ
M ⊗N ⊗X ⊗ Y (2)
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Once this is done, the proof runs as follows: since q coequalizes (2), there exists
a unique arrow p2 such that the following diagram commutes

M ⊗N ⊗X ⊗ Y -q
(M ⊗X)⊗B⊗E (N ⊗ Y )

1⊗ 1⊗ q2

?�
�

�
�

���

p2

M ⊗N ⊗ (X ⊗E Y )

From the previous equation and since q coequalizes (1), an easy diagram chas-
ing shows that there exists a unique arrow p1 such that the following diagram
commutes

M ⊗N ⊗ (X ⊗E Y ) -p2 (M ⊗X)⊗B⊗E (N ⊗ Y )

q1 ⊗ 1⊗E 1

?�
�

�
�

���

p1

(M ⊗B N)⊗ (X ⊗E Y )

The arrows p1 and r give the required isomorphism.
It remains to show that q coequalizes (1) and (2). We do the first verification,

the second is analogue. Since B is splitting and M is regular, we know from
proposition 3.2 that there exists a section β:M -M⊗B for the action µ:M⊗
B -M . Analogously, there exists a section ε:X -X ⊗ E for the action
ϕ:X⊗E -E. Now to conclude the proof it suffices to write in diagrammatic
terms the following “elementary” argument: if m ∈M,n ∈ N,x ∈ X, y ∈ Y, e ∈
E and if β(m) = m′⊗b′, ε(x) = x′⊗e′ with m′ ∈M, b′ ∈ B, x′ ∈ X, e′ ∈ E, then
m⊗n⊗x·e⊗y = m′ ·b′⊗n⊗(x′ ·e′)·e⊗y = m′ ·b′⊗n⊗x′ ·(e′ ·e)⊗y = m′⊗b′ ·n⊗
x′⊗(e′ ·e)·y = m′⊗b′ ·n⊗x′⊗e′ ·(e·y) = m′ ·b′⊗n⊗x′ ·e′⊗e·y = m⊗n⊗x⊗e·y.

Now we can define the first Brauer-Taylor group BT 1(C) of C as the Picard
group of SMon(C).

By proposition 3.2, we have that a bimodule between unital monoids is
regular if and only if it is unital. This means that UMon(C) is a full monoidal
subcategory of SMon(C). This implies that B1(C) is a subgroup of BT 1(C).

If we take as C the category RMod, BT 1(C) is in general bigger than the
Brauer-Taylor group of R as defined in [29]. To obtain exactly the Brauer-Taylor
group of R we need a further condition on the objects of SMon(C), that is we
consider the full monoidal subcategory RSMon(C) of SMon(C) whose objects
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are bisplitting monoids which contain I as a retract in C. Now we define the
second Brauer-Taylor group BT 2(C) of C as the Picard group of RSMon(C).
Clearly we can add the retract condition also in UMon(C) and define in this
way the second Brauer group of C. The following two diagrams summarize the
situation: in the left one, arrows are full monoidal inclusions; in the right one,
arrows are inclusions of subgroups.

UMon(C) -SMon(C) B1(C) -BT 1(C)

6 6 6 6

RUMon(C) -RSMon(C) B2(C) -BT 2(C)

If C is RMod, both B1(C) and B2(C) coincide with the classical Brauer group of
R. As far as B2(C) is concerned, recall that, if a unital R-algebra A is faithfully
projective as R-module, then A contains R as a retract; in other words, the
invertible objects of UMon(C) are contained in RUMon(C) if we take as C the
category of modules over R. (The same argument holds when C is the category
of modules over a commutative unital quantale.) Moreover, BT 2(C) coincides
with the usual Brauer-Taylor group of R. This will be proved in the next section.

4 Elementary algebras

Given a morphism λ:Y⊗X - I in C which admits a section s: I -Y⊗X,
we can build up a monoid Eλ = (X ⊗ Y,mλ) with multiplication mλ given by
1⊗ λ⊗ 1:X ⊗ Y ⊗X ⊗ Y -X ⊗ I ⊗ Y ' X ⊗ Y . We call Eλ the elementary
algebra associated with λ. It is a bisplitting monoid. And even more: it is
a separable monoid, that is mλ admits a section ϕλ:Eλ

-Eλ ⊗ Eλ which
is at the same time left and right linear. For this, it suffices to define ϕλ as
1⊗ s⊗ 1:X ⊗ Y ' X ⊗ I ⊗ Y -X ⊗ Y ⊗X ⊗ Y . Clearly, Eλ contains I as a
retract.

If C is closed and I is regular projective, an example of (not necessarily
unital) elementary algebra can be obtained taking as Y a generator of C, as
X the dual of Y and as λ the evaluation (generator means that the internal
composition Y⊗Y⊃Y (Y ⊃ I) - I is an isomorphism). In particular, if C is
RMod, as Y one can take any (not necessarily finite) power of C. Elementary
algebras with unit will be considered in proposition 4.7.

The next proposition gives an equivalent description of the first and the
second Brauer-Taylor group of C.

Proposition 4.1

1) Eλ is isomorphic to I in SMon(C)
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2) if I is regular projective in C and if E is isomorphic to I in SMon(C),
then E is isomorphic (as monoid of C) to a suitable elementary algebra

Eλ (here regular projective means that each regular epimorphism with

codomain I has a section).

Since the additional condition on I is clearly satisfied if we choose as C
the category RMod, we can use the previous proposition to prove that in this
case the second Brauer-Taylor group of C is the usual Brauer-Taylor group of
R. As far as the proof of proposition 4.1 is concerned, we need some points of
terminology and some lemmas.

Definition 4.2

- a set of pre-equivalence data (or Morita context) is a pair of arrows

P :A -B and Q:B -A in SMon(C) together with two bimodule ho-

momorphisms f :P ⊗B Q -A and g:Q⊗A P -B

- a set of equivalence data (or strict Morita context) is a set of pre-equivalence

data (A,B, P,Q, f, g) such that f and g are bimodule isomorphisms.

In other words, (A,B, P,Q, f, g) is a set of equivalence data exactly when
the regular bimodules P :A -B and Q:B -A give an isomorphism in
SMon(C).

Lemma 4.3 If (A,B, P,Q, f, g) is a set of equivalence data, then

−⊗A P :mod-A -mod-B −⊗BQ:mod-B -mod-A

constitute an equivalence of categories (where mod-A is the category of regular

right A-modules and mod-B is the category of regular right B-modules). In

particular, −⊗A P is full and faithful.

The previous lemma is the trivial part of Morita theory, which clearly holds also
for splitting monoids.

Lemma 4.4 If (A,B, P,Q, f, g) is a set of equivalence data, with no lost of

generality we can suppose f and g associative, that is such that the following

diagrams are commutative

P ⊗B Q⊗A P -f ⊗A 1
A⊗A P Q⊗A P ⊗B Q -g ⊗B 1

B ⊗B Q

1⊗B g

? ?

' 1⊗A f

? ?

'

P ⊗B B -' P Q⊗A A -' Q
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Proof: we generalize proposition 3.1 (3) in [5] avoiding units. Let us call
t:A⊗AP -P and t′:P⊗BB -P the canonical isomorphisms, which are bi-
module isomorphisms. Consider the bimodule isomorphism u:A⊗AP -A⊗A

P given by (f−1 ⊗A 1P ) · (1P ⊗B g) · t′ · t−1. Since −⊗A P :mod-A -mod-B
is full and faithful, u is of the form u′ ⊗A 1 for an isomorphism u′:A -A in
mod-A. Since u is A-linear on the left and −⊗A P is faithful, also u′ is A-linear
on the left. If we replace f by f ·u′, we obtain the first associativity. The second
associativity follows from the first one, using once again that −⊗AP is faithful.

Lemma 4.5 If (A,B, P,Q, f, g) is a set of pre-equivalence data with f and

g associative and if f has a left linear section, then f is an isomorphism of

bimodules.

Proof: let x be the section of f . Using the two associativities of f and g, a
diagram chasing argument shows that the following diagram is commutatve

P ⊗B Q -f
A -x P ⊗B Q

'

? ?

'

P ⊗B Q⊗A A -
1⊗B 1⊗A x

P ⊗B Q⊗A P ⊗B Q -
1⊗B 1⊗A f

P ⊗B Q⊗A A

We can now come back to proposition 4.1.
Proof of proposition 4.1: 1): consider an arrow λ:Y ⊗X - I with section

s: I -Y ⊗X and consider the elementary algebra Eλ = (X ⊗ Y,mλ) defined
at the beginning of the section. To show that Eλ is equivalent to I, we build
up a set of equivalence data (I, Eλ, Y,X, f, g) in the following way. The actions
are λ⊗ 1:Y ⊗Eλ = Y ⊗X ⊗ Y - I ⊗ Y ' Y and 1⊗ λ:Eλ ⊗X = X ⊗ Y ⊗
X -X ⊗ I ' X. This two modules are splitting (the sections are s ⊗ 1 and
1⊗ s) and then, by proposition 3.2, they are regular. As g:X ⊗I Y -Eλ we
take the identity. The definition of f is given by the following diagram, where
q is the coequalizer,
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Y ⊗X ⊗ Y ⊗X -
-λ⊗ 1⊗ 1

1⊗ 1⊗ λ
Y ⊗X -q

Y ⊗E X

λ

?

�
�

�
�

�
�	

f

I

It is easy to show that f and g are associative. Moreover, f has a section (given
by s · q: I -Y ⊗X -Y ⊗E X) so that, by lemma 4.5, it is an isomorphism.
2): let (E, I, P,Q, f, g) be a set of equivalence data giving the isomorphism
between E and I in SMon(C). Consider the coequalizer

Q⊗ E ⊗ P -
-
Q⊗ P

q-Q⊗E P

The composite λ = q · g:Q ⊗ P -Q ⊗E P '- I is a regular epimorphism,
and then, since I is regular projective, it has a section s: I -Q⊗ P . Clearly,
the bimodule isomorphism f :P ⊗Q -E gives an isomorphism in C between
the elementary algebra Eλ and E. The fact that f is indeed an isomorphism
of monoids follows from the associativity of f and g, which is guaranteed by
lemma 4.4.

As a consequence of proposition 4.1, we obtain the following description of
the first Brauer-Taylor group of C: the group BT 1(C) is the (possibly large) set
of equivalence classes of bisplitting monoids A such that there exists a bisplitting
monoid B and an elementary algebra Eλ isomorphic (as monoid of C) to A⊗B;
two monoids A and A′ of this kind are equivalent if there exist two elementary
algebras Eλ and Eλ′ such that A⊗Eλ and A′⊗Eλ′ are isomorphic (as monoids of
C). An analogous description holds for the second Brauer-Taylor group, adding
on monoids the condition to contain I as a retract.

A warning: to verify in details, via proposition 4.1, that the previous de-
scription of the Brauer-Taylor groups of C is equivalent to that given in section
3, one uses everywhere that, if A and B are isomorphic as bisplitting monoids
of C, then they are isomorphic in SMon(C). This can be proved as follows: if
f :A -B is an isomorphism of monoids and A is right splitting, we can pro-
vide B with the structure of a left A-module via A ⊗ B f⊗1-B ⊗ B mB-B; to

prove that B is regular, we can take as section B f−1
-A ϕA-A⊗A 1⊗f-A⊗B

(where ϕA is the section of mA).
Finally, we can consider the classical case.

Corollary 4.6 If C is the category RMod of unital modules over an unital

commutative ring R, then BT 2(C) is the Brauer-Taylor group of R.
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Proof: let us recall that, in any abelian category, an object X contains an
object Y as a direct summand if and only if Y is a retract of X. Now, using
our proposition 4.1, the statement follows from proposition 2.2, proposition 3.10
(and its proof) and proposition 4.4 in [29].

In general, in the situation of the previous corollary, BT 1(C) is bigger than
the Brauer-Taylor group of R. This is because, unlike the case of unital monoids,
if A and B are splitting monoids such that A⊗B is an elementary algebra (and
then contains I as a retract), one cannot deduce that A (and B) contains I as
a retract.

To end the work, let us come back to the Brauer group. Recall that, if C
is closed, an object Y is faithfully projective (or a progenerator) if the internal
compositions

(I ⊃ Y )⊗Y⊃Y (Y ⊃ I) - (I ⊃ I) (Y ⊃ I)⊗ (I ⊃ Y ) - (Y ⊃ Y )

are isomorphisms.

Proposition 4.7 Let C be a closed symmetric monoidal category with co-

equalizers and suppose I is regular projective. Elementary algebras with unit

are exactly monoids of the form Y ⊃ Y with Y faithfully projective.

Proof: from our proposition 4.1 and proposition 7.3 in [31], using once again
only the trivial part of Morita theory.

From propositions 4.1 and 4.7, we obtain an equivalent description of the
Brauer groups of C in terms of equivalence classes of unital monoids. It is like
the description given for Brauer-Taylor groups, but we can replace elementary
algebras by monoids of the form Y ⊃ Y with Y faithfully projective. If we
specialize this description with RMod for C, we obtain the description of B(R)
originally given by Auslander and Goldman in [2].

5 *
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