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Abstract

We give an abstract characterization of categories which are localizations of Maltsev
varieties. These results can be applied to characterize localizations of naturally Maltsev
varieties.

AMS classification: 18C15, 18E35.

Introduction

In this paper we study localizations of Maltsev varieties.

A finitary (one sorted) variety V is called a Maltsev variety if its theory is equipped with a
ternary operation p(z,y, z) satisfying the axioms p(z,y,y) = x, p(z,z,y) = y. The varieties
of groups, abelian groups, modules over a fixed ring, crossed modules, rings, commutative
rings, associative algebras, Lie algebras, quasi-groups and Heyting algebras are all examples
of Maltsev varieties. The classical Maltsev theorem [11] asserts that the existence of such a
ternary operation is equivalent to the fact that any reflexive relation in V' is an equivalence
relation. This semantical formulation of the Maltsev property has been the starting point
for a purely categorical approach to Maltsev varieties developed in recent years in [3], [4],
[8], [12] and [13].

The second aspect of our work concerns localizations. In 1964 P. Gabriel and N. Popescu
proved that Grothendieck categories are exactly localizations of module categories [6]. This
theorem has been extended to a non-abelian setting by the second author [16], who has
characterized localizations of varieties as exact categories (in the sense of Barr [1]) with a
regular generator and exact filtered colimits.

In this work we show that the categorical approach to Maltsev varieties and the ex-
act completion technique developed in [15] and [16] fit together well, giving an abstract
characterization of localizations of Maltsev varieties. In the first section we characterize lo-
calizations of Maltsev monadic categories, and we then restrict our attention to the finitary
case (recall that varieties are exactly monadic categories over Set for a filtered colimit pre-
serving monad). In the second section we specialize our results to localizations of naturally
Maltsev monadic categories and naturally Maltsev varieties. These varieties are very closed
to module categories, the only difference consisting in the existence of a zero object. In fact,
Gabriel-Popescu theorem is an obvious corollary of our result on naturally Maltsev varieties.

1 Maltsev monadic categories

Let T be a monad in Set: we denote by K L(T) the Kleisli category of T and by EM(T)
the Eilenberg-Moore category of T. The category K L(T) is a projective cover of EM(T),



this meaning that each object of K L(T) is regular projective in EM (T) and for each object
X in EM(T) there is an object P in KL(T) with a regular epimorphism P — X. The
category EM(T) is the exact completion of K L(T) [14]: this fact has a central role in
the characterization of the localizations of monadic categories over Set (we use the term
“monadic category” for a category equivalent to EM(T) for a monad T in Set). In the
following all categories we consider will be assumed to be locally small.

Theorem 1.1. [15] For a category B the following conditions are equivalent:
1. B is equivalent to a localization of a monadic category over Set
2. B is exact and has a regular generator G which admits all copowers

Let us recall the construction involved in the proof of the previous theorem and fix some
notations. Let B be a category as in condition 2. of the theorem: we denote by C the full
subcategory of B spanned by copowers of G. If S is a set we write S e GG for the S-indexed
copower of G. If C., is the exact completion of C, we denote by I' and U the canonical full
inclusions as in the diagram

Cex
r )
T (1)
c - B.

The universal property of C., gives a unique exact (left exact and regular epimorphism
preserving) functor r: C., — B with r o T' = U. Moreover, there is a fully faithful functor
1: B — Ce (right adjoint to r) defined as follows: if A € B, one considers its canonical cover
a: B(G,A) e G — A, then the kernel pair of a

ay,az: N(a) B(G,A) e G
and finally its canonical cover n: B(G, N(a)) — N(a). The object i(A) in C., is given by
the pseudo equivalence relation
apon,azon: B(G,N(a)) e G B(G,A)e G,
with a similar definition on arrows.
The next simple result is stated separately for future references; it can be proved by
using the explicit description of the exact completion of a category with finite weak limits

[5]-

Lemma 1.1. Let B be an exact category with a reqular generator G which admits all copow-
ers. Then, with the notations as above, one has that I' = ioU (up to natural isomorphisms).

We are interested in localizations of Maltsev monadic categories over Set. In a category
with finite limits there are several equivalent definitions of the Maltsev property [3]. We
adopt the simplest one: a category C is Maltsev if any reflexive relation in C is symmetric.

In [13] Pedicchio proved that, for a monadic category, the Maltsev property is completely
determined by the behaviour of the regular projective regular generator P = F'(1) (the free
algebra on one generator). In order to state her result we recall that an object X in a category



with finite sums is an internal Maltsev coalgebra if there exists an arrow t: X — X + X + X
such that the following diagram commutes

il i2

where 77 and iy are the canonical injections in the sum and V is the codiagonal.
Theorem 1.2. [13] The following conditions are equivalent for a category B:
1. B is a Maltsev monadic category over Set

2. B is exact with a regular projective regular generator P which admits all copowers and
P is an internal Maltsev coalgebra

It is then natural to ask whether the Maltsev property can be determined by a condition
on the regular generator in the case of localizations of Maltsev monadic categories as well. A
positive answer to this question is given in the proposition 1.1 below; for this, the following
lemma, which is a special case of lemma 7. in [12], will be needed.

d
Lemma 1.2. Let A and B be finitely complete categories and let R A be a relation
(&
d
in A. If F: A — B is a left exact and conservative functor, then R A is symmetric
(&
F(d)
F
—_—
F(c)

precisely when F(R) (A) is symmetric.
Let us introduce a point of terminology:

Zo

Definition 1.1. Let A be a regular category. A graph X, Xo in A is pseudo-
Tl

To
symmetric if its image factorisation [ Xo in A is a symmetric relation.

T
We can now prove our characterization:

Proposition 1.1. The following conditions are equivalent:
1. B is equivalent to a localization of a Maltsev monadic category over Set

2. B is exact with a reqular generator G which admits all copowers and G is an internal
Maltsev coalgebra

3. B is exact with a reqular generator G which admits all copowers and the functor
B(G,—) sends reflexive graphs to pseudo-symmetric graphs



Proof: By theorem 1.1 the category B is equivalent to a localization of a monadic category
over Set if and only if it is exact with a regular generator G which admits all copowers.
1. = 2. By assumption B is a localization of a monadic Maltsev category A as in the diagram

I
BT1_A,

1
where 7 preserves finite limits. Let P be the regular projective regular generator which is
an internal Maltsev coalgebra in A by theorem 1.2. The regular generator G = r(P) is then
an internal Maltsev coalgebra in B, since r preserves sums.

2. = 3. Let C denote the full subcategory of B spanned by copowers of the regular

generator G. The category B is equivalent to a localization of the exact completion Ce, of
the category C (see proposition 2.1 in [15] for a proof).

CefE
r )
T (1)
C - B

The Maltsev coalgebra structure t: G — G'+G+G on the generator G induces a Maltsev
coalgebra structure on I'(G), simply because I' preserves all sums that exist in C [5]. By
theorem 1.2 the category C., is accordingly Maltsev: indeed, C is equivalent to K L(T) for
a monad T over Set and C., is then equivalent to EM(T) (by the way, this proves the
implication 2. = 1.). Let us then consider a reflexive graph

c
_—

X1 < Xo
—_—
in B. The reflexive graph i(X7) i(Xo) can be factorised in C., as in the diagram

i(c)
i(Xy) — Ji(Xo)

i(d)
P

I,

where p is a regular epi and [ i(Xo) is a reflexive relation in Cop. Ce, is Maltsev so

that T i(Xo) is also symmetric: since T'(G) is regular projective, it follows that the
image factorisation in Set of the reflexive graph C..,(I'(G),i(X1)) Cex (T(G),i(X0))

—_—
is a symmetric relation. By lemma 1.1 one has that the graph

Cez(T(G),i(X1)) 2 Cea(T(G),i(X0))

[

is isomorphic to the graph

Ce:c(i(G)7 Z(Xl)) - Cea:(Z(G)7 Z(XO)) .

_



The functor ¢ is fully faithful: it follows that the graph B(G, X;) B(G,X,) is a

—_—
pseudo-symmetric graph in Set.

c

3.= 1. Let X; Xo be a reflexive relation in C., (with the same notations as above)
d

and we are going to prove that it is symmetric. Recall that there is a commutative diagram

of functors
F

o = SetT

v Set C
c

where V is the forgetful functor and F' is the “free algebra” functor. The reflexive relation
above can be covered by a regular epi between reflexive graphs, as in the diagram

SetT =C,,

I(X7) =——T(Xp)

-

€X4 CXO

X1

XOa

_ >
where the functor ()’ is the composite (— e G) o V and the vertical arrows are the counit
components of the adjunction F' 4 V. By applying the functor C.,(T'(G), —) to the commu-
tative diagram above and by taking the regular image factorisation J of the reflexive graph
on the top one gets the diagram

Cex(F(G),F(Xll)) Cex F(G)aF(XO/))

e

Cem(F(G)le) Cer (T(G), Xo).

The factorization o making commutative the diagram above comes from the fact that

Cea(T(@), X1) —__ 2 Ceu(T(@), Xo0)

R

is a relation; the arrow « is surjective because ex, is a regular epi and I'(G) is regular
projective. Since I' and U are full and faithful, the reflexive graph

Cex(F(G)? F(X1/>) e Cez<F(G)’ F(XO/))

—_—

is isomorphic to the reflexive graph

B(G, X)) - B(G, X)) .

R



By assumption this latter is a pseudo-symmetric graph, so that the relation
_—

J C

the symmetry of this relation induces a symmetry on the relation

ex(D(G),T(X()) is symmetric. In the category of sets one can easily check that

Cex(T(G), X1) — Cea(T'(G), Xo),
by using the fact that the regular epimorphism « splits. The functor C..(I'(G), —) is left
exact and conservative (it is isomorphic to the forgetful functor V'), so that by lemma 1.2
the proof is complete.

O

We remark that the condition 3. in the proposition 1.1 implies in particular that B is Maltsev.
However, this property on reflexive graphs does not seem to be equivalent to the Maltsev
property, since the functor B(G, —) does not preserve regular epimorphisms. In other words,
we don’t know if an exact Maltsev category with a regular generator (with copowers) is
necessarily a localization of a Maltsev monadic category.

Corollary 1.1. The following conditions are equivalent:
1. B is a Maltsev monadic category over Set

2. B is exact with a regular projective regular generator G which admits all copowers and
the functor B(G,—) sends reflexive graphs to pseudo-symmetric graphs

Proof: With the same notations as above, this follows from the fact that when G € B is
regular projective, then the adjunction

(s

B Lo Cez

i
is an equivalence.

O

In the following we shall use the term variety for a finitary variety in the sense of universal
algebra. An application of our previous result can be given to characterize localizations of
Maltsev varieties.

Proposition 1.2. The following conditions are equivalent:
1. B is a localization of a Maltsev variety

2. B is exact with a regular generator G which admits all copowers, G is an internal
Maltsev coalgebra and filtered colimits commute with finite limits in B

3. B is exact with a regular generator G which admits all copowers, the functor B(G, —)
sends reflexive graphs to pseudo-symmetric graphs and filtered colimits commute with
finite limits in B

Proof: The implications 1. = 2. and 1. = 3. follow from proposition 1.1 above and
corollary 1.2 in [16]. To see that 2. = 1., we first fix some notations. Let C’ be the
subcategory of C (as in proposition 1.1) with same objects as C and arrows f: ReG — Se(G
the arrows in C such that, for each r € R, foo,: G — Re G — S e G factorises through
S’ @ G for some finite subset S’ of S, where o.: G — R e GG is the rth injection in the



coproduct. We denote by C’, the exact completion of the category C’ and by I'V: ¢’ — C'¢,
the canonical embedding. We know that C’., is the category of algebras for the finitary part
T’ of the monad T which has C., as category of algebras.

ex —  Le

J
C T Cex
q
/ / HE (2.)
I

C = o B

In the diagram above the forgetful functor U’ gives rise to a morphism from T’ to T,
inducing an adjunction ¢ 4 j: Cep — C’ep. Observe that B is a localization of the Maltsev
monadic category C., and it is also a localization of the variety C’., by corollary 1.2 in [16].
The regular generator G has an internal Maltsev coalgebra operation t: G — G+G+G, and
this ¢ is an arrow that belongs to C’. It follows that I'(¢): I'V(G) — I''(G) + I'(G) + I'"(G)
is an internal Maltsev coalgebra operation in C’.;, proving that C’., is Maltsev.

3. = 2. By proposition 1.1 C., is a Maltsev monadic category. Accordingly, the object
r(P) =r(T'(G)) = r(i(G)) = G (using lemma 1.1) is an internal Maltsev coalgebra.

/

C

2 Naturally Maltsev varieties

We first recall the notion of naturally Maltsev category introduced by Johnstone in [9]:

Definition 2.1. A finitely complete category C is naturally Maltsev if there exists a natural
transformation u from the functor Aw— A x A x A to the identity functor on C, such that
pa: Ax Ax A— Ais a Maltsev operation on A, for any A € C.

Let us denote by Grpd(C) and by RG(C) the categories of internal groupoids and internal
reflexive graphs in a finitely complete category C. We shall need the following results:

Theorem 2.1. [9] For a finitely complete category C the following conditions are equivalent:
1. C is naturally Maltsev
2. the forgetful functor U: Grpd(C) — RG(C) is an isomorphism

Theorem 2.2. [7] If C is an exact Maltsev category, then the category Grpd(C) is closed in
RG(C) under quotients.

We can now prove our result on localizations of naturally Maltsev monadic categories.
Observe that, unlike the Maltsev case, the condition is now given on the subcategory B and
not on the regular generator G.

Proposition 2.1. The following conditions are equivalent:
1. B is equivalent to a localization of a naturally Maltsev monadic category over Set

2. B is exact naturally Maltsev with a reqular generator G which admits all copowers



Proof: 1. = 2. Trivial.
2. = 1. In the proof we shall refer to the diagram (1.). First remark that any reflexive graph
in B is symmetric by theorem 2.1. Accordingly, the functor B(G, —) sends reflexive graphs
to pseudo-symmetric graphs in Set so that the category C., is Maltsev by proposition 1.1.
Let us then prove that any reflexive graph

€
X1 <7—Xo
—_—
in Ce, is an internal groupoid. As in the proof of proposition 1.1, one can apply the functor
() = (—eG)oV to this reflexive graph and the counit components of the adjunction F' 4V
give a regular epimorphism of reflexive graphs

-

I(x1)

I'(Xp)

JE—
€Xy exo

—_—

X, Xo.

By theorem 2.2 to complete the proof it suffices to show that

—(X7) 2 —(X0)

R

is an internal groupoid in Ce;. The reflexive graph

U(X1) 2 U(Xp)
is an internal groupoid in B, the category B being naturally Maltsev by assumption. It
follows that

U (X1) —ZiU(Xp)

is an internal groupoid in Ce,;, and this latter is isomorphic to the graph

—(X1) 2 —(Xg)

R

by lemma 1.1.

Proposition 2.2. The following conditions are equivalent:
1. B is equivalent to a localization of a naturally Maltsev variety

2. B is exact naturally Maltsev with a reqular generator G which admits all copowers and
filtered colimits commute with finite limits

Proof. The non trivial implication is 2. = 1. We use the same notations as in the proof of
proposition 1.2 and we first consider the diagram (2.): the category C., is naturally Maltsev
by proposition 2.1 and C’¢, is Maltsev by proposition 1.2. The rest of the proof runs as
in proposition 2.1, once one has proved that there exists a natural transformation from the
functor joioU oU’ to the functor IV such that any component a4: jiUU' (A) — IV(A) is a



split epimorphism. We leave this verification to the reader (hint: use the explicit description

of the composite functor B —ts Ceu Sy ez given in [16]). Any reflexive graph

c
—_

e
Xl(TXO
e

in (', is accordingly covered by a regular epi between reflexive graphs as the vertical
composite in the diagram

JiUU' (X))

JiUU'(Xp)
_—

axl

[e 2
1 X0

(X7) =—T"(Xp)

_ >

€X4 EXU

X3 Xo.

The reflexive graph
_—
JiUU'(X,") <=— jiUU'(X{)
—_—
is an internal groupoid in the exact Maltsev category C’., and by theorem 2.2 the proof is
complete.

0O

As a corollary we get the classical Gabriel-Popescu characterization of Grothendieck cate-
gories [6]. Recall that by the Tierney theorem [2] a category is abelian if and only if it is
exact and additive, while Johnstone proved that a category with products is additive if and
only if it is naturally Maltsev and has a zero object [9]. With the same notations as above,
the result follows by proposition 2.2 and the fact that B has a zero object precisely when
C'.. has one. Indeed, proposition 2.2 states that C’., is an abelian variety and then, by
Lawvere theorem in [10], it is equivalent to the category of modules over a unital ring. We
have then proved the following result:

Corollary 2.1. [6] The following conditions are equivalent:
1. B is equivalent to a localization of a module category

2. B is abelian with a regular generator G which admits all copowers and filtered colimits
commute with finite limits
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