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Abstract: we characterize localizations of monadic categories over SET using the fact

that the category of algebras for a monad over SET is the exact completion of the full subcat-

egory of free algebras. This also constitutes an unifying argument to characterize reflections

and epireflections.

1 Preliminaries

The aim of this work is to characterize localizations of monadic categories
over SET . For this, let us consider a monad T over SET and write KL(T) and
EM(T) respectively for the Kleisli category of T and for the Eilenberg-Moore
category of T. They can be characterized as follows (all categories are supposed
to be locally small):

I) consider a category C; the following conditions are equivalent:

1) C is equivalent to the category KL(T) for a monad T over SET
2) there exists an object G in C which admits all copowers and such

that each object of C is isomorphic to a copower of G

II) consider a category A; the following conditions are equivalent:

1) A is equivalent to the category EM(T) for a monad T over SET
2) A is exact and has a regular projective regular generator which admits

all copowers.

An easy proof can be found in [8], where it is shown that the basic fact to
obtain the second characterization is to observe that KL(T) is a projective cover
of EM(T), that is each object of KL(T) is regular projective in EM(T) and for
each object X of EM(T) there exists an object P in KL(T) together with a
regular epimorphism P -X.

The fact that KL(T) is a projective cover of the exact category EM(T)
means exactly that EM(T) is the exact completion of KL(T). We recall here
some basic features of the exact completion; for more details we refer to [2] and
to [7], whereas for an introduction to exact and monadic categories we refer to
[1].

Definition 1.1 Let F : C -A be a functor between a weakly lex category C
and a lex category A; F is left covering if for each finite diagram L:D -C and
for each (equivalently, for one) weak limit wlimL, the canonical factorization
p:F (wlimL) - limL · F is a strong epimorphism.
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Proposition 1.2 For each weakly lex category C there exist an exact category
Cex and a left covering functor Γ: C -Cex such that, for each exact category
B, composing with Γ induces an equivalence

Γ · − : Ex [Cex, B] -Lco [C, B]

between the category of exact functors from Cex to B and the category of left
covering functors from C to B. Moreover, if A is an exact category and P is a
projective cover of A, then P is weakly lex and A is equivalent to Pex.

In what follows, we use not only the universal property of Γ: C -Cex, but
also an explicit description of Cex:

• an object of Cex is a pseudo equivalence relation in C, that is a pair of
arrows r1, r2:R ⇒ X (not necessarily monomorphic) such that there exist
reflexivity rR:X -R, symmetry sR:R -R and transitivity tR:R ?
R -R (where R ? R is a weak pullback of r1 and r2) satisfying the
usual equations

• an arrow in Cex is a class of equivalence of pairs of arrows (f, f) (as in
the following diagram) such that f · s1 = r1 · f and f · s2 = r2 · f

R -f
S

r1

??
r2 s1

??
s2

X -
f

Y

two pairs (f, f) and (g, g) from (r1, r2:R ⇒ X) to (s1, s2:S ⇒ Y ) are
equivalent if there exists an arrow Σ:X -S such that Σ · s1 = f and
Σ · s2 = g.

2 Localizations

We are now ready to prove our characterization.

Proposition 2.1 Consider a category B; the following conditions are equiva-
lent:

1) B is equivalent to a localization of EM(T) for a monad T over SET (that
is a reflective subcategory such that the reflector is lex)

2) B is exact and has a regular generator which admits all copowers.

Proof: the implication 1⇒2 is quite obvious, so let us look at the implication
2⇒1. Let G be a regular generator as in condition 2 and let us fix some nota-
tions: if S is a set, S •G is the S-indexed copower of G and is:G -S •G is
the s’th canonical injection (s ∈ S); if α:S -T is in SET , α′:S •G -T •G
is the arrow in B defined by is · α′ = iα(s)
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Given an object A in B, the canonical cover of A by G is the unique arrow
a: B(G, A) •G -A such that for each f :G -A the following diagram com-
mutes

B(G, A) •G -a
A

@
@

@I
if

�
�

��
f

G

The fact that G is a regular generator means exactly that, for each object A of
B, such cover is a regular epimorphism. Now consider the full subcategory C of
B spanned by copowers of G.

First step: the full inclusion F : C -B is a left covering functor.
Consider a finite diagram L:D -C and its limit in B

limL · F = (πD:L -L(D))D∈D0

We obtain a weak limit in C precomposing each projection with the canonical
cover by G, l: B(G, L) • G -L. By assumption, l is a regular epimorphism.
This means exactly that F is left covering (recall that, in a regular category,
strong epimorphisms coincide with regular epimorphisms). By the universal
property of the exact completion Γ: C -Cex, this implies that there exists
an exact functor F̂ : Cex -B such that F and Γ · F̂ are naturally isomorphic.
Let us recall that, if

R •G -f
S •G

r1

??

r2 s1

??

s2

X •G -
f

Y •G

is an arrow in Cex, F̂ [f, f ] is the unique extension to the quotient as in the
following diagram

R •G -
-r1

r2

X •G -q1
A

f

? ?

f

?

F̂ [f, f ]

S •G -
-s1

s2

Y •G -q2
B
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Second step: embedding of B in Cex.
Given an object A in B, consider its canonical cover by G, a: B(G, A)•G -A,
the kernel pair of a

a1, a2:N(a) -
-

B(G, A) •G

and again the canonical cover by G, n: B(G, N(a)) • G -N(a). It is only a
straightforward calculation to prove that the pair of arrows

n · a1, n · a2: B(G, N(a)) •G -
-

B(G, A) •G

is an object of Cex. Consider now an arrow ϕ:A -B in B; we can build up
the following diagram, commutative in each part

B(G, N(a)) •G -n N(a) -
-a1

a2

B(G, A) •G -a
A

α′

?

t

? ?

α′

?

ϕ

B(G, N(b)) •G -m N(b) -
-b1

b2

B(G, B) •G -b
B

The construction of the horizontal lines has just been explained; as far as the
columns are concerned, α′ is induced by α: B(G, A) -B(G, B) which sends
h:G -A into h · ϕ; the existence of a unique t such that t · b1 = a1 · α′ and
t · b2 = a2 · α′ follows from a · ϕ = α′ · b and the universal property of N(b);
α′ is induced by α: B(G, N(a)) -B(G, N(b)) which sends h:G -N(a) into
h · t. In particular [α′, α′] gives us an arrow in Cex which we take as value of
a functor r: B -Cex. Once again, it is a straightforward calculation to prove
that r is full and faithful.

Third step: adjunction F̂ a r.
Let (r1, r2:R •G ⇒ X •G) be an object in Cex, consider its coequalizer q:X •
G -A in B (that is A = F̂ (r1, r2)) and build up

r(A) = (n · a1, n · a2: B(G, N(a)) •G ⇒ B(G, A) •G

The unit of the adjunction F̂ a r must be an arrow in Cex of the following kind

R •G -η′ B(G, N(a)) •G

r1

??

r2 n · a1

??

n · a2

X •G -
η′

B(G, A) •G
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As η′ we take the arrow induced by η:X -B(G, A) which sends x ∈ X into
ix · q:G -X • G -A. Now observe that with this definition η′ · a = q
and then r1 · η′ · a = r2 · η′ · a. This implies that there exists a unique arrow
τ :R • G -N(a) such that τ · a1 = r1 · η′ and τ · a2 = r2 · η′. Now as η′

we can take the arrow induced by η:R -B(G, N(a)) which sends r ∈ R into
ir · τ :G -R •G -N(a).

Conclusion: we have just shown that B is (equivalent to) a localization of
Cex. But, from the preliminaries, we know that the full subcategory C of B
is equivalent to KL(T) for a monad T over SET and then its exact completion
Cex is equivalent to EM(T). The proof of proposition 2.1 is now complete.

3 Related results

Let us look more carefully at the proof of proposition 2.1. If, instead of
exact, B is assumed to be only left exact but with coequalizers, we can again
define F̂ : Cex -B as at the end of the first step. Since in the second and the
third steps we do not use the exactness of B, we have the following

Proposition 3.1 Consider a category B; the following conditions are equiva-
lent:

1) B is equivalent to a reflective subcategory of EM(T) for a monad T over
SET

2) B is left exact with coequalizers and has a regular generator which admits
all copowers.

Working essentially in the same way (that is working with the formal de-
scription of Cex and forgetting that it is equivalent to EM(T)) one can also
prove the following proposition (more details can be found in [7]):

Proposition 3.2 Consider a category B; the following conditions are equiva-
lent:

1) B is equivalent to an epireflective subcategory of EM(T) for a monad T
over SET (epireflective = units are regular epimorphisms)

2) B is regular with coequalizers of equivalence relations and has a regular
projective regular generator which admits all copowers.

Remarks: i) In proposition 3.1 it does not suffice to assume the existence of
coequalizers of pseudo equivalence relations. This is because (with the notations
of 2.1) a pseudo equivalence relation in C is not necessarily a pseudo equivalence
relation in the whole category B. On the contrary, in proposition 3.2 we only
need coequalizers of equivalence relations because the jointly monic part of the
(regular epi, mono) factorization of a pseudo equivalence relation in C is an
equivalence relation in B.
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ii) In the characterization of EM(T) as well as in proposition 3.2, the reg-
ularity of the category is a little bit redundant; in fact the stability of regular
epimorphisms under pullbacks follows from the other assumptions (cf. lesson 2
in [4]). This is not true in proposition 2.1, because there the regular generator
in general is not regular projective.

iii) Propositions 3.1 and 3.2 (or, at least, the second one) are well-known (see
[5], where this kind of characterizations are used to study Malcev conditions
in varietal and quasi-varietal categories, [3] and [6]). I have quoted them here
because I think it is remarkable that the theory of the exact completion gives us a
general framework to prove (in a quite straightforward way) all characterization
theorems contained in this work.

iv) All results can be obviously generalized to monads over a power SET X

of SET . To characterize KL(T), we need an X-indexed family of objects Gx in
C such that: i) for each f :S -X in SET there exists

∐
s∈SGf(s); ii) for each

object C in C there exists f :S -X in SET such that C '
∐

s∈SGf(s). Now
the other results hold replacing the single generator with an X-indexed family
of generators which admit all sums.

v) With a little bit more of effort, one can adapt the proof of proposition
2.1 to obtain an elementary proof of the well-known fact that Giraud axioms
characterize localizations of presheaf categories. The major difference is that
C must be the sum-completion of the full subcategory D of generators, so that
Cex is equivalent to SET Dop

. For this, we take as arrows from a generator to
a sum of generators only the arrows which factor through a canonical injection
(generators are indecomposable in SET Dop

). Now the inclusion of C in B is
not full, but it remains left covering in virtue of the extensivity assumption on
B (sums are disjoint and universal).
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