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Abstract. Using the exact completion of a weakly left exact cate-
gory, we specialize previous results on monadic categories over SET
to obtain a characterization of localizations of finitary algebraic cat-
egories. As a corollary, we have the Popescu-Gabriel representation
theorem for Grothendieck categories.

Introduction

Localizations of (finitary) algebraic categories in general, and of module
categories in particular, are a widely studied topic in algebra; in this note we
look for a characterization of such categories. In fact the following statement is
proved:

a category is equivalent to a localization of an algebraic category if and
only if it is exact and has a regular generator which admits all copowers,
and directed colimits exist and commute with finite limits.

The idea followed to find these axioms is that algebraic categories are monadic
over SET . We can therefore try to specialize to algebraic categories the follow-
ing fact, proved in [14]: a category is equivalent to a localization of a monadic
category over SET if and only if it is exact and has a regular generator which
admits all copowers. For this, we use the exact completion of a weakly left exact
category introduced in [4].

Since module categories are exactly abelian algebraic categories, as a corol-
lary we have the Popescu-Gabriel representation theorem for Grothendieck cat-
egories.

To recapture algebraic categories and module categories between monadic
categories, we use the finitary part of a monad, a construction which exhibits
the category of monads with finite rank as a coreflective subcategory of the
category of monads over SET .

I would like to thank A. Carboni, Y. Diers and H. Simmons for some useful
comments. I have also benefitted from numerous suggestions the anonimous
referee has made on an earlier version of this work.
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1 Localizations of algebraic categories

Let A be a locally small category and consider an object A in A which admits
all copowers (if S is a set, we write S •A for the S-indexed copower of A). We
have a pair of functors

− •A:SET -A A(A,−): A -SET

with − •A left adjoint to A(A,−), and we can compare three conditions on A:
i) A is finitely presentable, that is A(A,−): A -SET preserves filtered colim-
its
ii) the composite A(A,− • A):SET -SET has finite rank, that is preserves
filtered colimits
iii) A is abstractly finite, that is each arrow A -S • A factors through the
arrow S′ • A -S • A induced by the inclusion S′ ↪→ S of some finite subset
S′ of S.
Clearly condition i) implies condition ii). Moreover, condition ii) implies condi-
tion iii) because each set is the filtered union of its finite subsets. What about
the implication iii) ⇒ i)?

Recall that an algebraic category is the category of models of an algebraic
theory in the sense of Lawvere (cf. [8]). Algebraic categories can be character-
ized as follows (cf. [8]):
a category A is equivalent to an algebraic category if and only if it is exact (in
the sense of Barr, cf. [1]), has finite colimits and an abstractly finite regular
projective regular generator. Under these conditions (a little bit redundant, cf.
[9]), the free-algebra functor is given, up to the equivalence, by

− •A:SET -A

where A is the generator.
Since the forgetful functor from an algebraic category to SET preserves filtered
colimits (cf. chapter 3 in [2]), we have that, at least in the presence of the other
axioms characterizing algebraic categories, condition iii) implies condition i).

Moreover, it is a well-known fact that algebraic categories are exactly cate-
gories of algebras for monads with finite rank.
Now, the category of monads with finite rank is coreflective in the category
of monads over SET . This is more or less implicit in Linton’s contribution to
La Jolla proceedings (cf. [10]). It can also be deduced from the fact that the
inclusion of the category of finitary functors into the category of endofunctors
of SET has a right adjoint which is a lax monoidal functor, so that it carries
monoids (= monads over SET ) into monoids (= monads with finite rank) (cf.
[5]).
For the proof of proposition 1.1, we need an explicit description of the finitary
coreflection of a monad: let T = (T, µ, η) be a monad over SET ; consider the
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corresponding Kleisli category together with the free algebra functor and the
forgetful functor

F,U :KL(T) -
�

SET .

If G is the free algebra over the singleton, F and U are given, up to natural
isomorphisms, by

− •G:SET -KL(T) and KL(T)(G,−):KL(T) -SET .

Now consider the subcategory C of KL(T) with the same objects of KL(T) and
take as arrows f :R•G -S•G the arrows of KL(T) such that, for each r ∈ R,
σr · f :G -R •G -S •G factors through S′ •G -S •G for some finite
subset S′ of S, where σr:G -R • G is the r−th injection in the coproduct.
We obtain a new adjunction

− •G, C(G,−): C -
�

SET .

The monad T′ = (T ′, µ′, η′) over SET induced by this new adjunction is the
finitary part of T. In fact, KL(T′) is equivalent to C and G is abstractly finite
in C, so that T′ has finite rank. The counit

ε: T′ -T

is given, for each set S, by the inclusion C(G, S •G) ↪→ KL(T)(G, S •G).
Let us fix some more notations: the counit ε: T′ -T induces a functor

between Eilenberg-Moore categories

ε∗:EM(T) -EM(T′)

which has a left adjoint

ε̂:EM(T′) -EM(T) .

The functor ε∗ is faithful but, in general, it is not full (think about com-
pact Hausdorff spaces or about Sup-lattices). Now consider a localization B
of EM(T)

L, I: B -
�

EM(T) L a I .

Up to replacing T with the monad induced by the adjunction

− •G, B(G,−): B -
�

SET ,

where G is the reflection in B of the free T−algebra on the singleton, we can
suppose that the full subcategory KL(T) of free T−algebras is contained in B
(cf. [14]).
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Proposition 1.1 With the above notations and conventions, if in B directed

colimits commute with finite limits, then the composite

I · ε∗: B -EM(T) -EM(T′)

is full and faithful, and the composite

ε̂ · L:EM(T′) -EM(T) -B

is left exact. In particular, B is equivalent to a localization of the algebraic

category EM(T′).

Proof: To follow as closely as possible the proof of proposition 2.1 in [14], we
use the theory of the exact completion (cf. [4]). Recall that, if C is a weakly left
exact category, its exact completion Cex has, for objects, pseudo equivalence
relation r0, r1:R ⇒ X in C; an arrow in Cex is a class of equivalence of pairs of
arrows (f, f) such that f · s0 = r0 · f and f · s1 = r1 · f

R -f
S

r0

??
r1 s0

??
s1

X -
f

Y

two pairs (f, f) and (g, g) of this kind are equivalent if there exists an arrow
Σ: X -S such that Σ · s0 = f and Σ · s1 = g.

Let G be the free T−algebra on the singleton; KL(T′) is equivalent to the
(not full) subcategory C of B having for objects the copowers of G and for
arrows the arrows f :R•G -S •G such that, for each r ∈ R, σr ·f :G -R•
G -S •G factors through S′ •G -S •G for some finite subset S′ of S.

Via the equivalences

(KL(T))ex ' EM(T) and Cex ' (KL(T′))ex ' EM(T′)

(cf. [4]), the composite

I · ε∗: B -EM(T) -EM(T′)

can be described as follows: given an object A in B, consider its canonical cover

a: B(G, A) •G -A

together with its kernel pair

a0, a1:N(a) ⇒ B(G, A) •G .
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Now let C(G, a) be the set of arrows y:G -N(a) such that the two composites
y · a0:G -B(G, A) • G and y · a1:G -B(G, A) • G are in C and consider
the canonical factorization

n: C(G, a) •G -N(a) .

Then
i(A) = (n · a0, n · a1: C(G, a) •G ⇒ B(G, A) •G)

is the value on A of the functor

i: B -Cex

corresponding to I · ε∗.
Consider now an arrow ϕ:A -B in B; we can build up the following diagram,
commutative in each part

C(G, a) •G -n N(a) -
-a0

a1

B(G, A) •G -a
A

α′

?

t

? ?

α′

?

ϕ

C(G, b) •G -m N(b) -
-b0

b1

B(G, B) •G -b
B

The construction of the horizontal lines has just been explained; as far as the
columns are concerned, α′ is induced by α: B(G, A) -B(G, B) which sends
h:G -A into h · ϕ; the existence of a unique t such that t · b0 = a0 · α′ and
t · b1 = a1 · α′ follows from a · ϕ = α′ · b and the universal property of N(b); α′

is induced by α: C(G, a) -C(G, b) which sends h:G -N(a) into h · t. In
particular [α′, α′] gives us an arrow in Cex which we take as value of a functor
r: B -Cex.

The faithfulness of i: B -Cex is obvious. As far as its fulness is concerned,
consider an arrow [f, f ]: i(A) - i(B) in Cex. If we can show that n: C(G, a) •
G -N(a) is an epimorphism, then a: B(G, A) •G -A is the coequalizer of
the pair (n · a0, n · a1). This implies that the pair (f, f) gives rise to a unique
extension ϕ:A -B to the quotient, and it is straightforward to prove that
i(ϕ) = [f, f ].
So, the crucial point is to show that n: C(G, a) • G -N(a) is a (regular)
epimorphism. This is certainly true if B(G, A) is finite, because in this case
C(G, a) = B(G, N(a)) and G is a regular generator (in EM(T) and then in B).
In general, recall that B(G, A) is the directed union of its finite subsets and then
B(G, A) •G is the directed colimit

colimS(S′ •G)

5



in B, where S is the partially ordered set of finite subsets S′ of B(G, A). Now,
consider the following diagram, where the horizontal lines are kernel pairs, aS′ =
iS′ ·a and jS′ is induced by the canonical injection iS′ via the universal property
of N(a)

N(aS′) -
-

aS′,0

aS′,1

S′ •G -aS′
A

jS′

?

iS′

? ?

id

N(a) -
-a0

a1

B(G, A) •G -a
A

Since S′ is finite, nS′ : C(G, aS′) • G -N(aS′) is a regular epimorphism and,
since B has kernel pairs, we can use an interchange argument for colimits to
obtain a regular epimorphism ~n at the level of colimits

colimS(C(G, aS′) •G)� C(G, aS′) •G

~n

? ?

nS′

colimSN(aS′)� N(aS′)

Moreover, the various jS′ :N(aS′) -N(a) give rise to a unique factorization

j: colimSN(aS′) -N(a) .

For each finite subset S′ of S, we can define

αS′ : C(G, aS′) -C(G, a) y 7→ y · jS′ :G -N(aS′) -N(a)

and we can consider the induced arrow

α′
S′ : C(G, aS′) •G -C(G, a) •G .

The various α′
S′ give rise to a unique factorization

α: colimS(C(G, aS′) •G) -C(G, a) •G .

Finally, we have built up a commutative square
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colimS(C(G, aS′) •G) -~n colimSN(aS′)

α

? ?

j

C(G, a) •G -
n N(a)

Since in B directed colimits commute with finite limits, j is an isomorphism and
then n is a regular epimorphism.

Now we will show that the (not full) inclusion F : C -B is a left cover-
ing functor (so that it extends in an essentially unique way to an exact func-
tor F̂ : Cex

-B, cf. [4]). This means that, for each finite category D and
for each functor L:D -C, if L is a weak limit of L and L′ is the limit of
L ·F :D -C -B, then the comparison F (L) -L′ must be a regular epi-
morphism. Since B is regular, it suffices to show the left covering character of F

with respect to the terminal object, binary products and equalizers of pairs of
parallel arrows (cf. [4]). Let us start with the case of equalizers: consider two
parallel arrows in C and their equalizer in B

E -e
S •G -

-
f

g
R •G .

Let C(G, e) be the set of arrows x:G -E such that x · e:G -E -S •G

is in C and consider the canonical factorization

Σ: C(G, e) •G -E .

Then Σ · e: C(G, e) • G -E -S • G is a weak equalizer of f and g in C
and we have to show that Σ is a regular epimorphism. This is true if S is
finite, because in this case C(G, e) = B(G, E) and G is a regular generator. The
general case follows once again by induction, using that S is the directed colimit
of its finite subsets and using the commutativity of directed colimits and finite
limits. The case of binary products is similar, but it needs two inductions, one
for each factor of the product. The case of the terminal object is trivial because
G is a weak terminal object in C.

The proof that F̂ : Cex
-B is left adjoint to i: B -Cex runs, up to

straightforward modifications, as in the third step of the proof of proposition
2.1 in [14] and we omit details.

We can restate the previous proposition as a characterization theorem.

Corollary 1.2 Let B be a category; the following conditions are equivalent:

1) B is equivalent to a localization of an algebraic category
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2) B is exact and has a regular generator G which admits all copowers, and

in B directed colimits exist and commute with finite limits.

Proof: The implication 1⇒2 is known, since in an algebraic category filtered
colimits commute with finite limits and since this condition is stable under
localizations (cf. chapter 3 in [2]). As far as the implication 2⇒1 is concerned,
by proposition 2.1 (and its proof) in [14], B is equivalent to a localization of
EM(T) for a monad T over SET and KL(T) is a full subcategory of B. Now
proposition 1.1 shows that B is equivalent to a localization of EM(T′), where
T′ is the finitary part of T.

The following example, provided to me by R. Boerger, shows that a cate-
gory may be monadic over SET and have exact filtered colimits without being
algebraic.
Example 1.3 Let SET ∗ denote the category of pointed sets; write 0 for the zero
object (that is, the singleton) and P for the two-elements set. Let A = (SET ∗)I

be the I−power of SET ∗ for any infinite set I. The category A is monadic
over SET since it is exact and has a regular projective regular generator (take
P in each component). An object X of A is a regular generator iff it is 0
in no component, and X is finitely presentable iff it is 0 in all but finitely
many components and finite in all components. So A does not have a finitely
presentable regular generator and then it is not algebraic. Nevertheless, A is
locally presentable (the set of generators being given by the objects P (i) having
P in the i−th component and 0 in all the other components) and then in A
filtered colimits commute with finite limits.

2 Localizations of module categories

Cocomplete abelian categories with exact directed colimits (Ab5 categories
in [6]) and with a generator are known as Grothendieck categories. The next
characterization theorem has been originally proved by Gabriel and Popescu
using Gabriel topologies (cf. [11] and [12]). We obtain it specializing corollary
1.2 to module categories, which is an easy matter because the condition to be
abelian is stable under localizations. Recall that an abelian category is algebraic
if and only if it is the category of modules over an associative ring with unit (cf.
[8]).

Proposition 2.1 Let B be a category; the following conditions are equivalent:

1) B is equivalent to a localization of a module category

2) B is abelian and has a generator G which admits all copowers, and in B
directed colimits exist and commute with finite limits.
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Proof: We use the same notations as in the proof of proposition 1.1. We
only have to prove that Cex is abelian and, for this, preadditivity is enough (cf.
chapter 2 in [2]). But Cex is preadditive if and only if C is preadditive (same
argument as for the exact completion of a left exact category, cf. [3]). It remains
only to show that, for each pair of sets R and S, C(R •G, S •G) is a subgroup
of B(R • G, S • G). We limit to the case C(G, S • G); the general case follows
easily.
- the zero morphism 0: G -S • G is in C since it factors through the initial
object ∅ •G;
- if f :G -S • G factors as f ′ · iS′ :G -S′ • G -S • G, then −f factors
as (−f ′) · iS′ ;
- if f, g:G -S • G are in C, we can build up their sum using the additivity
of B in the following way

G -4
G⊕G -f ⊕ g

S •G⊕ S •G -5
S •G

where 4 and 5 are the diagonal and the codiagonal. Clearly 4 is in C because
G⊕G is a finite copower. Now we can choose (SqS)•G as S•G⊕S•G (where q
is the disjoint union in SET ) and f⊕g is in C because if we precompose with the
first injection we obtain f ·i1:G -S•G - (SqS)•G (where i1 is induced by
the first injection S -SqS) and f is in C and analogously if we precompose
with the second injection. Finally the codiagonal 5: (S qS) •G -S •G is in
C because it is induced by the codiagonal S q S -S in SET .

Remark 2.2 All the previous results can be generalized replacing finite limits
and filtered colimits by κ−limits and κ−filtered colimits for a regular infinite
cardinal κ. Algebraic theories must then be replaced by theories with operations
of ariety at most κ, monads with finite rank by monads with rank κ (that is,
preserving κ−filtered colimits) and abstractly finite objects by objects satisfying
the obvious κ−analogous condition. In particular, in proposition 2.1, categories
of modules over an associative ring with unit must be replaced by categories
of models of a κ−algebraic theory T such that T ⊗ Z ' T , where ⊗ is the
Kronecker product of theories and Z is the theory of abelian groups (cf. [15]).
To adapt the various proofs, one need the ”κ−fication” of the theory of the
exact completion. This has been done in [7].
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