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Abstract. We associate to a continuous map between pointed
spaces a long 2-exact sequence of homotopy pointed groupoids. The
usual homotopy sequence of a map follows from this 2-exact sequence
taking, for each groupoid, the set of connected components. We also
study a condition of strong 2-exactness for a sequence of cat-groups
and pointed groupoids.
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Introduction

Let us start with an old story. The simplest homotopy invariant of a pointed
topological space Y is the pointed set π0(Y ) of its path-connected components.
Using the loop functor Ω, we have a family of pointed sets πn(Y ) = π0(ΩnY )
which are (abelian) groups for n ≥ 1 (n ≥ 2). If f : X → Y is a continuous
map preserving the base point, these homotopy invariants fit into a long exact
sequence of groups and pointed sets

. . . → πn(Kf) → πn(X) → πn(Y ) → . . .

. . . → π1(Kf) → π1(X) → π1(Y ) → π0(Kf) → π0(X) → π0(Y )

where Kf → X is the homotopy kernel of f.
The aim of this short note is to show that this sequence is a kind of “projec-

tion” on the category of pointed sets of an exact sequence of higher dimensional
homotopy invariants. In fact the first two invariants of Y, π0(Y ) and π1(Y ),
can be interpreted, respectively, as the set of connected components and the
group of automorphisms at the base point of the fundamental groupoid Π1(Y ).
Using once again the loop functor, one obtains a family of pointed groupoids
Πn+1(Y ) = Π1(ΩnY ). We will show that these homotopy invariants fit into a
sequence of pointed groupoids and pointed functors

. . . → Πn(Kf) → Πn(X) → Πn(Y ) → . . .

. . . → Π2(Kf) → Π2(X) → Π2(Y ) → Π1(Kf) → Π1(X) → Π1(Y )

which is “2-exact”, i.e. exact in a suitable categorical sense (see Definition
1). Taking, for each pointed groupoid of this sequence, the pointed set of its
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connected components, one comes back to the classical exact sequence of the
map f.

The second part of this paper is devoted to study a condition of strong 2-
exactness which can be stated when a cat-group acts on a pointed groupoid. It
is well-known that the classical homotopy sequence has a strong exactness at
the transition point between groups and pointed sets

π1(Y ) → π0(Kf) → π0(X)

which is stated in terms of the action of the group π1(Y ) on the pointed set
π0(Kf). We show that the higher dimensional homotopy sequence satisfies a
similar condition. We state our condition using a suitable 2-dimensional colimit,
which is nothing but the cokernel (in the sense of bilimits) when the sequence
is a sequence of symmetric cat-groups. This provide also a new interpretation
of the strong exactness for a sequence of groups and pointed sets.

A warning: the composite of two arrows f : X → Y and g : Y → Z in a
category is denoted by f · g.

1 Preliminaries

In this section we recall all the ingredients we need for the sequence of groupoids:
the kernel of a morphism of pointed groupoids, the definition of 2-exactness, the
homotopy equivariance of the fundamental groupoid of a space.

A pointed groupoid G = (G, 0) is a groupoid G (that is a category in which
each arrow is an isomorphism) together with a chosen object 0. A morphism of
pointed groupoids F : G → H is a functor with a specified arrow f0 : 0 → F (0)
in H (a morphism F : G → H is strict if the arrow f0 is the identity); a pointed
natural transformation ϕ : F ⇒ G : G → H between morphisms of pointed
groupoids is a natural transformation (necessarily a natural isomorphism) such
that f0 · ϕ0 = g0. In this way we obtain a 2-category Gpd∗.

Given a morphism F : G → H in Gpd∗, its (homotopy) kernel kF : KF → G
can be described in the following way :

- an object of KF is a pair (X, x) with X an object of G and x : 0 → F (X)
an arrow in H ;

- an arrow f : (X, x) → (X ′, x′) of KF is an arrow f : X → X ′ in G such
that x · F (f) = x′ ;

- the base object of KF is (0, f0) ;

- the functor kF sends f : (X, x) → (X ′, x′) to f : X → X ′ ; it is a strict
morphism.

There is a pointed natural transformation κF : 0 ⇒ kF · F (where 0 is the
constant morphism which sends each arrow to the identity of the base object of
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H) given, at the point (X, x), by x : 0 → F (X).

G

κF⇑
F

��@
@@

@@
@@

KF

kF

=={{{{{{{{

0
// H

G

ϕ⇑
F

��@
@@

@@
@@

K

G

??~~~~~~~

0
// H

The triple (KF, kF, κF ) has the following universal property : given any other
triple (K, G, ϕ) in Gpd∗ as in the previous diagram, there is a unique morphism
G′ : K → KF such that G′ ·kF = G and G′ ·κF = ϕ. The functor G′ is defined by
G′(g : Y → Y ′) = G(g) : (G(Y ), ϕY ) → (G(Y ′), ϕY ′). The kernel (KF, kF, κF )
has also a “biuniversal” property, studied in [11, 16], which characterizes it up
to equivalence.

A suitable notion of exactness in Gpd∗, introduced in [11, 16] to study some
examples coming from ring theory, is given in the following definition, related
to a notion of “homotopical exactness” studied in [9].

Definition 1 A triple (G, ϕ, F ) in Gpd∗

G

ϕ⇑
F

��@
@@

@@
@@

K

G

??~~~~~~~

0
// H

is 2-exact if the comparison morphism G′ : K → KF is full and essentially
surjective on objects.

If G = (G, 0) is a pointed groupoid, we write π0(G) for the pointed set
of isomorphism classes of objects, and π1(G) for the group of automorphisms
G(0, 0). If G is a (braided) categorical group, π0G) is a (abelian) group and
π1(G) is abelian (see [5, 10] for the notion of (braided) categorical group). Both
π0 and π1 give rise to functors on the underlying category of Gpd∗

π0 : Gpd∗ → Set∗ π1 : Gpd∗ → Groups

which are homotopy invariants, in the sense that if there is a 2-cell ϕ : F ⇒
G : G → H in Gpd∗, then π0(F ) = π0(G) and π1(F ) = π1(G). In particular, if
F is an equivalence in Gpd∗, then π0(F ) and π1(F ) are isomorphisms. Finally,
let us observe that if a triple (G, ϕ, F ) as in Definition 1 is 2-exact, then

π0(K)
π0(G) // π0(G)

π0(F ) // π0(H) π1(K)
π1(G) // π1(G)

π1(F ) // π1(H)

are exact sequences of pointed sets and groups.
Consider now a pointed topological space Y and its fundamental groupoid

Π1(Y ), i.e. the pointed groupoid having points of Y as objects and homotopy
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rel end-points classes of paths as arrows (we use the additive notation for the
concatenation of paths). This construction gives rise to a functor

Π1 : Top∗ → Gpd∗

between the category of pointed topological spaces and the category of pointed
groupoids. Recall, from [3], the following lemma.

Lemma 2 The functor Π1 is homotopy equivariant. In particular, if f : X → Y
is a homotopy equivalence in Top∗, then Π1(f) is an equivalence in Gpd∗.

In fact, Π1 : Top∗ → Gpd∗ is a 2-functor, when we take as 2-cells in Top∗
homotopy classes of homotopies. Moreover, for any f in Top∗, Π1(f) is a strict
morphism in Gpd∗.

2 The exact sequence

Consider a map in Top∗ together with its homotopy kernel

Kf
kf // X

f // Y

Recall that Kf is the subspace of the product space X × Y I given by the pairs
(x, η : ∗ → f(x)), with x a point of X, η a path in Y and ∗ the base point.

Proposition 3 The sequence

Π1(Kf)
Π1(kf) // Π1(X)

Π1(f) // Π1(Y ) ,

with the pointed natural transformation

ϕ : 0 ⇒ Π1(kf) ·Π1(f) ϕ(x,η) = [η] : ∗ → f(x) ,

is 2-exact.

Proof: Consider the following commutative diagram in Gpd∗, where f ′ is the
comparison morphism

Π1(Kf)
Π1(kf) //

f ′ ((RRRRRRRRRRRRR
Π1(X)

KΠ1(f)

OO

Following the general description given in the first section, we obtain the fol-
lowing explicit description for Π1(Kf),KΠ1(f) and f ′ :

- an object of Π1(Kf) is a pair (x, η : ∗ → f(x)) in X × Y I ;
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- an arrow [h, H] : (x, η) → (x′, η′) in Π1(Kf) is a class of pairs with h : x →
x′ a path in X and H : I → Y I such that H(0) = η, H(1) = η′ and, for
all t in I, H(t) : ∗ → f(h(t)) a path in Y ;

- an object of KΠ1(f) is a pair (x, [η] : ∗ → f(x)), where [η] is a map in
Π1(Y ), i.e. a class of paths η : ∗ → f(x) in Y ;

- an arrow [h] : (x, [η]) → (x′, [η′]) in KΠ1(f) is a class of paths h : x → x′

in X such that the following diagram in Π1(Y ) commutes

∗
[η] //

[η′] &&NNNNNNNNNNNNN f(x)

[h·f ]

��
f(x′)

- the functor f ′ sends [h, H] : (x, η) → (x′, η′) to [h] : (x, [η]) → (x′, [η′]).

Clearly, f ′ is (essentially) surjective on objects. Moreover, consider an ar-
row [h] : f ′(x, η) → f ′(x′, η′) in KΠ1(f). The commutativity of the previ-
ous diagram gives us a continuous map L : I × I → Y such that L(0, t) =
(η + h · f)(t), L(1, t) = η′(t), L(s, 0) = ∗, L(s, 1) = f(h(s)) for all s, t in I.
By a well-known transformation (studied abstractly in [8], under the name of
“lens conversion”) one can derive from L a map N : I × I → Y such that
N(0, t) = η(t), N(1, t) = η′(t), N(s, 0) = ∗, N(s, 1) = f(h(s)) for all s, t in I.
Finally, put H : I → Y I H(s) = N(s,−). In this way, we have an arrow
[h, H] : (x, η) → (x′, η′) in Π1(Kf) such that f ′([h, H]) = [h], that is f ′ is full.

�

In the next corollary, we write Ω: Top∗ → Top∗ for the loop-space endo-
functor and Πn+1(Y ) for the pointed groupoid Π1(ΩnY ).

Corollary 4 Let f : X → Y be a map in Top∗ : there is a long 2-exact sequence
of pointed groupoids

. . . → Πn(Kf) → Πn(X) → Πn(Y ) → . . .

. . . → Π2(Kf) → Π2(X) → Π2(Y ) → Π1(Kf) → Π1(X) → Π1(Y )

Proof : It is enough to recall that the dual Puppe sequence [15]

. . . → Ωn(Kf) → Ωn(X) → Ωn(Y ) → . . .

. . . → Ω(Kf) → Ω(X) → Ω(Y ) → Kf → X → Y

is homotopy equivalent to the sequence of iterated homotopy kernels

. . . // K(k(kf))
k(k(kf)) // K(kf)

k(kf) // Kf
kf // X

f // Y

(as proved in a general, abstract setting in [7]). Since to be full and essentially
surjective is stable under composition with equivalences, we can apply Propo-
sition 3 to each point of the kernel sequence and, by Lemma 2, we obtain the
required long 2-exact sequence. �
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Remarks :
1) Clearly, π0(Π1(Y )) = π0(Y ) and π1(Π1(Y )) = π1(Y ) ; more generally,

π0(Πn+1(Y )) = πn(Y ) and π1(Πn+1(Y )) = πn+1(Y ). As a consequence, apply-
ing the functor π0 : Gpd∗ → Set∗ to the 2-exact sequence of Corollary 4, we
obtain the usual homotopy exact sequence

. . . → π1(Kf) → π1(X) → π1(Y ) → π0(Kf) → π0(X) → π0(Y ) .

Applying the functor π1 : Gpd∗ → Groups, we obtain the same sequence, but
we miss the three terms of degree zero.

2) In [6], A. Garzon, J. Miranda and A. del Ŕıo show that the groupoid
Πn(Y ) is a cat-group for n ≥ 2, a braided cat-group for n ≥ 3 and a symmetric
cat-group for n ≥ 4. Moreover, if f : X → Y is in Top∗ and n ≥ 2, Πn(f) is a
monoidal functor (compatible with the braiding if n ≥ 3). Since the definition of
2-exactness remains unchanged passing from pointed groupoids to (eventually
braided or symmetric) cat-groups, the 2-exact sequence of Corollary 4 is in fact
a 2-exact sequence of cat-groups for n ≥ 2.

3 Strong exactness

Let A and B be two groups. To give a homomorphism f : A → B is equivalent
to giving an action of the group A on the underlying set B which also satisfies
a supplementary condition (iii), namely a mapping +: A×B → B such that

(i) 0A + b = b

(ii) (a1 + a2) + b = a1 + (a2 + b)

(iii) a + (b1 + b2) = (a + b1) + b2

for all a, a1, a2 ∈ A and for all b, b1, b2 ∈ B. Indeed, given the action +: A×B →
B, we get f : A → B by f(a) = a + 0B . Conversely, given f : A → B, we put
a+b = f(a)+b. Moreover, given a morphism g : B → C in Groups, the following
conditions are equivalent:

(1) the composite f · g is equal to the zero morphism;

(2) the following diagram, where pB is the projection, commutes

A×B
+ //

pB

��

B

g

��
B g

// C

Finally, the following conditions are equivalent:

(I) if g(b) = 0C , then there is a ∈ A such that b = f(a);
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(II) if g(b1) = g(b2), then there is a ∈ A such that b1 = a + b2.

Assume now that A is a group and B and C are just pointed sets. Still, given a
map +: A×B → B such that (i) and (ii) hold, we obtain a morphism f : A → B
in Set∗ by f(a) = a + 0B (the opposite construction does not make sense). But
now condition (2) is stronger than condition (1) and condition (II) is stronger
than condition (I). The strong conditions can be expressed by means of the
pointed orbit set B/A, a sort of “cokernel” of the action +: A×B → B. In fact,
the projection P+ : B → B/A is the coequalizer of + and pB (within pointed
sets). Now, a mapping g : B → C satisfies (2) iff it factors through P+; it also
satisfies (II) iff the comparison mapping B/A → C is surjective.
The interest of the strong exactness condition (II) comes from the homotopy
sequence: if f : X → Y is in Top∗, there is a well-known action of the H-space
ΩY on Kf

+: ΩY ×Kf → Kf ; ω + (x, η) = (x, ω + η)

which induces a map +: π0(ΩY )× π0(Kf) → π0(Kf) such that conditions (i),
(ii), (2) and (II) hold (see [2] for a detailed discussion).

The rest of this section is devoted to study the 2-dimensional analogue
of strong exactness. Let A be a cat-group and B a pointed groupoid and
consider a functor µ : A × B → B together with two natural isomorphisms
m0

B : B → µ(O, B) and mA1,A2,B : µ(A1 ⊗ A2, B) → µ(A1, µ(A2, B)), coher-
ent with respect to the cat-group structure of A. (This is equivalent to giving
a monoidal functor from A to the monoidal category of endofunctors of B.)
Starting from (µ, m0,m) : A×B → B, we can construct a new pointed groupoid
Cokµ in the following way:

- the objects of Cokµ are those of B;

- a pre-morphism (A, f) : B1 → B2 in Cokµ is a pair with A in A and
f : B1 → µ(A,B2) in B;

- a morphism [A, f ] : B1 → B2 is an equivalence class of pre-morphisms:
two pre-morphisms (A, f), (A′, f ′) : B1 → B2 are equivalent if there is
α : A → A′ such that f · µ(α, B2) = f ′;

- the base point of Cokµ is that of B.

There is a morphism of pointed groupoids Pµ : B → Cokµ which sends g : B1 →
B2 to [0, g ·m0

B2
] : B1 → B2. There is also a natural transformation

A× B
µ //

πµ⇒pB

��

B

Pµ

��
B

Pµ

// Cokµ

given by πµ(A,B) = [A∗,m0
B · mA∗,A,B : B → µ(0, B) ' µ(A∗ ⊗ A,B) →

µ(A∗, µ(A,B))] : B → µ(A,B) (where A∗ is a dual of A). Moreover, the following
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diagrams in Cokµ commute

B

Pµ(m0
B)

��

πµ(0,B)

��

B
πµ(A1⊗A2,B) //

πµ(A2,B)

��

µ(A1 ⊗A2, B)

Pµ(mA1,A2,B)

��
µ(0, B) µ(A2, B)

πµ(A1,µ(A2,B))
// µ(A1, µ(A2, B))

The previous construction is universal in the following sense (Cokµ is the
iso-coinserter of µ and pB): given

A× B

β⇒

µ //

pB

��

B

G

��
B

G
// C

with G : B → C in Gpd∗ and β a natural transformation such that

G(B)

G(m0
B)

��

β0,B

��

G(B)
βA1⊗A2,B //

βA2,B

��

G(µ(A1 ⊗A2, B))

G(mA1,A2,B)

��
G(µ(0, B)) G(µ(A2, B))

βA1,µ(A2,B)

// G(µ(A1, µ(A2, B)))

commute, there is a unique G′ : Cokµ → C in Gpd∗ such that Pµ ·G′ = G and
πµ ·G′ = β.

Proof : One has to define G′ : Cokµ → C by

G′ : [A, f ] : B1 → B2 7→ G(f) · β−1
A,B2

: G(B1) → G(µ(A,B2)) → G(B2)

The uniqueness follows from the commutativity of the following diagram

B1

[A,f ] //

Pµ(f) $$HHHHHHHHH B2

πµ(A,B2)zzvvvvvvvvv

µ(A,B2)

�
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This universal property characterizes Cokµ up to isomorphism. The triple
(Cokµ, Pµ, πµ) has also a “biuniversal” property (it is the bi-coequaliser of µ
and pB) which characterizes it up to equivalence. It is similar to those of the
kernel and of the cokernel (see [11, 16]).

Let us explain the notation Cokµ. Starting from (µ,m0,m) : A × B → B,
we get a morphism F : A → B in Gpd∗ by F (A) = µ(A, 0) and f0 = m0

0 : 0 →
µ(0, 0) = F (0). If it is the case that A and B are symmetric cat-groups and F
is a monoidal functor compatible with the symmetry, then Cokµ is exactly the
cokernel of F as described in [11, 16].

In order to state strong exactness for pointed groupoids, observe that, given

A× B

β⇒

µ //

pB

��

B

G

��
B

G
// C

as before, we get a pointed natural transformation

B

α⇑
G

��?
??

??
??

A

F

??�������

0
// C

by αA = g0 · βA,0 : 0 → G(O) → G(µ(A, 0)) = G(F (A)). Recall now that, if
(F, α,G) is a sequence of symmetric cat-groups, its 2-exactness can be equiva-
lently stated by asking that the canonical comparison from the cokernel of F to
G is full and faithful (Proposition 6.2 in [11]). With this fact in mind, we give
the following definition.

Definition 5 Consider
A× B

β⇒

µ //

pB

��

B

G

��
B

G
// C

as before. The sequence (µ, β, G) is strongly 2-exact if the comparison functor
G′ : Cokµ → C is full and faithful.

Here is the expected link between strong 2-exactness (Definition 5) and 2-
exactness (Definition 1). The proof is a direct calculation.

Proposition 6 Consider

A× B

β⇒

µ //

pB

��

B

G

��
B

G
// C

and B

α⇑
G

��?
??

??
??

A

F

??�������

0
// C
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as before. Consider also the factorization F ′ of F through the kernel of G and
the factorization G′ of G through Cokµ

F ′ : A → KG G′ : Cokµ → C .

a) If G′ is faithful, then F ′ is full;

b) If G′ is full, then F ′ is essentially surjective.

The interested reader can verify that, if A, B, C, F, G and α belong to the 2-
category of cat-groups and if β is compatible with the cat-group structure of B
and C, then both the implications of Proposition 6 can be reversed.

Let us write down explicitly the condition of fullness for G′ : Cokµ → C :
given two objects B1 and B2 in B and an arrow c : G(B1) → G(B2) in C, there
is A in A and f : B1 → µ(A,B2) in B such that G′[A, f ] = c.
The analogy between fullness of G′ and strong exactness for a sequence of groups
and pointed sets, i.e. condition (II), is now clear. This analogy is made more
precise in the next remark.

Remark :
1) Assume that the categories A, B and C of Proposition 6 are discrete (so

that A is a group, and B and C are pointed sets, but Cokµ is not discrete).
Then the fullness of G′ is exactly condition (II) (moreover, the faithfulness of
G′ implies that F is injective).

2) Assume that the categories A, B and C of Proposition 6 have a unique
object (so that A is an abelian group and B and C are groups). Then the faith-
fulness of G′ is exactly condition (II) (moreover, the fullness of G′ is equivalent
to the surjectivity of G).

Finally, we come back to the higher dimensional homotopy sequence. Let
f : X → Y be an arrow in Top∗ and consider the action ΩY ×Kf → Kf as at the
beginning of this section. It induces an action µ : Π1(ΩY )×Π1(Kf) → Π1(Kf)
of the cat-group Π2(Y ) = Π1(ΩY ) on the pointed groupoid Π1(Kf). Moreover,
the diagram

Π2(Y )×Π1(Kf)
µ //

pΠ1(Kf)

��

Π1(Kf)

Π1(kf)

��
Π1(Kf)

Π1(kf)
// Π1(X)

is strictly commutative.

Proposition 7 Let

Π2(Y )×Π1(Kf)
µ //

=pΠ1(Kf)

��

Π1(Kf)

Π1(kf)

��
Π1(Kf)

Π1(kf)
// Π1(X)
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be as before. The sequence (µ,=,Π1(kf)) is strongly 2-exact.

We leave the proof as an exercise for the reader.
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