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Introduction

The notion of factorization system in a category is well established and has
a lot of applications to basic category theory [7] as well as to some more specific
topic, like categorical topology [11] or categorical Galois theory [8]. When a rel-
evant construction emerges in mathematics the question of existence of free such
structure is always important. In [20], M. Korostenski and W. Tholen study
the free category with factorization system on a given category C. They prove
that it is given by the embedding C → C2 of C into its category of morphisms.
In general, given a factorization system (E ,M) in a category and the corre-
sponding factorization f = (m ∈ M) ◦ (e ∈ E) of an arrow f, it is a common
intuition to think to e as the “surjective” part of f and to m as the “injec-
tive” part of f. This is the case for the standard factorization system in Set,
as well as for many other natural examples, but it is by no way a consequence
of the definition of factorization system. A factorization system such that the
class E is contained in the class of epimorphisms and the class M in that of
monomorphisms is called proper. The free category FrC with proper factoriza-
tion system on a given category C has been studied by M. Grandis in [15], where
it is proved that FrC is a quotient of C2, so that we can picture the situation
with the diagram

C −→ C2 −→ FrC .

The category FrC is of special interest for its applications to the stable homotopy
category (in this case it is also called the Freyd completion of C, which explains
the notation), to homology theories and to triangulated categories (see [5, 10,
13, 14, 23, 25]).

For the needs of 2-dimensional homological algebra, S. Kasangian and the
second author introduced in [17] the notion of factorization system in a 2-
category with invertible 2-arrows, showing the existence of two such factor-
ization systems in the 2-category SCG of symmetric categorical groups. Subse-
quently, the definition has been extended by S. Milius to arbitrary 2-categories
in [22], where the basic theory is developed. In particular, Milius exhibits the
free 2-category with factorization system C → C2 on a given 2-category C, which
is the 2-dimensional analogue of the Korostenski-Tholen construction. The aim
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of this note is to complete the picture, giving the 2-dimensional analogue of
Grandis construction, that is the free 2-category with proper factorization sys-
tem.

For this, let us look more carefully at the two factorization systems for
symmetric categorical groups discussed in [17]. In the first one, an arrow F
factors through the kernel of its cokernel; in the second one it factors through
the cokernel of its kernel

Ker(PF )
M1

$$II
III

III
II

KerF
eF // A F //

E1

::uuuuuuuuuu

E2 $$II
III

III
II B

PF // CokerF

Coker(eF )
M2

::uuuuuuuuuu

and one has that E1 is full and essentially surjective, M1 is faithful, E2 is
essentially surjective and M2 is full and faithful.
Now, for a morphism F in SCG (that is, F is a monoidal functor compatible
with the symmetry), one has the following situation:

- F is faithful (respectively, full and faithful) iff for any G ∈ SCG, the hom-
functor SCG(G, F ) : SCG(G,A) → SCG(G,B) is faithful (respectively, full
and faithful);

- F is essentially surjective (respectively, full and essentially surjective) iff
for any G ∈ SCG, the hom-functor SCG(F,G) : SCG(B,G) → SCG(A,G)
is faithful (respectively, full and faithful).

This situation suggests to analyze the following variants of the notion of proper
factorization system in a 2-category C : a factorization system (E ,M) is

- (1,1)-proper if for any f ∈ M the hom-functors C(X, f) are faithful and
for any f ∈ E the hom-functors C(f,X) are faithful (with X varying in
C);

- (2,1)-proper if it is (1,1)-proper and moreover for any f ∈ E the hom-
functors C(f,X) are full;

- (1,2)-proper if it is (1,1)-proper and moreover for any f ∈ M the hom-
functors C(X, f) are full;

- (2,2)-proper if it is (2,1)-proper and (1,2)-proper, i.e. if for any f ∈M the
hom-functors C(X, f) are fully faithful and for any f ∈ E the hom-functors
C(f,X) are fully faithful.

For these four kinds of proper factorization systems, we give the construction
of the free 2-category with proper factorization system on a given 2-category C.
The situation can be summarized in the following diagram (where Fri,jC is the
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free 2-category with (i, j)-proper factorization system)

Fr1,2C

$$I
IIIIIIII

C // C2 // Fr1,1C

::uuuuuuuuu

$$I
IIIIIIII Fr2,2C

Fr2,1C

::uuuuuuuuu

(conditions on C are needed to define Fr2,2C, see Section 6).
The embedding C −→ FrC is a step in the construction of the free regular,

exact or abelian category on C (see [21, 25]). From this point of view, the present
paper is part of a program devoted to study similar notions for 2-categories, and
it is intended to clarify the delicate notions of monomorphism and epimorphism
in a 2-categorical setting (see also [1, 3, 6, 9, 18, 26]).

The paper is organized as follows. In Section 1 we give the definition of
factorization system in a 2-category as it appears in [12, 22]. It is slightly differ-
ent from that given in [17], but they are equivalent if the 2-cells are invertible.
In Section 2 we recall, from [22], the construction of the free 2-category with
factorization system. In Sections 3 we fix the terminology for arrows in a 2-
category. In Sections 4, 5 and 6 we describe the various Fri,jC and we prove
their universal property. Section 7 is devoted to examples and to an open prob-
lem. Finally, in Section 8, we give a glance at the relation between factorization
systems in 2-categories and in categories. If C is a locally discrete 2-category
(that is, a category), then our definition coincide with the usual definition of fac-
torization system. But a factorization system in a 2-category C does not induce
a factorization system (in the usual sense) neither in the underlying category
of C nor in the homotopy category H(C) of C. The best we can say is that it
induces in H(C) a weak factorization system (a structure of interest especially
for Quillen approach to homotopy theory, see [2, 4, 16, 24]), and even this fact
is not completely obvious to prove.

1 Factorization systems in 2-categories

To define the notion of factorization system in a 2-category, we need the orthog-
onality condition. A first 2-categorical version of this condition was introduced
in [17] for a 2-category with invertible 2-cells. Since we work in an arbitrary
2-category, we need a stronger version, as in [12, 22].

Definition 1.1. Let C be a 2-category and consider two arrows f : C −→ C ′

and g : D −→ D′ in C. We say that f is orthogonal to g, denoted by f ↓ g, if
the following diagram is a bi-pullback in Cat

C(C ′, D)
−◦f //

g◦−

��

C(C,D)

g◦−

��
C(C ′, D′)

−◦f
// C(C,D′)
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If H is a class of arrows of C, we write H↑ = {e | e ↓ h for all h ∈ H} and
H↓ = {m |h ↓ m for all h ∈ H}.

To make the previous definition more explicit, we need some point of termi-
nology.

Definition 1.2. The 2-category of arrows of C, denoted by C2, is the 2-category
whose objects are arrows of C, whose 1-cells are triples (u, ϕ, v), as in the fol-
lowing diagram, where ϕ is invertible,

C
u //

f

��

D

g

��
C ′ v

//

ϕ||||
:B

D′

and whose 2-cells (u, ϕ, v) ⇒ (w,ψ, x) : f −→ g are pairs (α, β) of 2-cells of C,
with α : u⇒ w and β : v ⇒ x such that

(g ∗ α) ◦ ϕ = ψ ◦ (β ∗ f).

Definition 1.3. Let (u, ϕ, v) be an arrow from f to g in C2. A fill-in for
(u, ϕ, v) is a triple (α, s, β), as in the following diagram, with α : sf ⇒ u and
β : gs⇒ v invertible and such that g ∗ α = ϕ(β ∗ f).

C
f //

u

��

C ′

v

��

s

~~~~
~~

~~
~~

~~
~~

α ____ks

D g
//

____ +3 β

D′

The fill-in (α, s, β) is universal if for any other fill-in (γ, t, δ) for (u, ϕ, v), there
is a unique invertible ω : t⇒ s such that γ = α(ω ∗ f) and δ = β(g ∗ ω).

Proposition 1.4. Let f : C −→ C ′ and g : D −→ D′ be two arrows in a
2-category C. Then f ↓ g if and only if the following conditions hold:

1. each morphism (u, ϕ, v) : f −→ g has a universal fill-in;

2. for each (u, ϕ, v), (u′, ϕ′, v′) : f −→ g, for each (µ, ν) : (u, ϕ, v) ⇒ (u′, ϕ′, v′)
in C2, for each universal fill-in (α, s, β) and (α′, s′, β′) respectively for
(u, ϕ, v) and for (u′, ϕ′, v′), there is a unique σ : s⇒ s′ such that

µ ◦ α = α′ ◦ (σ ∗ f) and ν ◦ β = β′ ◦ (g ∗ σ). (1)

The former version of the orthogonality condition, in [17], consists only of con-
dition 1 of the previous proposition. When all 2-cells are invertible, condition 2
follows from condition 1.

The following lemma is sometimes useful to check the orthogonality condi-
tion.

Lemma 1.5. 1. If there exists a universal fill-in for (u, ϕ, v) : f −→ g, then
every fill-in for (u, ϕ, v) is universal.
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2. The following conditions are equivalent:

(a) f ↓ g;
(b) the functor C(C ′, D) −→ C2(f, g) which maps d : C ′ −→ D to (df, gd)

is an equivalence;

(c) i. each morphism (u, ϕ, v) : f −→ g has a fill-in;
ii. for each (u, ϕ, v), (u′, ϕ′, v′) : f −→ g, for each (µ, ν) : (u, ϕ, v) ⇒

(u′, ϕ′, v′), for each fill-in (α, s, β) and (α′, s′, β′) respectively for
(u, ϕ, v) and for (u′, ϕ′, v′), there is a unique σ : s⇒ s′ such that
equations (1) hold.

Proof. Just observe that C2(f, g) is the bi-pullback in Cat of−◦f : C(C ′, D′) −→
C(C,D′) and g ◦ − : C(C,D) −→ C(C,D′).

Here is the definition of a factorization system in C.

Definition 1.6. A factorization system in a 2-category C is a pair (E ,M) of
classes of arrows in C such that:

1. if m ∈ M and i is an equivalence then mi ∈ M, and if e ∈ E and i is an
equivalence then ie ∈ E ;

2. E and M are stable under invertible 2-cells (i.e. if e ∈ E and α : f ⇒ e is
invertible, then f ∈ E , and the same property holds for M);

3. for each arrow f in C, there exists e ∈ E , m ∈ M and an invertible 2-cell
ϕ : me ⇒ f (such a factorization ϕ of f is called an (E ,M)-factorization
of f);

4. for each e ∈ E and for each m ∈M, e ↓ m.

The proof of the basic properties of factorization systems in 2-categories can
be found in [17] and [22].

Proposition 1.7. Let (E ,M) be a factorization system in C. The following
properties hold.

1. E ∩M = {equivalences}.

2. E and M are closed under composition.

3. E = M↑ and M = E↓.

4. The (E ,M)-factorization of an arrow of C is essentially unique (i.e. if
ϕ : me⇒ f and ϕ′ : m′e′ ⇒ f are two such factorizations, there exist an
equivalence i and invertible 2-cells α : ie⇒ e′ and β : m′i⇒ m such that
ϕ ◦ (β ∗ e) = ϕ′ ◦ (m′ ∗ α));

5. (Cancellation property) If m′,m ∈M and if θ : m′g ⇒ m is an invertible
2-cell, then g ∈ M; dually, if e′, e ∈ E and if θ : fe′ ⇒ e is an invertible
2-cell, then f ∈ E.

6. M is stable under bi-limits and E is stable under bi-colimits.

Remark: In Definition 1.6, conditions 1, 2 and 4 can be equivalently replaced
by point 3 of Proposition 1.7.
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2 Free 2-categories with factorization system

In this section, we describe the free 2-category with factorization system on a
given 2-category C

EC : C −→ C2 .

In fact, C2 is provided with the following factorization system (EC,MC)

EC = {(u, ϕ, v) |u is an equivalence}

MC = {(u, ϕ, v) | v is an equivalence}.
An arrow (u, ϕ, v) : f −→ g in C2 factors as in the following diagram.

C

f

��

1C // C
u //

gu

��

D

g

��
C ′ v

//

||||
:B ϕ

D′
1D′

// D′

(2)

We write e(u,ϕ,v) = (1C , ϕ, v) and m(u,ϕ,v) = (u, 1gu, 1D′). The 2-functor EC :
C −→ C2 maps an object C ∈ C to 1C , an arrow f ∈ C(C,C ′) to (f, 1f , f), and
a 2-cell α : f ⇒ g : C −→ C ′ to (α, α).

If C and D are 2-categories, we write PS(C,D) for the 2-category of pseudo-
functors from C to D, pseudo-natural transformations and modifications. If C
and D are 2-categories with factorization system, PSfs(C,D) is the 2-category of
pseudo-functors preserving the factorization system (i.e. F (E) ⊆ E and F (M) ⊆
M), pseudo-natural transformations and modifications. Here is the universal
property of EC : C −→ C2.

Proposition 2.1. For each 2-category C and for each 2-category (D, (E ,M))
with factorization system, the 2-functor

− ◦ EC : PSfs(C2,D) −→ PS(C,D)

is a biequivalence.

Proof. A proof can be found in [22]. For reader’s convenience, we recall how
to construct, from an arbitrary pseudo-functor G : C −→ D, a pseudo-functor
F : C2 −→ D preserving the factorization system and such that FEC ∼= G.
Observe that, given an object f : C −→ C ′ in C2, we get a commutative diagram

C
1C //

1C

��

C

f

��

f // C ′

1C′

��
C

f
// C ′

1C′
// C ′

where the square on the left is an arrow in EC and the square on the right is an
arrow in MC. This means that f is the image of EC(f) in C2. Now, if we want
F to preserve the factorization system and if we want an equivalence FEC ∼= G,
we have to define F (f) as the image of G(f) in D. The definition of F on 1-cells
and on 2-cells follows now from the orthogonality condition.
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3 Arrows in a 2-category

We introduce now a terminology to name various kinds of arrows in a 2-category.
Our terminology will be justified by the examples C = Cat and C = SCG
discussed in Section 7.

Definition 3.1. Let C be a 2-category and f : C −→ C ′, an arrow in C.

1. We say that f is faithful if for each X ∈ C, the functor f ◦− : C(X,C) −→
C(X,C ′) is faithful.

2. We say that f is fully faithful if for each X ∈ C, the functor f ◦ − :
C(X,C) −→ C(X,C ′) is fully faithful.

3. We say that f is cofaithful if for each Y ∈ C, the functor − ◦ f :
C(C ′, Y ) −→ C(C, Y ) is faithful.

4. We say that f is fully cofaithful if for each Y ∈ C, the functor − ◦ f :
C(C ′, Y ) −→ C(C, Y ) is fully faithful.

This terminology for arrows generates a terminology for factorization sys-
tems, which generalizes the term “proper factorization system” used for usual
categories.

Definition 3.2. Let (E ,M) be a factorization system on a 2-category C.

1. We say that (E ,M) is (1,1)-proper if each e ∈ E is cofaithful and each
m ∈M is faithful.

2. We say that (E ,M) is (2,1)-proper if each e ∈ E is fully cofaithful and
each m ∈M is faithful.

3. We say that (E ,M) is (1,2)-proper if each e ∈ E is cofaithful and each
m ∈M is fully faithful.

4. We say that (E ,M) is (2,2)-proper if each e ∈ E is fully cofaithful and
each m ∈M is fully faithful.

Remark: If C is locally discrete, then any factorization system (E ,M) on C
is (1,1)-proper. It is (2,1)-proper exactly when E is contained in the class of
epimorphisms, and (1,2)-proper when M is contained in the class of monomor-
phisms. Finally, (E ,M) is (2,2)-proper exactly when it is proper in the usual
sense.

In the sequel, we will construct the free 2-category with a (i, j)-proper (for
i = 1, 2, j = 1, 2) factorization system on a given 2-category.

4 (1,1)-proper factorization systems

In this section, we describe the free 2-category with (1,1)-proper factorization
system on a given 2-category C

E1,1
C : C −→ Fr1,1C .
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Definition 4.1. Let C be a 2-category. The 2-category Fr1,1C has the same
objects and arrows as C2, but a 2-cell between two arrows (u, ϕ, v) and (w,ψ, x) :
f −→ g is an equivalence class of 2-cells of C2 between the same arrows, for the
equivalence relation

(α, β) ∼ (α′, β′) iff g ∗ α = g ∗ α′
iff β ∗ f = β′ ∗ f.

We write [α, β] for the equivalence class of (α, β). The composition of 2-cells is
the same as in C2, modulo ∼ : [α′, β′]◦ [α, β] = [α′ ◦α, β′ ◦β] and [γ, δ]∗ [α, β] =
[γ ∗ α, δ ∗ β].

The 2-category Fr1,1C is equipped with a factorization system (E1,1
C ,M1,1

C )
which factorizes an arrow (u, ϕ, v) as in C2, diagram (2). Following the notations
of (2),

E1,1
C = {(u, ϕ, v) |m(u,ϕ,v) is an equivalence in Fr1,1C}

M1,1
C = {(u, ϕ, v) | e(u,ϕ,v) is an equivalence in Fr1,1C}.

Proposition 4.2. The factorization system (E1,1
C ,M1,1

C ) in Fr1,1C is (1,1)-
proper.

Proof. We have to prove that, if (u, ϕ, v) : f −→ g is an arrow in Fr1,1C, then
e(u,ϕ,v) is cofaithful and m(u,ϕ,v) is faithful.
Let h be an object of Fr1,1C. Let [α, β], [α′, β′] : (w,ψ, x) ⇒ (w′, ψ′, x′) : gu −→
h be 2-cells of Fr1,1C such that

[α, β] ∗ e(u,ϕ,v) = [α′, β′] ∗ e(u,ϕ,v).

Since e(u,ϕ,v) = (1C , ϕ, v) : f −→ gu (cf. diagram 2), this equation becomes

[α, β ∗ v] = [α′, β′ ∗ v],

which, by definition of Fr1,1C, is equivalent to

h ∗ α = h ∗ α′. (3)

This implies that [α, β] = [α′, β′], since this last equation is also equivalent, by
definition of Fr1,1C, to equation (3). So e(u,ϕ,v) is cofaithful. The proof that
m(u,ϕ,v) is faithful is similar.

Consider the quotient 2-functor P 1,1
C : C2 −→ Fr1,1C, which is the identity

on objects and arrows and maps a 2-cell (α, β) to its equivalence class [α, β]. We
can define the 2-functor E1,1

C = P 1,1
C ◦ EC : C −→ C2 −→ Fr1,1C. Its universal

property is stated in the following proposition.

Proposition 4.3. For any 2-category C and for any 2-category (D, (E ,M))
with (1,1)-proper factorization system, the 2-functor

− ◦ E1,1
C : PSfs(Fr1,1C,D) −→ PS(C,D)

is a biequivalence.
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Proof. Since E1,1
C = P 1,1

C ◦ EC and since Proposition 2.1 tells us that − ◦ EC is
a biequivalence, it remains to prove that

− ◦ P 1,1
C : PSfs(Fr1,1C,D) −→ PSfs(C2,D)

is a biequivalence (it is well-defined because P 1,1
C preserves the factorization

system).
It is straightforward to prove that − ◦ P 1,1

C is locally an equivalence. As
far as its surjectivity up to equivalence is concerned, let G : C2 −→ D be a
pseudo-functor preserving the factorization system. We have to find a pseudo-
functor F : Fr1,1C −→ D preserving the factorization system, such that FP 1,1

C
is equivalent to G.
On objects and arrows, we take F = G. If [α, β] : (u, ϕ, v) ⇒ (w,ψ, x) is a 2-cell
in Fr1,1C, we take F ([α, β]) = G(α, β). Then FP 1,1

C = G and it remains to
prove that F is well defined, i.e. if [α, β] = [γ, δ] : (u, ϕ, v) ⇒ (w,ψ, x) : f −→ g,
then G(α, β) = G(γ, δ).
By definition of Fr1,1C, g ∗ α = g ∗ γ and β ∗ f = δ ∗ f . So

G(g ∗ α, β ∗ f) = G(g ∗ γ, δ ∗ f). (4)

But, up to invertible 2-cells, equation (4) becomes

G(g, 1g, 1D′)∗G(α, β)∗G(1C , 1f , f) = G(g, 1g, 1D′)∗G(γ, δ)∗G(1C , 1f , f). (5)

Since (g, 1g, 1D′) ∈MC andG preserves the factorization system, G(g, 1g, 1D′) ∈
M. Since (E ,M) is (1,1)-proper, G(g, 1g, 1D′) is faithful. Thus equation (5) is
equivalent to

G(α, β) ∗G(1C , 1f , f) = G(γ, δ) ∗G(1C , 1f , f).

Similarly, G(1C , 1f , f) is cofaithful, and we can conclude that G(α, β) = G(γ, δ).

5 (2,1)-proper and (1,2)-proper factorization sys-
tems

In this section, we describe the free 2-category with (2,1)-proper factorization
system on a given 2-category C

E2,1
C : C −→ Fr2,1C .

Definition 5.1. Let C be a 2-category. The 2-category Fr2,1C has the same
objects and arrows as C2, but a 2-cell between (u, ϕ, v) and (w,ψ, x) : f −→ g
is an equivalence class of 2-cells α : u⇒ w for the equivalence relation

α ∼ α′ iff g ∗ α = g ∗ α′.

Let [α] stand for the class of α. The compositions of 2-cells are easily defined:
[α′] ◦ [α] = [α′ ◦ α] and [γ] ∗ [α] = [γ ∗ α].

The 2-category Fr2,1C is equipped with a factorization system (E2,1
C ,M2,1

C ),
which factorizes the arrows as in diagram (2).
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Proposition 5.2. The factorization system (E2,1
C ,M2,1

C ) in the 2-category Fr2,1C
is (2,1)-proper.

The 2-functor P 2,1
C : C2 −→ Fr2,1C maps (α, β) to [α]. We define E2,1

C =
P 2,1

C ◦ EC : C −→ C2 −→ Fr2,1C.

Proposition 5.3. For any 2-category C and for any 2-category with a (2,1)-
proper factorization system (D, (E ,M)), the 2-functor

− ◦ E2,1
C : PSfs(Fr2,1C,D) −→ PS(C,D)

is a biequivalence.

Proof. As for Proposition 4.3, we have to prove that

− ◦ P 2,1
C : PSfs(Fr2,1C,D) −→ PSfs(C2,D)

is a biequivalence. The interesting part is, given a pseudo-functor G : C2 −→ D
which preserves the factorization system, to construct a pseudo-functor F :
Fr2,1C −→ D which preserves the factorization system and such that FP 2,1

C
∼= G.

We take F = G on objects and arrows of Fr2,1C. Consider now a 2-cell [α] :
(u, ϕ, v) ⇒ (w,ψ, x) : f −→ g in Fr2,1C. Define ν = ψ−1(g ∗ α)ϕ : vf ⇒ xf (it
is well-defined because we only use g ∗α.) We get now a 2-cell ξ in the following
way

G(u, ϕ, v) ◦G(1C , 1f , f)

ξ

��

∼= +3 G(u, ϕ, vf)

G(α,ν)

��
G(w,ψ, x) ◦G(1C , 1f , f) G(w,ψ, xf)

∼=ks

Since (1C , 1f , f) ∈ EC and G preserves the factorization system, G(1C , 1f , f) ∈
E . Since (E ,M) is (2,1)-proper, G(1C , 1f , f) is fully cofaithful. This implies
that there is a unique 2-cell F ([α]) : G(u, ϕ, v) ⇒ G(w,ψ, x) such that

F ([α]) ∗G(1C , 1f , f) = ξ. (6)

The argument to prove that F is well-defined is similar to that in the proof of
Proposition 4.3.
Finally, if (α, β) : (u, ϕ, v) ⇒ (w,ψ, x) : f −→ g is a 2-cell in C2, then F ([α]) =
G(α, β). For this, it is enough to check equation (6) for G(α, β). This follows
from the fact that ν = β ∗ f.

We can do exactly the same with (1,2)-proper factorization systems, and we
get the free 2-category E1,2

C : C −→ Fr1,2C. The difference is that, if C is a 2-
category, the 2-cells of the 2-category Fr1,2C from (u, ϕ, v) to (w,ψ, x) : f −→ g
are the equivalence classes of 2-cells β : v ⇒ x for the equivalence relation
β ∼ β′ iff β ∗ f = β′ ∗ f .

6 (2,2)-proper factorization systems

The construction of Fr2,2C, the free 2-category with a (2,2)-proper factorization
system on a given 2-category C, can be done if and only if the 2-category C is
pre-full, in the sense of the following definition.
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Definition 6.1. Let C be a 2-category, and let f : C −→ C ′ be an arrow in C.
We say that f is pre-full if for each g, g′ : X −→ C, for each h, h′ : C ′ −→ Y ,
for each α : fg ⇒ fg′ and for each β : hf ⇒ h′f , one has

X
g //

g′

��

�� ��
�� α

C

f

��

f //

�� ��
�� β

C ′

h

��
C

f
// C ′

h′
// Y

=

C
f //

�� ��
�� α

C ′
h //

�� ��
�� β

Y.

X

g

OO

g′
// C

f

OO

f
// C ′

h′

OO

(7)

We say that C is pre-full if each arrow in C is pre-full.

The fact that any 2-category with a (2,2)-proper factorization system is pre-
full follows immediately from the next lemma.

Lemma 6.2. Let f : C −→ C ′ be an arrow in a 2-category C and consider an
invertible 2-cell ϕ : me ⇒ f. If e and m are such that − ◦ e and m ◦ − are full
functors, then f is pre-full.

Proof. Let us consider the situation of Definition 6.1. Let β′ = (h′∗ϕ−1)β(h∗ϕ) :
hme⇒ h′me. Since −◦ e is full, there exists δ : hm⇒ h′m such that δ ∗ e = β′.
In the same way, if α′ = (ϕ−1∗g′)α(ϕ∗g) : meg ⇒ meg′, there exists γ : eg ⇒ eg′

such that m ∗ γ = α′, since m ◦ − is full. Then the 2 members of (7) are equal
to the 2-cell

C
f //

e

��>
>>

>>
>>

>>
>>

�� ��
�� ϕ

−1

C ′

h

  @
@@

@@
@@

@@
@@

X

g

??�����������

g′

��?
??

??
??

??
??

�� ��
�� γ I

m

??�����������

m

��?
??

??
??

??
??

�� ��
�� δ Y,

C
f

//

e

@@�����������

�� ��
�� ϕ

C ′

h′

>>~~~~~~~~~~~

Let us explain now the reason why we can define Fr2,2C if and only if C is
pre-full. We will define a 2-functor E2,2

C : C −→ Fr2,2C which is locally faithful.
It is easy to see that this fact, together with the pre-fullness of Fr2,2C (which
comes from its (2,2)-proper factorization system), implies that C is pre-full.

We arrive to the definition of Fr2,2C.

Definition 6.3. Let C be a pre-full 2-category. The 2-category Fr2,2C has the
same objects and arrows as C2, but a 2-cell from (u, ϕ, v) to (w,ψ, x) : f −→ g
is a 2-cell µ : gu ⇒ gw. This is equivalent to give a 2-cell µ̆ : vf ⇒ xf
related to µ by the equation µ̆ = ψ−1µϕ. The vertical composition of µ :
(u, ϕ, v) ⇒ (u′, ϕ′, v′) (i.e. µ : gu⇒ gu′) and µ′ : (u′, ϕ′, v′) ⇒ (u′′, ϕ′′, v′′) (i.e.
µ′ : gu′ ⇒ gu′′) is simply µ′ ◦ µ : gu⇒ gu′′.

11



The horizontal composition is more problematic. Let µ : (u, ϕ, v) ⇒ (u′, ϕ′, v′) :
f −→ g and ν : (w,ψ, x) ⇒ (w′, ψ′, x′) : g −→ h. We define ν ∗ µ = (ψ′ ∗ u′) ◦
τµ,ν ◦ (ψ−1 ∗ u) : hwu⇒ hw′u′, where τµ,ν is given by the following pasting

C
u //

u′

��

�� ��
�� µ

D

g

��

g //

�� ��
�� ν̆

D′

x

��
D g

// D′
x′

// E′.

One can check now that Fr2,2C is a 2-category: the pre-fullness of C is needed
to prove the interchange law.

The 2-category Fr2,2C is equipped with a factorization system (E2,2
C ,M2,2

C ),
which factorizes the arrows as in diagram (2).

Proposition 6.4. The factorization system (E2,2
C ,M2,2

C ) in the 2-category Fr2,2C
is (2,2)-proper.

As in the previous sections, there is a 2-functor P 2,2
C : C2 −→ Fr2,2C which

is the identity on objects and 1-cells and maps (α, β) : (u, ϕ, v) ⇒ (u′, ϕ′, v′) :
f −→ g to g ∗ α. We define the 2-functor

E2,2
C : C −→ Fr2,2C

as the composite P 2,2
C ◦EC. The next statement, which gives the universal prop-

erty of E2,2
C , makes sense because a 2-category with a (2,2)-proper factorization

system is pre-full.

Proposition 6.5. For each pre-full 2-category C and for each 2-category with
(2,2)-proper factorization system (D, (E ,M)), the 2-functor

− ◦ E2,2
C : PSfs(C2,D) −→ PS(C,D)

is a biequivalence.

Proof. Similar to that of Proposition 5.3.

Remark: If the 2-category C is locally discrete, then it is pre-full and Fr2,2C =
FrC is the free category with proper factorization system studied in [15].

7 Examples and an open problem

7.1 Symmetric categorical groups

In [17], two examples of factorization systems are described in the 2-category
SCG of symmetric categorical groups, monoidal functors preserving the sym-
metry and monoidal natural transformations. Let us set some notation. If
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F : G −→ H is a morphism in SCG, we write

KerF
e //

<<

0

�� ��
�� ε

G

0

##
�� ��
�� π

F // H p
// CokerF

for its kernel and its cokernel; we refer to [17] for their universal properties as bi-
limits. If G is a symmetric cat-group, we write π0(G) for the abelian group of its
connected components, and π1(G) for the abelian group G(I, I), where I is the
unit object. If G is an abelian group, we write D(G) for the discrete symmetric
cat-group on G, and G! for the symmetric cat-group with a unique object I,
and such that G!(I, I) = G. These constructions have obvious extensions to
morphisms.

In [17], it is proved that, by taking the kernel of the cokernel of an arrow in
SCG, we get a factorization system (E1,M1), where E1 is the class of full and
essentially surjective functors, whereas M1 is the class of faithful functors. The
second factorization system (E2,M2) on SCG is obtained by taking the cokernel
of the kernel of an arrow. In this case E2 is the class of essentially surjective
functors and M2 is the class of fully faithful functors.

Proposition 7.1. Let F : G −→ H be an arrow in SCG.

1. F is faithful as an arrow in SCG if and only if F is faithful as a functor.

2. F is fully faithful as an arrow in SCG if and only if F is fully faithful as
a functor.

3. F is cofaithful if and only if F is essentially surjective.

4. F is fully cofaithful if and only if F is full and essentially surjective.

Proof. Only the necessary condition of 3. was not established in [17]. To prove
this condition, let us recall that a functor F in SCG is essentially surjective if
and only if π0F is surjective.
Consider a cofaithful arrow F : G −→ H in SCG. We have to prove that π0(F )
is an epimorphism in the category Ab of abelian groups, i.e. for any G ∈ Ab
the mapping

− ◦ π0(F ) : Ab(π0(H), G) −→ Ab(π0(G), G)

is surjective. Let us consider the one-object symmetric cat-group G!. There is
a bijection

ϕH : SCG(H, G!)(0, 0) −→ Ab(π0(H), G)

which maps a monoidal natural transformation α : 0 ⇒ 0 onto the group homo-
morphism ϕH(α) : π0(H) −→ G : [X] 7→ αX . This map is well-defined because
α is natural, and it is a group homomorphism because α is monoidal. The in-
verse of ϕH maps a morphism f : π0(H) −→ G onto the natural transformation

13



ϕ−1
H (f) such that (ϕ−1

H (f))X = f([X]). In the same way, there is a bijection
ϕG : SCG(G, G!)(0, 0) −→ Ab(π0(G), G). The announced result is immediate
from the commutativity of the following diagram.

SCG(H, G!)(0, 0)

ϕH

��

−◦F // SCG(G, G!)(0, 0)

ϕG

��
Ab(π0(H), G)

−◦π0(F ) // Ab(π0(G), G)

Indeed, the cofaithfulness of F implies that the top arrow is injective. Since the
vertical arrows are bijective, this implies that the bottom arrow is injective.

As a consequence, we have:

1. (E1,M1) is a (2,1)-proper factorization system;

2. (E2,M2) is a (1,2)-proper factorization system;

3. Let SCGf be the sub-2-category of SCG whose arrows are the full functors;
it is pre-full. Moreover, in SCGf the systems (E1,M1) and (E2,M2)
coincide and are (2,2)-proper.

From [17], we know that a morphism F : G −→ H in SCG is essentially
surjective iff it is the cokernel of its kernel e : KerF −→ G. Moreover, there
is a canonical morphism c : π1(KerF )! −→ KerF, and F is full and essentially
surjective iff it is the cokernel of the composite e ◦ c. Therefore, we obtain the
first factorization system taking the cokernel of e ◦ c. Dually, F is faithful iff
it is the kernel of its cokernel p : H −→ CokerF. There is a canonical arrow
d : CokerF −→ D(π0(CokerF )), and F is full and faithful iff it is the kernel of
the composite d◦p. Therefore, the second system can be obtained by taking the
kernel of d ◦ p.

We want now to describe the systems (E1,M1) and (E2,M2) using a different
kind of bi-limits. We define the bi-limits we need in an arbitrary pointed 2-
category.

Definition 7.2. Let C be a 2-category with a zero object 0 (that is, for any
object C ∈ C, the categories C(C, 0) and C(0, C) are equivalent to the one-arrow
category).

1. Consider an arrow f : C −→ C ′ in C. The pip of f is given by an object
Pipf and a 2-cell σ as in the following diagram,

Pipf
0

))

0

55
�� ��
�� σ C

f // C ′

such that f ∗ σ = f0, and such that for any other

X

0
((

0

66
�� ��
�� χ C

f // C ′

with f ∗ χ = f0, there is an arrow t : X −→ Pipf, unique up to a unique
invertible 2-cell, such that σ ∗ t = χ.
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2. Consider a 2-cell

C

0
))

0

55
�� ��
�� α C ′

in C. The root of α is an object Rootα and an arrow r : Rootα −→ C such
that α ∗ r = 0r, and such that for any other x : X −→ C with α ∗ x = 0x,
there is x′ : X −→ Rootα and an invertible 2-cell ϕ : rx′ ⇒ x, the pair
(x′, ϕ) being unique up to a unique invertible 2-cell. (The root is a special
case of identifier.)

3. The copip of f and the coroot of α are defined by the dual universal
property.

We need an explicit description for the pip and the copip of a morphism in
SCG. Let F : G −→ H be an arrow in SCG.

1. The pip of F is given by PipF = D(Kerπ1(F )) together with the monoidal
natural transformation σ : 0 ⇒ 0 : PipF −→ G whose component at
λ ∈ PipF is λ.

2. The copip of F is given by CopipF = (Cokerπ0(F ))! and by % : 0 ⇒ 0 :
H −→ CopipF , whose component at X ∈ H is %X = [X], the equivalence
class of X in Cokerπ0(F ), that is the isomorphism class of X in CokerF.

Proposition 7.3. Let F : G −→ H be a morphism in SCG.

1. If F is fully cofaithful, then F is the coroot of its pip.

2. If F is fully faithful, then F is the root of its copip.

Lemma 7.4. Let C be a pointed 2-category with pips and copips. Let f :
C −→ C ′ be an arrow in C.

1. If h : C ′ −→ Y is a faithful arrow, then Pipf = Piphf .

2. If g : X −→ C is a cofaithful arrow, then Copipf = Copipfg.

Proposition 7.5. 1. By taking the coroot of the pip of an arrow, we get the
factorization system (E1,M1).

2. By taking the root of the copip of an arrow, we get the factorization system
(E2,M2).

Proof. Let F : G −→ H be a morphism of symmetric cat-groups. Let MF ◦ EF

be the (E1,M1)-factorization of F . Since EF is fully cofaithful, EF is the coroot
of its pip, by Proposition 7.3. By Lemma 7.4, it is also the coroot of the pip of
F ∼= MF ◦ EF , since MF is faithful. So taking the coroot of the pip of F gives
exactly its (E1,M1)-factorization. The proof of part 2 is similar.
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7.2 Categories

We discuss now some example in Cat, the 2-category of categories. Let us start
by with a point of terminology.

Definition 7.6. Let F : C −→ D be a functor.

1. F is nearly surjective (see [21]) if any D ∈ D is a retract of FC for some
C ∈ C.

2. F is retract-stable if for any D ∈ D which is a retract of FC for some
C ∈ C, there exists C ′ ∈ C such that FC ′ ∼= D.

Clearly, a functor is essentially surjective on objects if and only if it is nearly
surjective and retract-stable.

Example 7.7. The inclusion functor of a reflective subcategory is fully faithful
and retract-stable.

Proposition 7.8. Let F : C −→ D be a functor.

1. F is faithful in the sense of Definition 3.1 if and only if F is faithful in
the usual sense.

2. F is fully faithful in the sense of Definition 3.1 if and only if F is fully
faithful in the usual sense.

3. F is fully faithful and each F ◦ − is retract-stable if and only if F fully
faithful and retract-stable

4. F is cofaithful if and only if F is nearly surjective.

5. If F is full and nearly surjective, F is fully cofaithful.

6. If F is full and essentially surjective, then F is fully cofaithul and each
− ◦ F is retract-stable.

7. If F is full, then F is pre-full in the sense of Definition 6.1.

Proof. Point 1, 2 and 3 are obvious. Point 4 is proved in [1]. Point 5 is proved in
[17] in the 2-category SCG for full and essentially surjective functors; the proof
for full and nearly surjective functors in Cat is an easy translation.
Let us prove point 6. If F is full and essentially surjective, by point 5., it is
fully cofaithful. It remains to prove that each − ◦ F is retract-stable. For this,
consider G : D −→ Y, H : C −→ Y, ρ : GF ⇒ H and µ : H ⇒ GF such that
ρ ◦ µ = 1H . We define a functor G′ : D −→ Y in the following way. Given an
object D ∈ D, since F is essentially surjective there is CD ∈ C and an invertible
σD : FCD −→ D. We put G′D = HCD. If f : D −→ D′, consider the morphism

FCD
σD // D

f // D′
σ−1

D′ // FCD′ . (8)

Since F is full, there exists gf : CD −→ CD′ such that Fgf is equal to the
morphism (8). We put G′f = Hgf .
The component at C ∈ C of the isomorphism ω : G′F ⇒ H is

G′FC = HCFC

µCF C // GFCFC
GσF C // GFC

ρC // HC.
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Its inverse is ω−1
C =

HC
µC // GFC

Gσ−1
F C // GFCFC

ρCF C // HCFC = G′FC.

Finally, let us prove point 7. Consider two categories X ,Y, four functors G,G′ :
X −→ C, H,H ′ : D −→ Y, and two natural transformations α : FG ⇒ FG′

and β : HF ⇒ H ′F. We have to prove that, for each X ∈ X ,

H ′αX ◦ βGX = βG′X ◦HαX . (9)

Since F is full, there exists f : GX −→ G′X such that Ff = αX . Equation (9)
becomes now H ′Ff ◦ βGX = βG′X ◦HFf , which holds by naturality of β.

Let us also recall that fully cofaithful functors are characterized in two different
ways in [1].

Example 7.9.

1. The first factorization system S1 is given by

E1 = { full and essentially surjective functors}
M1 = { faithful functors }

A functor F : C −→ D factors through Im1F , which has the same objects
as C and, if C,C ′ ∈ C,

Im1F (C,C ′) = FC,C′(C(C,C ′)).

The composition is that ofD. By Proposition 7.8, this factorization system
is (2,1)-proper.

2. The second factorization system S2 is given by

E2 = { essentially surjective functors }
M2 = fully faithful functors }

A functor F : C −→ D factors through Im2F , which has the same objects
as C and, if C,C ′ ∈ C,

Im2F (C,C ′) = D(FC,FC ′).

The composition is that ofD. By Proposition 7.8, this factorization system
is (1,2)-proper.

3. The third factorization system S3 is given by

E3 = { nearly surjective functors }
M3 = { retract-stable fully faithful functors }

A functor F : C −→ D factors through Im3F , which is a full subcategory
of D. An object is in Im3F if it is a retract of FC for some C ∈ C. By
Proposition 7.8, this factorization system is (1,2)-proper.
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4. Here is a simple example of factorization system which is not (1,1)-proper.
We write ∅ for the empty category.

E4 = { the identity on ∅ and functors with non-empty domain }
M4 = { equivalences and functors with empty domain }

The image of a functor F : C −→ D is C if D = ∅, and D if C 6= ∅.

5. As for SCG, let Catf be the sub-2-category of Cat of full functors. It is
pre-full and S1 restricted to Catf is (2,2)-proper.

7.3 An open problem

Let us note that the first factorization system of Example 7.9 is not only (2,1)-
proper but also “(3,1)-proper”, in the sense that for any E ∈ E1, every composi-
tion functor −◦E is fully faithful and retract-stable. In the same way, the third
factorization system is “(1,3)-proper”, i.e. for any M ∈M3, every composition
functor M ◦ − is fully faithful and retract-stable. This suggests a more general
definition of proper factorization system in a 2-category.

Definition 7.10. Let Se = (Ee,Me) and Sm = (Em,Mm) be two factorization
systems on the 2-category Cat. A factorization system (E ,M) on a 2-category
C is (Se,Sm)-proper if

1. for any e ∈ E , each composition functor − ◦ e belongs to Me;

2. for any m ∈M, each composition functor m ◦ − belongs to Mm.

Following the notations of Subsection 7.2, we can reformulate Definition 3.2
in the following way:

A factorization system on a 2-category C is (i, j)-proper exactly when
it is (Si,Sj)-proper, for i, j ∈ {1, 2} (as well as for (i, j) = (3, 1) and
(i, j) = (1, 3)).

(Note that, if we put S0 = (equivalences, all arrows), every factorization system
is (S0,S0)-proper.)

Observe that the free 2-category with (i,j)-proper factorization system Fri,jC
on a 2-category C, for i, j ∈ {1, 2} (Sections 4, 5 and 6), can be described in the
following way.
Let f : C −→ C ′ and g : D −→ D′ be in C; consider the Si-factorization of the
functor − ◦ f : C(C ′, D′) −→ C(C,D′) and the Sj-factorization of the functor
g ◦ − : C(C,D) −→ C(C,D′). Then the hom-category Fri,jC(f, g) is given by
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the following bi-pullback in Cat:

C(C,D)

Ej3

��
g◦−

��

Fri,jC(f, g) //

��

Ig

Mj3

��
C(C ′, D′)

∈Ei

//

−◦f

77
If ∈Mi

// C(C,D′)

(This is the case also for (i, j) = (0, 0), where Fr0,0C is simply the 2-category
C2 of Section 2.)

The problem arising from this remark is if it is possible to generalize the pre-
vious construction to get the free 2-category with (Se,Sm)-proper factorization
system on C. To define the composition functor on the hom-categories, further
assumptions on C are needed (as the example Fr2,2C shows), but we are not
able to state them explicitly.

8 A glance at the homotopy category

Recall that a weak factorization system in a category C consists of two classes
of morphisms (E ,M) satisfying the following conditions:

1) Given three arrows A
f // B

i // X
p // B, if i◦f ∈ E and p◦i = 1B ,

then f ∈ E ;

2) Given three arrows A
j // X

q // A
f // B, if f ◦q ∈M and q ◦ j =

1A, then f ∈M;

3) Each arrow has a (E ,M)-factorization;

4) Given a commutative square

A
e //

u

��

B

v

��
w

~~
C m

// D

if e ∈ E and m ∈ M, then there is a (not necessarily unique) arrow
w : B → C such that w ◦ e = u and m ◦ w = v.

The aim of this section is to show that a factorization system in a 2-category
C induces a weak factorization system in the homotopy category H(C) of C (the
category H(C) has the same objects as C, and 2-isomorphism classes of 1-cells
as arrows). The main fact is stated in the following proposition.
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Proposition 8.1. Let C be a 2-category with a factorization system (E ,M).

1) Consider the following diagram

X
p

  @
@@

@@
@@

@

λ
�� ��
��

A
f // B

i

>>~~~~~~~

1B

// B

if λ is invertible and i ◦ f ∈ E , then f ∈ E ;

2) Consider the following diagram

X
q

  @
@@

@@
@@

λ
�� ��
��

A

j
>>~~~~~~~

1A

// A
f // B

if λ is invertible and f ◦ q ∈M, then f ∈M.

Proof. We prove the first part, the second one is similar. We have to show
that f ∈ M↑. For this, we check the first condition in Proposition 1.4 and we
leave the second one to the reader. Consider the following diagram in C, with
m ∈M,

A
f //

u

��

B

v

��
ϕ ~~~~z�

C m
// D

We get an arrow (u, ϕ◦ (v ∗λ∗f), vp) : if −→ m with a universal fill-in (α,w, β)
(because if ∈ E and m ∈ M). This fill-in gives rise to a fill-in (α,wi, γ) for
(u, ϕ, v) : f −→ m, where γ = (v ∗ λ) ◦ (β ∗ i), and we have to prove that
(α,wi, γ) is universal. Let (α′, w′, β′) be another fill-in for (u, ϕ, v). We get a
second fill-in (α′ ◦ (w′ ∗ λ ∗ f), w′p, β′ ∗ p) for (u, ϕ ◦ (v ∗ λ ∗ f), vp), so that
there is a unique comparison ψ : w ⇒ w′p. This gives us a comparison µ =
(w′ ∗ λ) ◦ (ψ ∗ i) : wi ⇒ w′ between the two fill-in for (u, ϕ, v), and we have to
prove that such a comparison is unique. Let µ : wi⇒ w′ be another comparison
between the two fill-in for (u, ϕ, v). Observe that (α ◦ (wi ∗ λ ∗ f), wip, γ ∗ p)
is a third fill-in for (u, ϕ ◦ (v ∗ λ ∗ f), vp), so that there is a unique comparison
ν : wip⇒ w′p between (α◦(wi∗λ∗f), wip, γ ∗p) and (α′ ◦(w′ ∗λ∗f), w′p, β′ ∗p)
(because, by Lemma 1.5, each fill-in is universal). A diagram chasing shows that
both ν = µ ∗ p and ν = µ ∗ p work, so that µ ∗ p = µ ∗ p. Finally, observe that,
since λ : pi⇒ 1B is an invertible 2-cell, p is a cofaithful (that is, the hom-functor

C(p, C) : C(B,C) −→ C(X,C)

is faithful). Now µ ∗ p = µ ∗ p implies µ = µ.

In the next corollary, we write [f ] for the 2-isomorphism class of an arrow f.

Corollary 8.2. Let C be a 2-category with a factorization system (E ,M) and let
H(C) be the homotopy category of C. Then (H(E),H(M)) is a weak factoriza-
tion system in H(C), where H(E) = {[e] | e ∈ E} and H(M) = {[m] | m ∈M}.
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