# Proper factorization systems in 2-categories

M. Dupont E.M. Vitale

**Abstract.** Starting from known examples of factorization systems in 2-categories, we discuss possible definitions of proper factorization system in a 2-category. We focus our attention on the construction of the free proper factorization system on a given 2-category.

MSC 2000 : 18A20, 18A32, 18D05.

# Introduction

The notion of factorization system in a category is well established and has a lot of applications to basic category theory [7] as well as to some more specific topic, like categorical topology [11] or categorical Galois theory [8]. When a relevant construction emerges in mathematics the question of existence of free such structure is always important. In [20], M. Korostenski and W. Tholen study the free category with factorization system on a given category  $\mathcal{C}$ . They prove that it is given by the embedding  $\mathcal{C} \to \mathcal{C}^2$  of  $\mathcal{C}$  into its category of morphisms. In general, given a factorization system  $(\mathcal{E}, \mathcal{M})$  in a category and the corresponding factorization  $f = (m \in \mathcal{M}) \circ (e \in \mathcal{E})$  of an arrow f, it is a common intuition to think to e as the "surjective" part of f and to m as the "injective" part of f. This is the case for the standard factorization system in Set, as well as for many other natural examples, but it is by no way a consequence of the definition of factorization system. A factorization system such that the class  $\mathcal{E}$  is contained in the class of epimorphisms and the class  $\mathcal{M}$  in that of monomorphisms is called proper. The free category  $Fr\mathcal{C}$  with proper factorization system on a given category  $\mathcal{C}$  has been studied by M. Grandis in [15], where it is proved that FrC is a quotient of  $C^2$ , so that we can picture the situation with the diagram

$$\mathcal{C} \longrightarrow \mathcal{C}^2 \longrightarrow \operatorname{Fr} \mathcal{C}$$
.

The category  $\operatorname{Fr}\mathcal{C}$  is of special interest for its applications to the stable homotopy category (in this case it is also called the Freyd completion of  $\mathcal{C}$ , which explains the notation), to homology theories and to triangulated categories (see [5, 10, 13, 14, 23, 25]).

For the needs of 2-dimensional homological algebra, S. Kasangian and the second author introduced in [17] the notion of factorization system in a 2-category with invertible 2-arrows, showing the existence of two such factorization systems in the 2-category SCG of symmetric categorical groups. Subsequently, the definition has been extended by S. Milius to arbitrary 2-categories in [22], where the basic theory is developed. In particular, Milius exhibits the free 2-category with factorization system  $\mathbb{C} \to \mathbb{C}^2$  on a given 2-category  $\mathbb{C}$ , which is the 2-dimensional analogue of the Korostenski-Tholen construction. The aim

of this note is to complete the picture, giving the 2-dimensional analogue of Grandis construction, that is the free 2-category with proper factorization system.

For this, let us look more carefully at the two factorization systems for symmetric categorical groups discussed in [17]. In the first one, an arrow F factors through the kernel of its cokernel; in the second one it factors through the cokernel of its kernel



and one has that  $E_1$  is full and essentially surjective,  $M_1$  is faithful,  $E_2$  is essentially surjective and  $M_2$  is full and faithful.

Now, for a morphism F in SCG (that is, F is a monoidal functor compatible with the symmetry), one has the following situation:

- F is faithful (respectively, full and faithful) iff for any  $\mathcal{G} \in SCG$ , the homfunctor  $SCG(\mathcal{G}, F)$ :  $SCG(\mathcal{G}, \mathcal{A}) \to SCG(\mathcal{G}, \mathcal{B})$  is faithful (respectively, full and faithful);
- F is essentially surjective (respectively, full and essentially surjective) iff for any  $\mathcal{G} \in SCG$ , the hom-functor  $SCG(F, \mathcal{G}) \colon SCG(\mathcal{B}, \mathcal{G}) \to SCG(\mathcal{A}, \mathcal{G})$ is faithful (respectively, full and faithful).

This situation suggests to analyze the following variants of the notion of proper factorization system in a 2-category  $\mathbb{C}$ : a factorization system ( $\mathcal{E}, \mathcal{M}$ ) is

- (1,1)-proper if for any  $f \in \mathcal{M}$  the hom-functors  $\mathbb{C}(X, f)$  are faithful and for any  $f \in \mathcal{E}$  the hom-functors  $\mathbb{C}(f, X)$  are faithful (with X varying in  $\mathbb{C}$ );
- (2,1)-proper if it is (1,1)-proper and moreover for any  $f \in \mathcal{E}$  the homfunctors  $\mathbb{C}(f, X)$  are full;
- (1,2)-proper if it is (1,1)-proper and moreover for any  $f \in \mathcal{M}$  the homfunctors  $\mathbb{C}(X, f)$  are full;
- (2,2)-proper if it is (2,1)-proper and (1,2)-proper, i.e. if for any  $f \in \mathcal{M}$  the hom-functors  $\mathbb{C}(X, f)$  are fully faithful and for any  $f \in \mathcal{E}$  the hom-functors  $\mathbb{C}(f, X)$  are fully faithful.

For these four kinds of proper factorization systems, we give the construction of the free 2-category with proper factorization system on a given 2-category  $\mathbb{C}$ . The situation can be summarized in the following diagram (where  $\operatorname{Fr}^{i,j}\mathbb{C}$  is the

free 2-category with (i, j)-proper factorization system)



(conditions on  $\mathbb{C}$  are needed to define  $\mathrm{Fr}^{2,2}\mathbb{C}$ , see Section 6).

The embedding  $\mathcal{C} \longrightarrow \operatorname{Fr}\mathcal{C}$  is a step in the construction of the free regular, exact or abelian category on  $\mathcal{C}$  (see [21, 25]). From this point of view, the present paper is part of a program devoted to study similar notions for 2-categories, and it is intended to clarify the delicate notions of monomorphism and epimorphism in a 2-categorical setting (see also [1, 3, 6, 9, 18, 26]).

The paper is organized as follows. In Section 1 we give the definition of factorization system in a 2-category as it appears in [12, 22]. It is slightly different from that given in [17], but they are equivalent if the 2-cells are invertible. In Section 2 we recall, from [22], the construction of the free 2-category with factorization system. In Sections 3 we fix the terminology for arrows in a 2category. In Sections 4, 5 and 6 we describe the various  $\operatorname{Fr}^{i,j}\mathbb{C}$  and we prove their universal property. Section 7 is devoted to examples and to an open problem. Finally, in Section 8, we give a glance at the relation between factorization systems in 2-categories and in categories. If  $\mathbb C$  is a locally discrete 2-category (that is, a category), then our definition coincide with the usual definition of factorization system. But a factorization system in a 2-category  $\mathbb C$  does not induce a factorization system (in the usual sense) neither in the underlying category of  $\mathbb{C}$  nor in the homotopy category  $H(\mathbb{C})$  of  $\mathbb{C}$ . The best we can say is that it induces in  $H(\mathbb{C})$  a weak factorization system (a structure of interest especially for Quillen approach to homotopy theory, see [2, 4, 16, 24], and even this fact is not completely obvious to prove.

### **1** Factorization systems in 2-categories

To define the notion of factorization system in a 2-category, we need the orthogonality condition. A first 2-categorical version of this condition was introduced in [17] for a 2-category with invertible 2-cells. Since we work in an arbitrary 2-category, we need a stronger version, as in [12, 22].

**Definition 1.1.** Let  $\mathbb{C}$  be a 2-category and consider two arrows  $f: C \longrightarrow C'$ and  $g: D \longrightarrow D'$  in  $\mathbb{C}$ . We say that f is orthogonal to g, denoted by  $f \downarrow g$ , if the following diagram is a bi-pullback in Cat

$$\begin{array}{c|c} \mathbb{C}(C',D) & \xrightarrow{-\circ f} & \mathbb{C}(C,D) \\ g \circ - & & & & \\ g \circ - & & & \\ & & & & \\ & & & & \\ & & & \\ \mathbb{C}(C',D') & \xrightarrow{-\circ f} & \mathbb{C}(C,D') \end{array}$$

If  $\mathcal{H}$  is a class of arrows of  $\mathbb{C}$ , we write  $\mathcal{H}^{\uparrow} = \{e \mid e \downarrow h \text{ for all } h \in \mathcal{H}\}$  and  $\mathcal{H}^{\downarrow} = \{m \mid h \downarrow m \text{ for all } h \in \mathcal{H}\}.$ 

To make the previous definition more explicit, we need some point of terminology.

**Definition 1.2.** The 2-category of arrows of  $\mathbb{C}$ , denoted by  $\mathbb{C}^2$ , is the 2-category whose objects are arrows of  $\mathbb{C}$ , whose 1-cells are triples  $(u, \varphi, v)$ , as in the following diagram, where  $\varphi$  is invertible,

$$\begin{array}{c|c} C & \stackrel{u}{\longrightarrow} D \\ f & & \downarrow g \\ f & & \downarrow g \\ C' & \stackrel{\varphi}{\longrightarrow} D' \end{array}$$

and whose 2-cells  $(u, \varphi, v) \Rightarrow (w, \psi, x) : f \longrightarrow g$  are pairs  $(\alpha, \beta)$  of 2-cells of  $\mathbb{C}$ , with  $\alpha : u \Rightarrow w$  and  $\beta : v \Rightarrow x$  such that

$$(g * \alpha) \circ \varphi = \psi \circ (\beta * f).$$

**Definition 1.3.** Let  $(u, \varphi, v)$  be an arrow from f to g in  $\mathbb{C}^2$ . A *fill-in* for  $(u, \varphi, v)$  is a triple  $(\alpha, s, \beta)$ , as in the following diagram, with  $\alpha : sf \Rightarrow u$  and  $\beta : gs \Rightarrow v$  invertible and such that  $g * \alpha = \varphi(\beta * f)$ .



The fill-in  $(\alpha, s, \beta)$  is *universal* if for any other fill-in  $(\gamma, t, \delta)$  for  $(u, \varphi, v)$ , there is a unique invertible  $\omega : t \Rightarrow s$  such that  $\gamma = \alpha(\omega * f)$  and  $\delta = \beta(g * \omega)$ .

**Proposition 1.4.** Let  $f : C \longrightarrow C'$  and  $g : D \longrightarrow D'$  be two arrows in a 2-category  $\mathbb{C}$ . Then  $f \downarrow g$  if and only if the following conditions hold:

- 1. each morphism  $(u, \varphi, v) : f \longrightarrow g$  has a universal fill-in;
- 2. for each  $(u, \varphi, v), (u', \varphi', v') : f \longrightarrow g$ , for each  $(\mu, \nu) : (u, \varphi, v) \Rightarrow (u', \varphi', v')$ in  $\mathbb{C}^2$ , for each universal fill-in  $(\alpha, s, \beta)$  and  $(\alpha', s', \beta')$  respectively for  $(u, \varphi, v)$  and for  $(u', \varphi', v')$ , there is a unique  $\sigma : s \Rightarrow s'$  such that

$$\mu \circ \alpha = \alpha' \circ (\sigma * f) \qquad and \qquad \nu \circ \beta = \beta' \circ (g * \sigma). \tag{1}$$

The former version of the orthogonality condition, in [17], consists only of condition 1 of the previous proposition. When all 2-cells are invertible, condition 2 follows from condition 1.

The following lemma is sometimes useful to check the orthogonality condition.

**Lemma 1.5.** 1. If there exists a universal fill-in for  $(u, \varphi, v) : f \longrightarrow g$ , then every fill-in for  $(u, \varphi, v)$  is universal.

- 2. The following conditions are equivalent:
  - (a)  $f \downarrow g$ ;
  - (b) the functor  $\mathbb{C}(C', D) \longrightarrow \mathbb{C}^2(f, g)$  which maps  $d: C' \longrightarrow D$  to (df, gd) is an equivalence;
  - (c) i. each morphism  $(u, \varphi, v) : f \longrightarrow g$  has a fill-in;
    - ii. for each  $(u, \varphi, v), (u', \varphi', v') : f \longrightarrow g$ , for each  $(\mu, \nu) : (u, \varphi, v) \Rightarrow (u', \varphi', v')$ , for each fill-in  $(\alpha, s, \beta)$  and  $(\alpha', s', \beta')$  respectively for  $(u, \varphi, v)$  and for  $(u', \varphi', v')$ , there is a unique  $\sigma : s \Rightarrow s'$  such that equations (1) hold.

*Proof.* Just observe that  $\mathbb{C}^2(f,g)$  is the bi-pullback in Cat of  $-\circ f \colon \mathbb{C}(C',D') \longrightarrow \mathbb{C}(C,D')$  and  $g \circ - \colon \mathbb{C}(C,D) \longrightarrow \mathbb{C}(C,D')$ .

Here is the definition of a factorization system in  $\mathbb{C}$ .

**Definition 1.6.** A factorization system in a 2-category  $\mathbb{C}$  is a pair  $(\mathcal{E}, \mathcal{M})$  of classes of arrows in  $\mathbb{C}$  such that:

- 1. if  $m \in \mathcal{M}$  and *i* is an equivalence then  $mi \in \mathcal{M}$ , and if  $e \in \mathcal{E}$  and *i* is an equivalence then  $ie \in \mathcal{E}$ ;
- 2.  $\mathcal{E}$  and  $\mathcal{M}$  are stable under invertible 2-cells (i.e. if  $e \in \mathcal{E}$  and  $\alpha : f \Rightarrow e$  is invertible, then  $f \in \mathcal{E}$ , and the same property holds for  $\mathcal{M}$ );
- 3. for each arrow f in  $\mathbb{C}$ , there exists  $e \in \mathcal{E}$ ,  $m \in \mathcal{M}$  and an invertible 2-cell  $\varphi : me \Rightarrow f$  (such a factorization  $\varphi$  of f is called an  $(\mathcal{E}, \mathcal{M})$ -factorization of f);
- 4. for each  $e \in \mathcal{E}$  and for each  $m \in \mathcal{M}, e \downarrow m$ .

The proof of the basic properties of factorization systems in 2-categories can be found in [17] and [22].

**Proposition 1.7.** Let  $(\mathcal{E}, \mathcal{M})$  be a factorization system in  $\mathbb{C}$ . The following properties hold.

- 1.  $\mathcal{E} \cap \mathcal{M} = \{equivalences\}.$
- 2.  $\mathcal{E}$  and  $\mathcal{M}$  are closed under composition.
- 3.  $\mathcal{E} = \mathcal{M}^{\uparrow}$  and  $\mathcal{M} = \mathcal{E}^{\downarrow}$ .
- 4. The  $(\mathcal{E}, \mathcal{M})$ -factorization of an arrow of  $\mathbb{C}$  is essentially unique (i.e. if  $\varphi : me \Rightarrow f$  and  $\varphi' : m'e' \Rightarrow f$  are two such factorizations, there exist an equivalence i and invertible 2-cells  $\alpha : ie \Rightarrow e'$  and  $\beta : m'i \Rightarrow m$  such that  $\varphi \circ (\beta * e) = \varphi' \circ (m' * \alpha));$
- 5. (Cancellation property) If  $m', m \in \mathcal{M}$  and if  $\theta : m'g \Rightarrow m$  is an invertible 2-cell, then  $g \in \mathcal{M}$ ; dually, if  $e', e \in \mathcal{E}$  and if  $\theta : fe' \Rightarrow e$  is an invertible 2-cell, then  $f \in \mathcal{E}$ .
- 6.  $\mathcal{M}$  is stable under bi-limits and  $\mathcal{E}$  is stable under bi-colimits.

**Remark:** In Definition 1.6, conditions 1, 2 and 4 can be equivalently replaced by point 3 of Proposition 1.7.

### 2 Free 2-categories with factorization system

In this section, we describe the free 2-category with factorization system on a given 2-category  $\mathbb C$ 

$$E_{\mathbb{C}} \colon \mathbb{C} \longrightarrow \mathbb{C}^2$$

In fact,  $\mathbb{C}^2$  is provided with the following factorization system  $(\mathcal{E}_{\mathbb{C}}, \mathcal{M}_{\mathbb{C}})$ 

 $\mathcal{E}_{\mathbb{C}} = \{(u, \varphi, v) \mid u \text{ is an equivalence}\}$ 

 $\mathcal{M}_{\mathbb{C}} = \{(u, \varphi, v) \mid v \text{ is an equivalence}\}.$ 

An arrow  $(u, \varphi, v) : f \longrightarrow g$  in  $\mathbb{C}^2$  factors as in the following diagram.

$$\begin{array}{cccc} C & \xrightarrow{1_C} & C & \xrightarrow{u} & D \\ f & \swarrow & \varphi & & \downarrow g_u & & \downarrow g \\ V & & & \downarrow & & \downarrow g \\ C' & \xrightarrow{v} & D' & \xrightarrow{1_{D'}} & D' \end{array}$$
(2)

We write  $e_{(u,\varphi,v)} = (1_C, \varphi, v)$  and  $m_{(u,\varphi,v)} = (u, 1_{gu}, 1_{D'})$ . The 2-functor  $E_{\mathbb{C}} : \mathbb{C} \longrightarrow \mathbb{C}^2$  maps an object  $C \in \mathbb{C}$  to  $1_C$ , an arrow  $f \in \mathbb{C}(C, C')$  to  $(f, 1_f, f)$ , and a 2-cell  $\alpha : f \Rightarrow g : C \longrightarrow C'$  to  $(\alpha, \alpha)$ .

If  $\mathbb{C}$  and  $\mathbb{D}$  are 2-categories, we write  $\mathrm{PS}(\mathbb{C}, \mathbb{D})$  for the 2-category of pseudofunctors from  $\mathbb{C}$  to  $\mathbb{D}$ , pseudo-natural transformations and modifications. If  $\mathbb{C}$ and  $\mathbb{D}$  are 2-categories with factorization system,  $\mathrm{PS}_{\mathrm{fs}}(\mathbb{C}, \mathbb{D})$  is the 2-category of pseudo-functors preserving the factorization system (i.e.  $F(\mathcal{E}) \subseteq \mathcal{E}$  and  $F(\mathcal{M}) \subseteq \mathcal{M}$ ), pseudo-natural transformations and modifications. Here is the universal property of  $E_{\mathbb{C}} \colon \mathbb{C} \longrightarrow \mathbb{C}^2$ .

**Proposition 2.1.** For each 2-category  $\mathbb{C}$  and for each 2-category  $(\mathbb{D}, (\mathcal{E}, \mathcal{M}))$  with factorization system, the 2-functor

$$-\circ E_{\mathbb{C}}: \mathrm{PS}_{\mathrm{fs}}(\mathbb{C}^2, \mathbb{D}) \longrightarrow \mathrm{PS}(\mathbb{C}, \mathbb{D})$$

is a biequivalence.

*Proof.* A proof can be found in [22]. For reader's convenience, we recall how to construct, from an arbitrary pseudo-functor  $G: \mathbb{C} \longrightarrow \mathbb{D}$ , a pseudo-functor  $F: \mathbb{C}^2 \longrightarrow \mathbb{D}$  preserving the factorization system and such that  $FE_{\mathbb{C}} \cong G$ . Observe that, given an object  $f: C \longrightarrow C'$  in  $\mathbb{C}^2$ , we get a commutative diagram



where the square on the left is an arrow in  $\mathcal{E}_{\mathbb{C}}$  and the square on the right is an arrow in  $\mathcal{M}_{\mathbb{C}}$ . This means that f is the image of  $E_{\mathbb{C}}(f)$  in  $\mathbb{C}^2$ . Now, if we want F to preserve the factorization system and if we want an equivalence  $FE_{\mathbb{C}} \cong G$ , we have to define F(f) as the image of G(f) in  $\mathbb{D}$ . The definition of F on 1-cells and on 2-cells follows now from the orthogonality condition.

### 3 Arrows in a 2-category

We introduce now a terminology to name various kinds of arrows in a 2-category. Our terminology will be justified by the examples  $\mathbb{C} = \text{Cat}$  and  $\mathbb{C} = \text{SCG}$  discussed in Section 7.

**Definition 3.1.** Let  $\mathbb{C}$  be a 2-category and  $f: C \longrightarrow C'$ , an arrow in  $\mathbb{C}$ .

- 1. We say that f is faithful if for each  $X \in \mathbb{C}$ , the functor  $f \circ : \mathbb{C}(X, C) \longrightarrow \mathbb{C}(X, C')$  is faithful.
- 2. We say that f is fully faithful if for each  $X \in \mathbb{C}$ , the functor  $f \circ : \mathbb{C}(X, C) \longrightarrow \mathbb{C}(X, C')$  is fully faithful.
- 3. We say that f is *cofaithful* if for each  $Y \in \mathbb{C}$ , the functor  $-\circ f : \mathbb{C}(C',Y) \longrightarrow \mathbb{C}(C,Y)$  is faithful.
- 4. We say that f is fully cofaithful if for each  $Y \in \mathbb{C}$ , the functor  $-\circ f : \mathbb{C}(C', Y) \longrightarrow \mathbb{C}(C, Y)$  is fully faithful.

This terminology for arrows generates a terminology for factorization systems, which generalizes the term "proper factorization system" used for usual categories.

**Definition 3.2.** Let  $(\mathcal{E}, \mathcal{M})$  be a factorization system on a 2-category  $\mathbb{C}$ .

- 1. We say that  $(\mathcal{E}, \mathcal{M})$  is (1,1)-proper if each  $e \in \mathcal{E}$  is cofaithful and each  $m \in \mathcal{M}$  is faithful.
- 2. We say that  $(\mathcal{E}, \mathcal{M})$  is (2,1)-proper if each  $e \in \mathcal{E}$  is fully cofaithful and each  $m \in \mathcal{M}$  is faithful.
- 3. We say that  $(\mathcal{E}, \mathcal{M})$  is (1, 2)-proper if each  $e \in \mathcal{E}$  is cofaithful and each  $m \in \mathcal{M}$  is fully faithful.
- 4. We say that  $(\mathcal{E}, \mathcal{M})$  is (2,2)-proper if each  $e \in \mathcal{E}$  is fully cofaithful and each  $m \in \mathcal{M}$  is fully faithful.

**Remark:** If  $\mathbb{C}$  is locally discrete, then any factorization system  $(\mathcal{E}, \mathcal{M})$  on  $\mathbb{C}$  is (1,1)-proper. It is (2,1)-proper exactly when  $\mathcal{E}$  is contained in the class of epimorphisms, and (1,2)-proper when  $\mathcal{M}$  is contained in the class of monomorphisms. Finally,  $(\mathcal{E}, \mathcal{M})$  is (2,2)-proper exactly when it is proper in the usual sense.

In the sequel, we will construct the free 2-category with a (i, j)-proper (for i = 1, 2, j = 1, 2) factorization system on a given 2-category.

# 4 (1,1)-proper factorization systems

In this section, we describe the free 2-category with (1,1)-proper factorization system on a given 2-category  $\mathbb C$ 

$$E^{1,1}_{\mathbb{C}} \colon \mathbb{C} \longrightarrow \operatorname{Fr}^{1,1}\mathbb{C}.$$

**Definition 4.1.** Let  $\mathbb{C}$  be a 2-category. The 2-category  $\operatorname{Fr}^{1,1}\mathbb{C}$  has the same objects and arrows as  $\mathbb{C}^2$ , but a 2-cell between two arrows  $(u, \varphi, v)$  and  $(w, \psi, x)$ :  $f \longrightarrow g$  is an equivalence class of 2-cells of  $\mathbb{C}^2$  between the same arrows, for the equivalence relation

$$\begin{aligned} (\alpha,\beta) \sim (\alpha',\beta') & \text{iff} \quad g*\alpha = g*\alpha' \\ & \text{iff} \quad \beta*f = \beta'*f. \end{aligned}$$

We write  $[\alpha, \beta]$  for the equivalence class of  $(\alpha, \beta)$ . The composition of 2-cells is the same as in  $\mathbb{C}^2$ , modulo  $\sim : [\alpha', \beta'] \circ [\alpha, \beta] = [\alpha' \circ \alpha, \beta' \circ \beta]$  and  $[\gamma, \delta] * [\alpha, \beta] = [\gamma * \alpha, \delta * \beta]$ .

The 2-category  $\operatorname{Fr}^{1,1}\mathbb{C}$  is equipped with a factorization system  $(\mathcal{E}_{\mathbb{C}}^{1,1}, \mathcal{M}_{\mathbb{C}}^{1,1})$ which factorizes an arrow  $(u, \varphi, v)$  as in  $\mathbb{C}^2$ , diagram (2). Following the notations of (2),

$$\mathcal{E}_{\mathbb{C}}^{1,1} = \{ (u,\varphi,v) \, | \, m_{(u,\varphi,v)} \text{ is an equivalence in } \mathrm{Fr}^{1,1}\mathbb{C} \}$$
$$\mathcal{M}_{\mathbb{C}}^{1,1} = \{ (u,\varphi,v) \, | \, e_{(u,\varphi,v)} \text{ is an equivalence in } \mathrm{Fr}^{1,1}\mathbb{C} \}.$$

**Proposition 4.2.** The factorization system  $(\mathcal{E}^{1,1}_{\mathbb{C}}, \mathcal{M}^{1,1}_{\mathbb{C}})$  in  $\mathrm{Fr}^{1,1}\mathbb{C}$  is (1,1)-proper.

*Proof.* We have to prove that, if  $(u, \varphi, v) : f \longrightarrow g$  is an arrow in  $\operatorname{Fr}^{1,1}\mathbb{C}$ , then  $e_{(u,\varphi,v)}$  is cofaithful and  $m_{(u,\varphi,v)}$  is faithful.

Let *h* be an object of  $\operatorname{Fr}^{1,1}\mathbb{C}$ . Let  $[\alpha,\beta], [\alpha',\beta']: (w,\psi,x) \Rightarrow (w',\psi',x'): gu \longrightarrow h$  be 2-cells of  $\operatorname{Fr}^{1,1}\mathbb{C}$  such that

$$[\alpha,\beta] * e_{(u,\varphi,v)} = [\alpha',\beta'] * e_{(u,\varphi,v)}.$$

Since  $e_{(u,\varphi,v)} = (1_C,\varphi,v) : f \longrightarrow gu$  (cf. diagram 2), this equation becomes

$$[\alpha, \beta * v] = [\alpha', \beta' * v],$$

which, by definition of  $Fr^{1,1}\mathbb{C}$ , is equivalent to

$$h * \alpha = h * \alpha'. \tag{3}$$

This implies that  $[\alpha, \beta] = [\alpha', \beta']$ , since this last equation is also equivalent, by definition of  $\operatorname{Fr}^{1,1}\mathbb{C}$ , to equation (3). So  $e_{(u,\varphi,v)}$  is cofaithful. The proof that  $m_{(u,\varphi,v)}$  is faithful is similar.

Consider the quotient 2-functor  $P_{\mathbb{C}}^{1,1}:\mathbb{C}^2 \longrightarrow \operatorname{Fr}^{1,1}\mathbb{C}$ , which is the identity on objects and arrows and maps a 2-cell  $(\alpha, \beta)$  to its equivalence class  $[\alpha, \beta]$ . We can define the 2-functor  $E_{\mathbb{C}}^{1,1} = P_{\mathbb{C}}^{1,1} \circ E_{\mathbb{C}}:\mathbb{C} \longrightarrow \mathbb{C}^2 \longrightarrow \operatorname{Fr}^{1,1}\mathbb{C}$ . Its universal property is stated in the following proposition.

**Proposition 4.3.** For any 2-category  $\mathbb{C}$  and for any 2-category  $(\mathbb{D}, (\mathcal{E}, \mathcal{M}))$  with (1,1)-proper factorization system, the 2-functor

$$-\circ E^{1,1}_{\mathbb{C}}: \mathrm{PS}_{\mathrm{f}s}(\mathrm{Fr}^{1,1}\mathbb{C},\mathbb{D}) \longrightarrow \mathrm{PS}(\mathbb{C},\mathbb{D})$$

is a biequivalence.

*Proof.* Since  $E_{\mathbb{C}}^{1,1} = P_{\mathbb{C}}^{1,1} \circ E_{\mathbb{C}}$  and since Proposition 2.1 tells us that  $- \circ E_{\mathbb{C}}$  is a biequivalence, it remains to prove that

$$-\circ P^{1,1}_{\mathbb{C}}: \mathrm{PS}_{\mathrm{f}s}(\mathrm{Fr}^{1,1}\mathbb{C},\mathbb{D}) \longrightarrow \mathrm{PS}_{\mathrm{f}s}(\mathbb{C}^2,\mathbb{D})$$

is a biequivalence (it is well-defined because  $P_{\mathbb{C}}^{1,1}$  preserves the factorization system).

It is straightforward to prove that  $-\circ P_{\mathbb{C}}^{1,1}$  is locally an equivalence. As far as its surjectivity up to equivalence is concerned, let  $G : \mathbb{C}^2 \longrightarrow \mathbb{D}$  be a pseudo-functor preserving the factorization system. We have to find a pseudofunctor  $F : \operatorname{Fr}^{1,1}\mathbb{C} \longrightarrow \mathbb{D}$  preserving the factorization system, such that  $FP_{\mathbb{C}}^{1,1}$ is equivalent to G.

On objects and arrows, we take F = G. If  $[\alpha, \beta] : (u, \varphi, v) \Rightarrow (w, \psi, x)$  is a 2-cell in  $\operatorname{Fr}^{1,1}\mathbb{C}$ , we take  $F([\alpha, \beta]) = G(\alpha, \beta)$ . Then  $FP_{\mathbb{C}}^{1,1} = G$  and it remains to prove that F is well defined, i.e. if  $[\alpha, \beta] = [\gamma, \delta] : (u, \varphi, v) \Rightarrow (w, \psi, x) : f \longrightarrow g$ , then  $G(\alpha, \beta) = G(\gamma, \delta)$ .

By definition of  $\operatorname{Fr}^{1,1}\mathbb{C}$ ,  $g * \alpha = g * \gamma$  and  $\beta * f = \delta * f$ . So

$$G(g * \alpha, \beta * f) = G(g * \gamma, \delta * f).$$
(4)

But, up to invertible 2-cells, equation (4) becomes

$$G(g, 1_g, 1_{D'}) * G(\alpha, \beta) * G(1_C, 1_f, f) = G(g, 1_g, 1_{D'}) * G(\gamma, \delta) * G(1_C, 1_f, f).$$
(5)

Since  $(g, 1_g, 1_{D'}) \in \mathcal{M}_{\mathbb{C}}$  and G preserves the factorization system,  $G(g, 1_g, 1_{D'}) \in \mathcal{M}$ . Since  $(\mathcal{E}, \mathcal{M})$  is (1,1)-proper,  $G(g, 1_g, 1_{D'})$  is faithful. Thus equation (5) is equivalent to

$$G(\alpha,\beta) * G(1_C, 1_f, f) = G(\gamma, \delta) * G(1_C, 1_f, f).$$

Similarly,  $G(1_C, 1_f, f)$  is cofaithful, and we can conclude that  $G(\alpha, \beta) = G(\gamma, \delta)$ .

# 5 (2,1)-proper and (1,2)-proper factorization systems

In this section, we describe the free 2-category with (2,1)-proper factorization system on a given 2-category  $\mathbb C$ 

$$E^{2,1}_{\mathbb{C}} \colon \mathbb{C} \longrightarrow \operatorname{Fr}^{2,1}\mathbb{C}.$$

**Definition 5.1.** Let  $\mathbb{C}$  be a 2-category. The 2-category  $\operatorname{Fr}^{2,1}\mathbb{C}$  has the same objects and arrows as  $\mathbb{C}^2$ , but a 2-cell between  $(u, \varphi, v)$  and  $(w, \psi, x) : f \longrightarrow g$  is an equivalence class of 2-cells  $\alpha : u \Rightarrow w$  for the equivalence relation

$$\alpha \sim \alpha'$$
 iff  $g * \alpha = g * \alpha'$ .

Let  $[\alpha]$  stand for the class of  $\alpha$ . The compositions of 2-cells are easily defined:  $[\alpha'] \circ [\alpha] = [\alpha' \circ \alpha]$  and  $[\gamma] * [\alpha] = [\gamma * \alpha]$ .

The 2-category  $\operatorname{Fr}^{2,1}\mathbb{C}$  is equipped with a factorization system  $(\mathcal{E}^{2,1}_{\mathbb{C}}, \mathcal{M}^{2,1}_{\mathbb{C}})$ , which factorizes the arrows as in diagram (2).

**Proposition 5.2.** The factorization system  $(\mathcal{E}^{2,1}_{\mathbb{C}}, \mathcal{M}^{2,1}_{\mathbb{C}})$  in the 2-category  $\operatorname{Fr}^{2,1}\mathbb{C}$  is (2,1)-proper.

The 2-functor  $P_{\mathbb{C}}^{2,1}: \mathbb{C}^2 \longrightarrow \operatorname{Fr}^{2,1}\mathbb{C}$  maps  $(\alpha, \beta)$  to  $[\alpha]$ . We define  $E_{\mathbb{C}}^{2,1} = P_{\mathbb{C}}^{2,1} \circ E_{\mathbb{C}}: \mathbb{C} \longrightarrow \mathbb{C}^2 \longrightarrow \operatorname{Fr}^{2,1}\mathbb{C}$ .

**Proposition 5.3.** For any 2-category  $\mathbb{C}$  and for any 2-category with a (2,1)-proper factorization system  $(\mathbb{D}, (\mathcal{E}, \mathcal{M}))$ , the 2-functor

$$-\circ E^{2,1}_{\mathbb{C}}: \mathrm{PS}_{\mathrm{f}s}(\mathrm{Fr}^{2,1}\mathbb{C},\mathbb{D}) \longrightarrow \mathrm{PS}(\mathbb{C},\mathbb{D})$$

is a biequivalence.

Proof. As for Proposition 4.3, we have to prove that

$$-\circ P^{2,1}_{\mathbb{C}}: \mathrm{PS}_{\mathrm{f}s}(\mathrm{Fr}^{2,1}\mathbb{C},\mathbb{D}) \longrightarrow \mathrm{PS}_{\mathrm{f}s}(\mathbb{C}^2,\mathbb{D})$$

is a biequivalence. The interesting part is, given a pseudo-functor  $G: \mathbb{C}^2 \longrightarrow \mathbb{D}$ which preserves the factorization system, to construct a pseudo-functor F: $\operatorname{Fr}^{2,1}\mathbb{C} \longrightarrow \mathbb{D}$  which preserves the factorization system and such that  $FP_{\mathbb{C}}^{2,1} \cong G$ . We take F = G on objects and arrows of  $\operatorname{Fr}^{2,1}\mathbb{C}$ . Consider now a 2-cell  $[\alpha]:$  $(u, \varphi, v) \Rightarrow (w, \psi, x): f \longrightarrow g \text{ in } \operatorname{Fr}^{2,1}\mathbb{C}$ . Define  $\nu = \psi^{-1}(g * \alpha)\varphi: vf \Rightarrow xf$  (it is well-defined because we only use  $g * \alpha$ .) We get now a 2-cell  $\xi$  in the following way

$$G(u, \varphi, v) \circ G(1_C, 1_f, f) \xrightarrow{\cong} G(u, \varphi, vf)$$

$$\begin{cases} \downarrow \\ \xi \downarrow \\ G(w, \psi, x) \circ G(1_C, 1_f, f) \xleftarrow{\cong} G(w, \psi, xf) \end{cases}$$

Since  $(1_C, 1_f, f) \in \mathcal{E}_{\mathbb{C}}$  and G preserves the factorization system,  $G(1_C, 1_f, f) \in \mathcal{E}$ . Since  $(\mathcal{E}, \mathcal{M})$  is (2,1)-proper,  $G(1_C, 1_f, f)$  is fully cofaithful. This implies that there is a unique 2-cell  $F([\alpha]) : G(u, \varphi, v) \Rightarrow G(w, \psi, x)$  such that

$$F([\alpha]) * G(1_C, 1_f, f) = \xi.$$
(6)

The argument to prove that F is well-defined is similar to that in the proof of Proposition 4.3.

Finally, if  $(\alpha, \beta) : (u, \varphi, v) \Rightarrow (w, \psi, x) : f \longrightarrow g$  is a 2-cell in  $\mathbb{C}^2$ , then  $F([\alpha]) = G(\alpha, \beta)$ . For this, it is enough to check equation (6) for  $G(\alpha, \beta)$ . This follows from the fact that  $\nu = \beta * f$ .

We can do exactly the same with (1,2)-proper factorization systems, and we get the free 2-category  $E_{\mathbb{C}}^{1,2}:\mathbb{C}\longrightarrow \mathrm{Fr}^{1,2}\mathbb{C}$ . The difference is that, if  $\mathbb{C}$  is a 2-category, the 2-cells of the 2-category  $\mathrm{Fr}^{1,2}\mathbb{C}$  from  $(u,\varphi,v)$  to  $(w,\psi,x):f\longrightarrow g$  are the equivalence classes of 2-cells  $\beta:v\Rightarrow x$  for the equivalence relation  $\beta\sim\beta'$  iff  $\beta*f=\beta'*f$ .

# 6 (2,2)-proper factorization systems

The construction of  $\operatorname{Fr}^{2,2}\mathbb{C}$ , the free 2-category with a (2,2)-proper factorization system on a given 2-category  $\mathbb{C}$ , can be done if and only if the 2-category  $\mathbb{C}$  is pre-full, in the sense of the following definition.

**Definition 6.1.** Let  $\mathbb{C}$  be a 2-category, and let  $f: C \longrightarrow C'$  be an arrow in  $\mathbb{C}$ . We say that f is *pre-full* if for each  $g, g': X \longrightarrow C$ , for each  $h, h': C' \longrightarrow Y$ , for each  $\alpha : fg \Rightarrow fg'$  and for each  $\beta : hf \Rightarrow h'f$ , one has



We say that  $\mathbb{C}$  is *pre-full* if each arrow in  $\mathbb{C}$  is pre-full.

The fact that any 2-category with a (2,2)-proper factorization system is prefull follows immediately from the next lemma.

**Lemma 6.2.** Let  $f: C \longrightarrow C'$  be an arrow in a 2-category  $\mathbb{C}$  and consider an invertible 2-cell  $\varphi: me \Rightarrow f$ . If e and m are such that  $- \circ e$  and  $m \circ -$  are full functors, then f is pre-full.

Proof. Let us consider the situation of Definition 6.1. Let  $\beta' = (h' * \varphi^{-1})\beta(h*\varphi)$ :  $hme \Rightarrow h'me$ . Since  $-\circ e$  is full, there exists  $\delta : hm \Rightarrow h'm$  such that  $\delta * e = \beta'$ . In the same way, if  $\alpha' = (\varphi^{-1} * g')\alpha(\varphi * g) : meg \Rightarrow meg'$ , there exists  $\gamma : eg \Rightarrow eg'$ such that  $m * \gamma = \alpha'$ , since  $m \circ -$  is full. Then the 2 members of (7) are equal to the 2-cell



Let us explain now the reason why we can define  $\operatorname{Fr}^{2,2}\mathbb{C}$  if and only if  $\mathbb{C}$  is pre-full. We will define a 2-functor  $E_{\mathbb{C}}^{2,2}:\mathbb{C}\longrightarrow\operatorname{Fr}^{2,2}\mathbb{C}$  which is locally faithful. It is easy to see that this fact, together with the pre-fullness of  $\operatorname{Fr}^{2,2}\mathbb{C}$  (which comes from its (2,2)-proper factorization system), implies that  $\mathbb{C}$  is pre-full.

We arrive to the definition of  $\operatorname{Fr}^{2,2}\mathbb{C}$ .

**Definition 6.3.** Let  $\mathbb{C}$  be a pre-full 2-category. The 2-category  $\operatorname{Fr}^{2,2}\mathbb{C}$  has the same objects and arrows as  $\mathbb{C}^2$ , but a 2-cell from  $(u, \varphi, v)$  to  $(w, \psi, x) : f \longrightarrow g$  is a 2-cell  $\mu : gu \Rightarrow gw$ . This is equivalent to give a 2-cell  $\check{\mu} : vf \Rightarrow xf$  related to  $\mu$  by the equation  $\check{\mu} = \psi^{-1}\mu\varphi$ . The vertical composition of  $\mu : (u, \varphi, v) \Rightarrow (u', \varphi', v')$  (i.e.  $\mu : gu \Rightarrow gu'$ ) and  $\mu' : (u', \varphi', v') \Rightarrow (u'', \varphi'', v'')$  (i.e.  $\mu : gu \Rightarrow gu''$ .

The horizontal composition is more problematic. Let  $\mu : (u, \varphi, v) \Rightarrow (u', \varphi', v') : f \longrightarrow g$  and  $\nu : (w, \psi, x) \Rightarrow (w', \psi', x') : g \longrightarrow h$ . We define  $\nu * \mu = (\psi' * u') \circ \tau_{\mu,\nu} \circ (\psi^{-1} * u) : hwu \Rightarrow hw'u'$ , where  $\tau_{\mu,\nu}$  is given by the following pasting



One can check now that  $\operatorname{Fr}^{2,2}\mathbb{C}$  is a 2-category: the pre-fullness of  $\mathbb{C}$  is needed to prove the interchange law.

The 2-category  $\operatorname{Fr}^{2,2}\mathbb{C}$  is equipped with a factorization system  $(\mathcal{E}^{2,2}_{\mathbb{C}}, \mathcal{M}^{2,2}_{\mathbb{C}})$ , which factorizes the arrows as in diagram (2).

**Proposition 6.4.** The factorization system  $(\mathcal{E}^{2,2}_{\mathbb{C}}, \mathcal{M}^{2,2}_{\mathbb{C}})$  in the 2-category  $\operatorname{Fr}^{2,2}\mathbb{C}$  is (2,2)-proper.

As in the previous sections, there is a 2-functor  $P_{\mathbb{C}}^{2,2} : \mathbb{C}^2 \longrightarrow \operatorname{Fr}^{2,2}\mathbb{C}$  which is the identity on objects and 1-cells and maps  $(\alpha, \beta) : (u, \varphi, v) \Rightarrow (u', \varphi', v') :$  $f \longrightarrow g$  to  $g * \alpha$ . We define the 2-functor

$$E^{2,2}_{\mathbb{C}}:\mathbb{C}\longrightarrow \mathrm{Fr}^{2,2}\mathbb{C}$$

as the composite  $P_{\mathbb{C}}^{2,2} \circ E_{\mathbb{C}}$ . The next statement, which gives the universal property of  $E_{\mathbb{C}}^{2,2}$ , makes sense because a 2-category with a (2,2)-proper factorization system is pre-full.

**Proposition 6.5.** For each pre-full 2-category  $\mathbb{C}$  and for each 2-category with (2,2)-proper factorization system  $(\mathbb{D}, (\mathcal{E}, \mathcal{M}))$ , the 2-functor

$$-\circ E^{2,2}_{\mathbb{C}}: \mathrm{PS}_{\mathrm{f}s}(\mathbb{C}^2, \mathbb{D}) \longrightarrow \mathrm{PS}(\mathbb{C}, \mathbb{D})$$

is a biequivalence.

*Proof.* Similar to that of Proposition 5.3.

**Remark:** If the 2-category  $\mathbb{C}$  is locally discrete, then it is pre-full and  $\operatorname{Fr}^{2,2}\mathbb{C} = \operatorname{Fr}\mathbb{C}$  is the free category with proper factorization system studied in [15].

## 7 Examples and an open problem

#### 7.1 Symmetric categorical groups

In [17], two examples of factorization systems are described in the 2-category SCG of symmetric categorical groups, monoidal functors preserving the symmetry and monoidal natural transformations. Let us set some notation. If

 $F: \mathcal{G} \longrightarrow \mathcal{H}$  is a morphism in SCG, we write



for its kernel and its cokernel; we refer to [17] for their universal properties as bilimits. If  $\mathcal{G}$  is a symmetric cat-group, we write  $\pi_0(\mathcal{G})$  for the abelian group of its connected components, and  $\pi_1(\mathcal{G})$  for the abelian group  $\mathcal{G}(I, I)$ , where I is the unit object. If G is an abelian group, we write D(G) for the discrete symmetric cat-group on G, and G! for the symmetric cat-group with a unique object I, and such that G!(I, I) = G. These constructions have obvious extensions to morphisms.

In [17], it is proved that, by taking the kernel of the cokernel of an arrow in SCG, we get a factorization system  $(\mathcal{E}_1, \mathcal{M}_1)$ , where  $\mathcal{E}_1$  is the class of full and essentially surjective functors, whereas  $\mathcal{M}_1$  is the class of faithful functors. The second factorization system  $(\mathcal{E}_2, \mathcal{M}_2)$  on SCG is obtained by taking the cokernel of the kernel of an arrow. In this case  $\mathcal{E}_2$  is the class of essentially surjective functors and  $\mathcal{M}_2$  is the class of fully faithful functors.

**Proposition 7.1.** Let  $F : \mathcal{G} \longrightarrow \mathcal{H}$  be an arrow in SCG.

- 1. F is faithful as an arrow in SCG if and only if F is faithful as a functor.
- 2. F is fully faithful as an arrow in SCG if and only if F is fully faithful as a functor.
- 3. F is cofaithful if and only if F is essentially surjective.
- 4. F is fully cofaithful if and only if F is full and essentially surjective.

*Proof.* Only the necessary condition of 3. was not established in [17]. To prove this condition, let us recall that a functor F in SCG is essentially surjective if and only if  $\pi_0 F$  is surjective.

Consider a cofaithful arrow  $F : \mathcal{G} \longrightarrow \mathcal{H}$  in SCG. We have to prove that  $\pi_0(F)$  is an epimorphism in the category Ab of abelian groups, i.e. for any  $G \in Ab$  the mapping

$$-\circ \pi_0(F) : \operatorname{Ab}(\pi_0(\mathcal{H}), G) \longrightarrow \operatorname{Ab}(\pi_0(\mathcal{G}), G)$$

is surjective. Let us consider the one-object symmetric cat-group G!. There is a bijection

$$\varphi_{\mathcal{H}} : \operatorname{SCG}(\mathcal{H}, G!)(0, 0) \longrightarrow \operatorname{Ab}(\pi_0(\mathcal{H}), G)$$

which maps a monoidal natural transformation  $\alpha : 0 \Rightarrow 0$  onto the group homomorphism  $\varphi_{\mathcal{H}}(\alpha) : \pi_0(\mathcal{H}) \longrightarrow G : [X] \mapsto \alpha_X$ . This map is well-defined because  $\alpha$  is natural, and it is a group homomorphism because  $\alpha$  is monoidal. The inverse of  $\varphi_{\mathcal{H}}$  maps a morphism  $f : \pi_0(\mathcal{H}) \longrightarrow G$  onto the natural transformation  $\varphi_{\mathcal{H}}^{-1}(f)$  such that  $(\varphi_{\mathcal{H}}^{-1}(f))_X = f([X])$ . In the same way, there is a bijection  $\varphi_{\mathcal{G}}$ : SCG $(\mathcal{G}, G!)(0, 0) \longrightarrow Ab(\pi_0(\mathcal{G}), G)$ . The announced result is immediate from the commutativity of the following diagram.



Indeed, the cofaithfulness of F implies that the top arrow is injective. Since the vertical arrows are bijective, this implies that the bottom arrow is injective.  $\Box$ 

As a consequence, we have:

- 1.  $(\mathcal{E}_1, \mathcal{M}_1)$  is a (2,1)-proper factorization system;
- 2.  $(\mathcal{E}_2, \mathcal{M}_2)$  is a (1,2)-proper factorization system;
- 3. Let SCG<sup>f</sup> be the sub-2-category of SCG whose arrows are the full functors; it is pre-full. Moreover, in SCG<sup>f</sup> the systems  $(\mathcal{E}_1, \mathcal{M}_1)$  and  $(\mathcal{E}_2, \mathcal{M}_2)$  coincide and are (2,2)-proper.

From [17], we know that a morphism  $F: \mathcal{G} \longrightarrow \mathcal{H}$  in SCG is essentially surjective iff it is the cokernel of its kernel  $e: \operatorname{Ker} F \longrightarrow \mathcal{G}$ . Moreover, there is a canonical morphism  $c: \pi_1(\operatorname{Ker} F)! \longrightarrow \operatorname{Ker} F$ , and F is full and essentially surjective iff it is the cokernel of the composite  $e \circ c$ . Therefore, we obtain the first factorization system taking the cokernel of  $e \circ c$ . Dually, F is faithful iff it is the kernel of its cokernel  $p: \mathcal{H} \longrightarrow \operatorname{Coker} F$ . There is a canonical arrow  $d: \operatorname{Coker} F \longrightarrow D(\pi_0(\operatorname{Coker} F))$ , and F is full and faithful iff it is the kernel of the composite  $d \circ p$ . Therefore, the second system can be obtained by taking the kernel of  $d \circ p$ .

We want now to describe the systems  $(\mathcal{E}_1, \mathcal{M}_1)$  and  $(\mathcal{E}_2, \mathcal{M}_2)$  using a different kind of bi-limits. We define the bi-limits we need in an arbitrary pointed 2-category.

**Definition 7.2.** Let  $\mathbb{C}$  be a 2-category with a zero object 0 (that is, for any object  $C \in \mathbb{C}$ , the categories  $\mathbb{C}(C, 0)$  and  $\mathbb{C}(0, C)$  are equivalent to the one-arrow category).

1. Consider an arrow  $f: C \longrightarrow C'$  in  $\mathbb{C}$ . The *pip* of f is given by an object Pipf and a 2-cell  $\sigma$  as in the following diagram,

such that  $f * \sigma = f0$ , and such that for any other

with  $f * \chi = f0$ , there is an arrow  $t: X \longrightarrow \text{Pip}f$ , unique up to a unique invertible 2-cell, such that  $\sigma * t = \chi$ .

2. Consider a 2-cell

$$C \underbrace{ \bigcup_{\alpha \to \alpha}^{0} C'}_{0}$$

in  $\mathbb{C}$ . The root of  $\alpha$  is an object Root $\alpha$  and an arrow  $r : \text{Root}\alpha \longrightarrow C$  such that  $\alpha * r = 0r$ , and such that for any other  $x : X \longrightarrow C$  with  $\alpha * x = 0x$ , there is  $x' : X \longrightarrow \text{Root}\alpha$  and an invertible 2-cell  $\varphi : rx' \Rightarrow x$ , the pair  $(x', \varphi)$  being unique up to a unique invertible 2-cell. (The root is a special case of *identifier*.)

3. The *copip* of f and the *coroot* of  $\alpha$  are defined by the dual universal property.

We need an explicit description for the pip and the copip of a morphism in SCG. Let  $F : \mathcal{G} \longrightarrow \mathcal{H}$  be an arrow in SCG.

- 1. The pip of F is given by  $\operatorname{Pip} F = D(\operatorname{Ker} \pi_1(F))$  together with the monoidal natural transformation  $\sigma : 0 \Rightarrow 0 : \operatorname{Pip} F \longrightarrow \mathcal{G}$  whose component at  $\lambda \in \operatorname{Pip} F$  is  $\lambda$ .
- 2. The copip of F is given by  $\operatorname{Copip} F = (\operatorname{Coker} \pi_0(F))!$  and by  $\varrho : 0 \Rightarrow 0 : \mathcal{H} \longrightarrow \operatorname{Copip} F$ , whose component at  $X \in \mathcal{H}$  is  $\varrho_X = [X]$ , the equivalence class of X in  $\operatorname{Coker} \pi_0(F)$ , that is the isomorphism class of X in  $\operatorname{Coker} F$ .

**Proposition 7.3.** Let  $F : \mathcal{G} \longrightarrow \mathcal{H}$  be a morphism in SCG.

- 1. If F is fully cofaithful, then F is the coroot of its pip.
- 2. If F is fully faithful, then F is the root of its copip.

**Lemma 7.4.** Let  $\mathbb{C}$  be a pointed 2-category with pips and copips. Let  $f : C \longrightarrow C'$  be an arrow in  $\mathbb{C}$ .

- 1. If  $h: C' \longrightarrow Y$  is a faithful arrow, then  $\operatorname{Pip} f = \operatorname{Pip} h f$ .
- 2. If  $g: X \longrightarrow C$  is a cofaithful arrow, then  $\operatorname{Copip} f = \operatorname{Copip} f g$ .
- **Proposition 7.5.** 1. By taking the coroot of the pip of an arrow, we get the factorization system  $(\mathcal{E}_1, \mathcal{M}_1)$ .
  - 2. By taking the root of the copip of an arrow, we get the factorization system  $(\mathcal{E}_2, \mathcal{M}_2)$ .

Proof. Let  $F: \mathcal{G} \longrightarrow \mathcal{H}$  be a morphism of symmetric cat-groups. Let  $M_F \circ E_F$ be the  $(\mathcal{E}_1, \mathcal{M}_1)$ -factorization of F. Since  $E_F$  is fully cofaithful,  $E_F$  is the coroot of its pip, by Proposition 7.3. By Lemma 7.4, it is also the coroot of the pip of  $F \cong M_F \circ E_F$ , since  $M_F$  is faithful. So taking the coroot of the pip of F gives exactly its  $(\mathcal{E}_1, \mathcal{M}_1)$ -factorization. The proof of part 2 is similar.  $\Box$ 

#### 7.2 Categories

We discuss now some example in Cat, the 2-category of categories. Let us start by with a point of terminology.

**Definition 7.6.** Let  $F : \mathcal{C} \longrightarrow \mathcal{D}$  be a functor.

- 1. F is nearly surjective (see [21]) if any  $D \in \mathcal{D}$  is a retract of FC for some  $C \in \mathcal{C}$ .
- 2. F is retract-stable if for any  $D \in \mathcal{D}$  which is a retract of FC for some  $C \in \mathcal{C}$ , there exists  $C' \in \mathcal{C}$  such that  $FC' \cong D$ .

Clearly, a functor is essentially surjective on objects if and only if it is nearly surjective and retract-stable.

**Example 7.7.** The inclusion functor of a reflective subcategory is fully faithful and retract-stable.

**Proposition 7.8.** Let  $F : \mathcal{C} \longrightarrow \mathcal{D}$  be a functor.

- 1. F is faithful in the sense of Definition 3.1 if and only if F is faithful in the usual sense.
- 2. F is fully faithful in the sense of Definition 3.1 if and only if F is fully faithful in the usual sense.
- 3. F is fully faithful and each  $F \circ -$  is retract-stable if and only if F fully faithful and retract-stable
- 4. F is cofaithful if and only if F is nearly surjective.
- 5. If F is full and nearly surjective, F is fully cofaithful.
- 6. If F is full and essentially surjective, then F is fully cofaithul and each  $-\circ F$  is retract-stable.
- 7. If F is full, then F is pre-full in the sense of Definition 6.1.

*Proof.* Point 1, 2 and 3 are obvious. Point 4 is proved in [1]. Point 5 is proved in [17] in the 2-category SCG for full and essentially surjective functors; the proof for full and nearly surjective functors in Cat is an easy translation.

Let us prove point 6. If F is full and essentially surjective, by point 5., it is fully cofaithful. It remains to prove that each  $-\circ F$  is retract-stable. For this, consider  $G: \mathcal{D} \longrightarrow \mathcal{Y}, H: \mathcal{C} \longrightarrow \mathcal{Y}, \rho: GF \Rightarrow H$  and  $\mu: H \Rightarrow GF$  such that  $\rho \circ \mu = 1_H$ . We define a functor  $G': \mathcal{D} \longrightarrow \mathcal{Y}$  in the following way. Given an object  $D \in \mathcal{D}$ , since F is essentially surjective there is  $C_D \in \mathcal{C}$  and an invertible  $\sigma_D: FC_D \longrightarrow D$ . We put  $G'D = HC_D$ . If  $f: D \longrightarrow D'$ , consider the morphism

$$FC_D \xrightarrow{\sigma_D} D \xrightarrow{f} D' \xrightarrow{\sigma_{D'}^{-1}} FC_{D'}.$$
 (8)

Since F is full, there exists  $g_f : C_D \longrightarrow C_{D'}$  such that  $Fg_f$  is equal to the morphism (8). We put  $G'f = Hg_f$ .

The component at  $C \in \mathcal{C}$  of the isomorphism  $\omega : G'F \Rightarrow H$  is

$$G'FC = HC_{FC} \xrightarrow{\mu_{C_{FC}}} GFC_{FC} \xrightarrow{G\sigma_{FC}} GFC \xrightarrow{\rho_C} HC.$$

Its inverse is  $\omega_C^{-1} =$ 

$$HC \xrightarrow{\mu_C} GFC \xrightarrow{G\sigma_{FC}^{-1}} GFC_{FC} \xrightarrow{\rho_{C_{FC}}} HC_{FC} = G'FC.$$

Finally, let us prove point 7. Consider two categories  $\mathcal{X}, \mathcal{Y}$ , four functors  $G, G' : \mathcal{X} \longrightarrow \mathcal{C}, H, H' : \mathcal{D} \longrightarrow \mathcal{Y}$ , and two natural transformations  $\alpha : FG \Rightarrow FG'$  and  $\beta : HF \Rightarrow H'F$ . We have to prove that, for each  $X \in \mathcal{X}$ ,

$$H'\alpha_X \circ \beta_{GX} = \beta_{G'X} \circ H\alpha_X. \tag{9}$$

Since F is full, there exists  $f: GX \longrightarrow G'X$  such that  $Ff = \alpha_X$ . Equation (9) becomes now  $H'Ff \circ \beta_{GX} = \beta_{G'X} \circ HFf$ , which holds by naturality of  $\beta$ .  $\Box$ 

Let us also recall that fully cofaithful functors are characterized in two different ways in [1].

#### Example 7.9.

1. The first factorization system  $S_1$  is given by

A functor  $F : \mathcal{C} \longrightarrow \mathcal{D}$  factors through  $\mathrm{Im}_1 F$ , which has the same objects as  $\mathcal{C}$  and, if  $C, C' \in \mathcal{C}$ ,

$$\operatorname{Im}_1 F(C, C') = F_{C,C'}(\mathcal{C}(C, C')).$$

The composition is that of  $\mathcal{D}$ . By Proposition 7.8, this factorization system is (2,1)-proper.

2. The second factorization system  $S_2$  is given by

$$\mathcal{E}_2 = \{ \text{ essentially surjective functors } \}$$
  
 $\mathcal{M}_2 = \text{ fully faithful functors } \}$ 

A functor  $F : \mathcal{C} \longrightarrow \mathcal{D}$  factors through  $\operatorname{Im}_2 F$ , which has the same objects as  $\mathcal{C}$  and, if  $C, C' \in \mathcal{C}$ ,

$$\mathrm{Im}_2 F(C, C') = \mathcal{D}(FC, FC').$$

The composition is that of  $\mathcal{D}$ . By Proposition 7.8, this factorization system is (1,2)-proper.

3. The third factorization system  $S_3$  is given by

$$\mathcal{E}_3 = \{ \text{ nearly surjective functors } \}$$
  
$$\mathcal{M}_3 = \{ \text{ retract-stable fully faithful functors } \}$$

A functor  $F : \mathcal{C} \longrightarrow \mathcal{D}$  factors through  $\text{Im}_3 F$ , which is a full subcategory of  $\mathcal{D}$ . An object is in  $\text{Im}_3 F$  if it is a retract of FC for some  $C \in \mathcal{C}$ . By Proposition 7.8, this factorization system is (1,2)-proper.  Here is a simple example of factorization system which is not (1,1)-proper. We write Ø for the empty category.

The image of a functor  $F : \mathcal{C} \longrightarrow \mathcal{D}$  is  $\mathcal{C}$  if  $\mathcal{D} = \emptyset$ , and  $\mathcal{D}$  if  $\mathcal{C} \neq \emptyset$ .

5. As for SCG, let  $\operatorname{Cat}^f$  be the sub-2-category of Cat of full functors. It is pre-full and  $S_1$  restricted to  $\operatorname{Cat}^f$  is (2,2)-proper.

#### 7.3 An open problem

Let us note that the first factorization system of Example 7.9 is not only (2,1)proper but also "(3,1)-proper", in the sense that for any  $E \in \mathcal{E}_1$ , every composition functor  $-\circ E$  is fully faithful and retract-stable. In the same way, the third factorization system is "(1,3)-proper", i.e. for any  $M \in \mathcal{M}_3$ , every composition functor  $M \circ -$  is fully faithful and retract-stable. This suggests a more general definition of proper factorization system in a 2-category.

**Definition 7.10.** Let  $S_e = (\mathcal{E}_e, \mathcal{M}_e)$  and  $S_m = (\mathcal{E}_m, \mathcal{M}_m)$  be two factorization systems on the 2-category Cat. A factorization system  $(\mathcal{E}, \mathcal{M})$  on a 2-category  $\mathbb{C}$  is  $(\mathcal{S}_e, \mathcal{S}_m)$ -proper if

- 1. for any  $e \in \mathcal{E}$ , each composition functor  $\circ e$  belongs to  $\mathcal{M}_e$ ;
- 2. for any  $m \in \mathcal{M}$ , each composition functor  $m \circ -$  belongs to  $\mathcal{M}_m$ .

Following the notations of Subsection 7.2, we can reformulate Definition 3.2 in the following way:

A factorization system on a 2-category  $\mathbb{C}$  is (i, j)-proper exactly when it is  $(\mathcal{S}_i, \mathcal{S}_j)$ -proper, for  $i, j \in \{1, 2\}$  (as well as for (i, j) = (3, 1) and (i, j) = (1, 3)).

(Note that, if we put  $S_0 =$  (equivalences, all arrows), every factorization system is  $(S_0, S_0)$ -proper.)

Observe that the free 2-category with (i,j)-proper factorization system  $\operatorname{Fr}^{i,j}\mathbb{C}$ on a 2-category  $\mathbb{C}$ , for  $i, j \in \{1, 2\}$  (Sections 4, 5 and 6), can be described in the following way.

Let  $f: C \longrightarrow C'$  and  $g: D \longrightarrow D'$  be in  $\mathbb{C}$ ; consider the  $\mathcal{S}_i$ -factorization of the functor  $-\circ f: \mathbb{C}(C', D') \longrightarrow \mathbb{C}(C, D')$  and the  $\mathcal{S}_j$ -factorization of the functor  $g \circ -: \mathbb{C}(C, D) \longrightarrow \mathbb{C}(C, D')$ . Then the hom-category  $\operatorname{Fr}^{i,j}\mathbb{C}(f,g)$  is given by

the following bi-pullback in Cat:



(This is the case also for (i, j) = (0, 0), where  $\operatorname{Fr}^{0,0}\mathbb{C}$  is simply the 2-category  $\mathbb{C}^2$  of Section 2.)

The problem arising from this remark is if it is possible to generalize the previous construction to get the free 2-category with  $(S_e, S_m)$ -proper factorization system on  $\mathbb{C}$ . To define the composition functor on the hom-categories, further assumptions on  $\mathbb{C}$  are needed (as the example  $\operatorname{Fr}^{2,2}\mathbb{C}$  shows), but we are not able to state them explicitly.

### 8 A glance at the homotopy category

Recall that a weak factorization system in a category C consists of two classes of morphisms  $(\mathcal{E}, \mathcal{M})$  satisfying the following conditions:

- 1) Given three arrows  $A \xrightarrow{f} B \xrightarrow{i} X \xrightarrow{p} B$ , if  $i \circ f \in \mathcal{E}$  and  $p \circ i = 1_B$ , then  $f \in \mathcal{E}$ ;
- 2) Given three arrows  $A \xrightarrow{j} X \xrightarrow{q} A \xrightarrow{f} B$ , if  $f \circ q \in \mathcal{M}$  and  $q \circ j = 1_A$ , then  $f \in \mathcal{M}$ ;
- 3) Each arrow has a  $(\mathcal{E}, \mathcal{M})$ -factorization;
- 4) Given a commutative square

$$\begin{array}{c|c} A \xrightarrow{e} B \\ u & \downarrow & \psi \\ C \xrightarrow{w} D \end{array}$$

if  $e \in \mathcal{E}$  and  $m \in \mathcal{M}$ , then there is a (not necessarily unique) arrow  $w: B \to C$  such that  $w \circ e = u$  and  $m \circ w = v$ .

The aim of this section is to show that a factorization system in a 2-category  $\mathbb{C}$  induces a weak factorization system in the homotopy category  $H(\mathbb{C})$  of  $\mathbb{C}$  (the category  $H(\mathbb{C})$  has the same objects as  $\mathbb{C}$ , and 2-isomorphism classes of 1-cells as arrows). The main fact is stated in the following proposition.

**Proposition 8.1.** Let  $\mathbb{C}$  be a 2-category with a factorization system  $(\mathcal{E}, \mathcal{M})$ .

1) Consider the following diagram



if  $\lambda$  is invertible and  $i \circ f \in \mathcal{E}$ , then  $f \in \mathcal{E}$ ;

2) Consider the following diagram



if  $\lambda$  is invertible and  $f \circ q \in \mathcal{M}$ , then  $f \in \mathcal{M}$ .

*Proof.* We prove the first part, the second one is similar. We have to show that  $f \in \mathcal{M}^{\uparrow}$ . For this, we check the first condition in Proposition 1.4 and we leave the second one to the reader. Consider the following diagram in  $\mathbb{C}$ , with  $m \in \mathcal{M}$ ,

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} B \\ \underset{u}{\downarrow} & \varphi \not \bowtie & \downarrow v \\ C & \stackrel{w}{\longrightarrow} D \end{array}$$

We get an arrow  $(u, \varphi \circ (v * \lambda * f), vp)$ :  $if \longrightarrow m$  with a universal fill-in  $(\alpha, w, \beta)$ (because  $if \in \mathcal{E}$  and  $m \in \mathcal{M}$ ). This fill-in gives rise to a fill-in  $(\alpha, wi, \gamma)$  for  $(u, \varphi, v)$ :  $f \longrightarrow m$ , where  $\gamma = (v * \lambda) \circ (\beta * i)$ , and we have to prove that  $(\alpha, wi, \gamma)$  is universal. Let  $(\alpha', w', \beta')$  be another fill-in for  $(u, \varphi, v)$ . We get a second fill-in  $(\alpha' \circ (w' * \lambda * f), w'p, \beta' * p)$  for  $(u, \varphi \circ (v * \lambda * f), vp)$ , so that there is a unique comparison  $\psi : w \Rightarrow w'p$ . This gives us a comparison  $\mu =$  $(w' * \lambda) \circ (\psi * i) : wi \Rightarrow w'$  between the two fill-in for  $(u, \varphi, v)$ , and we have to prove that such a comparison is unique. Let  $\overline{\mu} : wi \Rightarrow w'$  be another comparison between the two fill-in for  $(u, \varphi, v)$ . Observe that  $(\alpha \circ (wi * \lambda * f), wip, \gamma * p)$ is a third fill-in for  $(u, \varphi \circ (v * \lambda * f), vp)$ , so that there is a unique comparison  $\nu : wip \Rightarrow w'p$  between  $(\alpha \circ (wi * \lambda * f), wip, \gamma * p)$  and  $(\alpha' \circ (w' * \lambda * f), w'p, \beta' * p)$ (because, by Lemma 1.5, each fill-in is universal). A diagram chasing shows that both  $\nu = \mu * p$  and  $\nu = \overline{\mu} * p$  work, so that  $\mu * p = \overline{\mu} * p$ . Finally, observe that, since  $\lambda : pi \Rightarrow 1_B$  is an invertible 2-cell, p is a cofaithful (that is, the hom-functor

$$\mathbb{C}(p,C)\colon \mathbb{C}(B,C)\longrightarrow \mathbb{C}(X,C)$$

is faithful). Now  $\mu * p = \overline{\mu} * p$  implies  $\mu = \overline{\mu}$ .

In the next corollary, we write [f] for the 2-isomorphism class of an arrow f.

**Corollary 8.2.** Let  $\mathbb{C}$  be a 2-category with a factorization system  $(\mathcal{E}, \mathcal{M})$  and let  $H(\mathbb{C})$  be the homotopy category of  $\mathbb{C}$ . Then  $(H(\mathcal{E}), H(\mathcal{M}))$  is a weak factorization system in  $H(\mathbb{C})$ , where  $H(\mathcal{E}) = \{[e] \mid e \in \mathcal{E}\}$  and  $H(\mathcal{M}) = \{[m] \mid m \in \mathcal{M}\}$ .

## References

- J. ADAMEK, R. EL BASHIR, M. SOBRAL, J. VELEBIL: On functors which are lax epimorphisms, Theory Appl. Categories 8 (2001) 509-521 (http://www.tac.mta.ca/tac/).
- [2] J. ADAMEK, H. HERRLICH, J. ROSICKY, W. THOLEN: Weak factorization systems and topological functors, Appl. Categorical Structures (to appear).
- [3] M.A. BEDNARCZYK, A.M. BORZYSZKOWSKI, W. PAWLOWSKI: Generalized congruences – epimorphisms in CAT, Theory Appl. Categories 5 (1999) 266-280 (http://www.tac.mta.ca/tac/).
- [4] T. BEKE: Sheafifiable homotopy model categories, Math. Proc. Camb. Philos. Soc. 129 (2000) 447-475.
- [5] A. BELIGIANNIS: On the Freyd categories of an additive category, Homology Homotopy Appl. 2 (2000) 147-185 (http://www.rmi.acnet.ge/hha/).
- [6] R. BETTI, D. SCHUMACHER, R. STREET: *Factorizations in bicategories*, preprint.
- [7] F. BORCEUX: Handbook of categorical algebra, Cambridge University Press (1994).
- [8] F. BORCEUX, G. JANELIDZE: *Galois theories*, Cambridge University Press (2001).
- [9] A. CARBONI, S. JOHNSON, R. STREET, D. VERITY: Modulated bicategories, J. Pure Appl. Algebra 94 (1994) 229-282.
- [10] J.M. COHEN: Stable homotopy, Springer Lecture Notes Math. 194 (1970).
- [11] D. DIKRANJAN, W. THOLEN: Categorical structure of closure operators. With applications to topology, algebra and discrete mathematics, Kluwer Academic Publishers (1995).
- [12] M. DUPONT: Systèmes de factorisation dans les 2-catégories, Mémoire de Licence, Université catholique de Louvain (2001).
- [13] P. FREYD: Stable homotopy, Proc. Conf. Categor. Algebra, La Jolla 1965 (1966) 121-172.
- M. GRANDIS: Weak subobjects and the epi-monic completion of a category, J. Pure Appl. Algebra 154 (2000) 193-212.
- [15] M. GRANDIS: On the monad of proper factorization systems in categories, J. Pure Appl. Algebra (to appear).
- [16] M. HOVEY: Model categories, American Mathematical Society (1999).
- [17] S. KASANGIAN, E.M. VITALE: Factorization systems for symmetric cat-groups, Theory Appl. Categories 7 (2000) 47-70 (http://www.tac.mta.ca/tac/).

- [18] P.T. JOHNSTONE: Factorization theorems for geometric morphisms, I, Cahiers Topologie G.D. 22 (1981) 1-15.
- [19] G.M. KELLY, R. STREET: Review of the elements of 2-categories, Springer Lecture Notes Math. 420 (1974) 75-103.
- [20] M. KOROSTENSKI, W. THOLEN: Factorization systems as Eilenberg-Moore algebras, J. Pure Appl. Algebra 85 (1993) 57-72.
- [21] S. LACK, E. M. VITALE: When do completion processes give rise to extensive categories? J. Pure Appl. Algebra 159 (2001) 203-230.
- [22] S. MILIUS: Factorization systems in 2-categories, preprint (2001).
- [23] A. NEEMAN: Triangulated categories, Princeton University Press (2001).
- [24] J. ROSICKY, W. THOLEN: Lax factorization algebras, J. Pure Appl. Algebra (to appear).
- [25] J. ROSICKY, E.M. VITALE: Exact completion and representations in abelian categories, Homology Homotopy Appl. 3 (2001) 453-466 (http://www.rmi.acnet.ge/hha/).
- [26] R. STREET: Two-dimensional sheaf theory, J. Pure Appl. Algebra 23 (1982) 251-270.

Département de Mathématiques, Université catholique de Louvain Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium. e.mail : dupont@math.ucl.ac.be, vitale@math.ucl.ac.be