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Résumé. On utilise les bigroupöıdes pour analyser la suite ex-
acte reliant le groupe de Picard et le groupe de Brauer, aussi
bien que la description K-théorétique des groupes de Picard et de
Brauer.
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1 Preliminaries

The existence of an exacte sequence between the Picard group and the Brauer
group of a commutative unital ring is a well known fact in algebraic K-
theory. Similar exact sequences have been obtained starting for example
from a ringed space, a Krull domain, etc. [1, 9, 16, 20, 23, 24, 25]. All these
constructions are particular cases of the exact sequence between the Picard
group and the Brauer group of a symmetric monoidal category [9, 10, 26].

Nevertheless, there are generalizations/enrichements of the Brauer group
and of the related exact sequences which do not fit into the general theory
developed in [10, 26]. Two interesting (and, for us, motivating) examples are
the Brauer-Taylor group and the categorical Brauer group [5, 6, 7, 17, 18,
19, 21, 22]. We look for a more general approach which contains these new
examples.

What makes this possible is that it remains a deep analogy between the
Brauer group and these generalizations: they can be described as a kind
of Picard group associated to a convenient monoidal bicategory [5, 12, 18,
19]. The aim of our note is to show that this fact suffices to obtain some
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relevant results: the above mentioned exact sequence and the K-theoretical
description of Picard and Brauer groups.

Let us describe now the general situation using the formalism of bicat-
egories and tricategories. For the basic definitions, the reader can consult
[3, 8, 11]. The situation to be kept in mind is given in the following commu-
tative diagram.

Tricategories
cl2 //

P3

��

Bicategories
cl1 //

P2

��

Categories

P1

��
Trigroupoids

cl2 // Bigroupoids
cl1 // Groupoids

where Pi takes invertibles at each level (for an n-cell invertible means invert-
ible up to invertible n + 1-cell); cl1 is the classifying category of a bicategory
as in [3] (take 2-isomorphism classes of 1-cells as arrows) and cl2 is the analo-
gous construction performed taking 3-isomorphism classes of 2-cells. Given a
monoidal category (i.e., a bicategory with a single 0-cell) C, its Picard group
is the group P1(cl1(C)). If C is symmetric and has stable coequalizers (cf.
[8, 26]), we can build up the monoidal bicategory (i.e., tricategory with a sin-
gle 0-cell) MonC of unital monoids and unital bimodules. Then the Brauer
group of C is the group P1(cl1(cl2(MonC))).

In the final remark to section 2 in [26], it is suggested to take MonC
as primitive notion. The point is that, despite of the previous definitions
of Picard and Brauer groups, the majority part of the computations are
performed passing through

Bicategories
P2 // Bigroupoids

cl1 // Groupoids

instead of

Bicategories
cl1 // Categories

P1 // Groupoids.

Once this is clearly recognized, it becomes reasonable to take as primitive
the bigroupoid B = P2(cl2(MonC)), called in [27] the Brauer cat-group of C.
We test this point of view in the next two sections.

2 The K-theoretical description

For the definition of the Grothendieck group K0 and of the Whitehead group
K1 the reader can see [2]. Let B = (B,⊗, I, ()∗, . . .) be a compact closed
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groupoid (or symmetric cat-group), i.e. a bigroupoid with a single 0-cell and
symmetric (braided is enough) as monoidal category [13, 14, 15, 27].

Proposition 1 (i) K0(B) is isomorphic to cl1(B)

(ii) K1(B) is isomorphic to B(I, I) (the group of automorphisms of B at I).

Proof (i) is obvious from the universal property of K0.
(ii) Consider the category ΩB whose objects are arrows f : A → A in B and
whose arrows are commutative diagrams of the form

A

x

��

f // A

x

��
B g

// B.

ΩB is a monoidal category with a composition between objects. To have
an isomorphism between K1(B) and B(I, I), we need a surjective map γ
from the objects of ΩB to B(I, I), constant on connected components, which
sends tensor product and composition on the composition of B(I, I), and
such that the following condition holds: if γ(f : A → A) = (1I : I → I),
then f : A → A is isomorphic to 1A : A → A in ΩB. We define γ in the
following way:

γ(f : A → A) = I
ηA // A⊗ A∗ f⊗1A∗// A⊗ A∗ η−1

A // I

where ηA is the unit of the duality A∗ a A. The proof that γ verifies the
various conditions is a quite straightforward step-by-step transcription of
the proof of proposition 2.4 in [26]. For this reason, we will only show that
γ sends tensor product on composition. This probably is the simplest one
between the five conditions, but it seems to us enough to give the flavour of
the proof and to illustrate the role of the compact closed structure of B.

Given two objects f : A → A and g : B → B in B, we have to show that
the following diagram commutes

A⊗B ⊗ (A⊗B)∗
f⊗g⊗1 // A⊗B ⊗ (A⊗B)∗

η−1
A⊗B

��
I

ηA⊗B

OO

ηA·(f⊗1)·η−1
A

// I
ηB ·(g⊗1)·η−1

B

// I
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But, as in every compact closed category, there is a natural isomorphism
uAB : (A⊗B)∗ → B∗ ⊗ A∗ such that

I

ηA

��

ηA⊗B // A⊗B ⊗ (A⊗B)∗

1⊗1⊗uAB

��
A⊗ A∗ ∼= A⊗ I ⊗ A∗

1⊗ηB⊗1
// A⊗B ⊗B∗ ⊗ A∗

commutes. Then, the following diagram also commutes

A⊗B ⊗ (A⊗B)∗
f⊗g⊗1 // A⊗B ⊗ (A⊗B)∗

η−1
A⊗B

��
I

ηA⊗B

OO

ηA

��

I

A⊗ A∗ ∼= A⊗ I ⊗ A∗

1⊗ηB⊗1

��

A⊗ I ⊗ A∗ ∼= A⊗ A∗

η−1
A

OO

A⊗B ⊗B∗ ⊗ A∗
f⊗g⊗1⊗1

// A⊗B ⊗B∗ ⊗ A∗

1⊗η−1
B ⊗1

OO

Now the fact that

I
ηA·(f⊗1)·η−1

A //

ηA

��

I
ηB ·(g⊗1)·η−1

B // I

A⊗ A∗ ∼= A⊗ I ⊗ A∗

1⊗ηB⊗1

��

A⊗ I ⊗ A∗ ∼= A⊗ A∗

η−1
A

OO

A⊗B ⊗B∗ ⊗ A∗
f⊗g⊗1⊗1

// A⊗B ⊗B∗ ⊗ A∗

1⊗η−1
B ⊗1

OO

commutes is a routine diagram argument using the functoriality of ⊗ and
the various natural and coherent isomorphisms of a symmetric monoidal
category. �

3 The exact sequence

The K-theoretical description given in the previous proposition is the key
result used in [2, 10, 9] to obtain a Picard-Brauer exact sequence. Here we
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sketch a more direct method, which follows the lines of section 2 in [26].
For this, consider two compact closed groupoids A and B and a monoidal

functor F : A → B. We can construct the abelian group F having as elements
classes of triples (A1, b, A2) with A1, A2 in A and b : FA1 → FA2 in B. Two
triples (A1, b, A2) and (A′

1, b
′, A′

2) are equivalent if there exist a1 : A1 → A′
1,

a2 : A2 → A′
2 in A such that

FA1

Fa1

��

b // FA2

Fa2

��
FA′

1 b′
// FA′

2

commutes. The operation in F is induced by the tensor product in B. Now
consider the subgroupN of F spanned by the elements of the form [A, 1FA, A]
for A in A, and take the quotient group π : F → F/N = F . There are also
two morphisms:

• F1 : B(I, I) → F , (b : I → I) 7→ [I, FI ∼= I
b // I ∼= FI , I]

• F2 : F → cl1(A), [A1, b, A2] 7→ [A1 ⊗ A∗
2].

Moreover, since N is contained in the kernel of F2, the morphism F2 factors
through π; let F ′

2 : F → cl1(A) be the factorisation.

Proposition 2 With the previous notations, the sequence of abelian groups
and morphisms

A(I, I) // B(I, I)
F1·π // F

F ′
2 // cl1(A) // cl1(B)

is exact.

Proof A direct proof can be done following the proof of Proposition 2.2 in [26].
Alternatively, one can work in the following way: first observe that, even if B
in general does not have coequalizers, one can construct MonB because, up to
isomorphism, the unique monoid in B is I and then the needed coequalizers
are trivial. Now, following [27], we obtain a 2-exact sequence of symmetric
cat-groups

A → B → F → cl2(MonA) → cl2(MonB).
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Taking, for each cat-group, the abelian group of automorphisms of the unit
object, we have the requested exact sequence of abelian groups. (As far as
cl2(MonB) is concerned, observe that it is the Brauer cat-group of B [27], so
that its group of automorphisms is the Picard group of B. Since B is already
a compact closed groupoid, its Picard group is nothing but cl1(B).) �

4 Conclusion

The interest of our technique is that now we can apply Proposition 1 and 2
choosing as compact closed groupoids those defined by convenient monoidal
bicategories.

1. Consider a unital commutative ring R and let C = R-mod be the
category of R-modules. If we put B = P2(cl2(MonC)), Proposition
1 gives the well-known K-theoretical interpretation of the Picard and
Brauer groups of R, and Proposition 2 gives the classical Picard-Brauer
exact sequence.

2. With C = R-mod as in the previous example, instead of MonC con-
sider the monoidal bicategory MonregC of regular (but not necessar-
ily unital) R-algebras and regular bimodules [12]. Then, taking B =
P2(cl2(MonregC)), Proposition 2 gives an exact sequence connecting the
Picard and the Brauer-Taylor groups of R, and Proposition 1 provides
a K-theoretical interpretation of the Brauer-Taylor group.

3. Again with C = R-mod, consider the monoidal bicategory DistC of
small C-categories and distributors [5, 8]. Taking B = P2(cl2(DistC)),
Proposition 2 gives an exact sequence between the Picard and the cat-
egorical Brauer groups of R.

4. The three previous examples can be generalized taking as C any sym-
metric monoidal category with stable coequalizers.

5. A curiosity: if we take B = P2(R-mod), then Proposition 2, which in
the first example gives the Picard-Brauer sequence, gives now the Unit-
Picard sequence, because B(I, I) is isomorphic to the group of units of
R.
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