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1. Introduction

In this work we look for a new proof of the theorem characterizing monadic categories
over Set (see for example [1]); more precisely, we want to stress the role of the exactness
condition. Let us recall the theorem (in the following “epi” means regular epimorphism
and “projective” means regular projective object):

Let A be a category; the following conditions are equivalent

1) A is equivalent to the category of algebras EM(T) for a monad T over Set

2) A is an exact category and there exists an object G ∈ A such that

- G is projective

- ∀ I ∈ Set ∃ I • G (the I−indexed copower of G)

- ∀ A ∈ A ∃ I • G → A epi

To prove that 1) implies 2) one takes as G the free algebra over the singleton; viceversa
the hypothesis over G imply that A has enough projectives. So this theorem leads us to
study exact categories with enough projectives and, on the other hand, to find conditions
such that EM(T) is exact and the free algebras are projective.

2. Regularity and exactness of EM(T)

In this section we sketch some elementary facts about EM(T) to obtain a topos theoretic
example of a free exact category, i.e. of an exact category with enough projectives (cf.
[4]).

Proposition 1 Let A be a regular category and T a monad over A (with functor part
T );

1) T preserves epi’s if and only if the forgetful functor U : EM(T) → A preserves epi’s

2) if T preserves epi’s, then EM(T) is regular and U preserves and reflects the epi-mono
factorization.
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Proposition 2 Let A be a regular category and T a monad over A;

1) T sends epi’s in split epi’s (i.e. epi’s with a section) if and only if U sends epi’s in
split epi’s

2) if T sends epi’s in split epi’s, then the free algebras are projectives.

Sketch of the proof: 2) Let f : (D, d) → (TC, µC) be an epi in EM(T), where (TC, µC)
is the free algebra over C ∈ A (µ : T 2 → T is the multiplication of T); f is an epi in
EM(T) and so in A, then Tf is a split epi in A and using the section of Tf one can
construct the section of f in EM(T); the proof of 1) is analogous.

Lemma 3 Let A be an exact category and T a monad over A; consider an equivalence
relation e1, e2 : (E, e) ⇉ (X, x) in EM(T) and its coequalizer q : X → Q in A; if

TE
Te1 //

Te2

// TX
Tq // TQ

is a coequalizer diagram in A, then e1, e2 : (E, e) ⇉ (X, x) is effective.

Proposition 4 Let A be an exact category and T a monad over A; if T preserves the
coequalizers in A of the equivalence relations in EM(T) and the epi’s, then EM(T) is
exact.

Corollary 5 Let A be an exact category and T a monad over A;

1) if T is left exact and preserves epi’s, then EM(T) is exact

2) if the coequalizer in A of an equivalence relation in EM(T) is a split epi in A, then
EM(T) is exact and free algebras are projectives

3) the axiom of choice holds in A if and only if for every monad T over A the category
EM(T) is exact and the free algebras are projectives.

As each algebra is a quotient of a free algebra, if free algebras are projective then
EM(T) has enough projectives; if, moreover, EM(T) is exact, one has that EM(T) is the
free exact category over its full subcategory KL(T) of free algebras (cf. [4]). An obvious
example of such a situation is when A is Set, or a power of Set, and we can apply the
third point of corollary 5. Another example is the following:

Example 6 Let E be an elementary topos; the category of sup-lattices in E is the free
exact category over the category of relations in E .

Proof: Let us consider the covariant monad “power-set” P : E → E , for which EM(P) =
SL(E) and KL(P) = Rel(E); the corresponding forgetful functor SL(E) → E sends epi’s
in split epi’s (cf. [5]) and so SL(E) is a regular category and the objects of Rel(E) are
projectives in SL(E). It remains to prove that the second point of corollary 5 is satisfied;
we sketch the proof using the internal language of E : let e1, e2 : E ⇉ X be an equivalence
relation in SL(E) and q : X → Q its coequalizer in E ; we obtain a section s : Q → X

defining ∀ y ∈ Y s(y) = Sup{x ∈ X | q(x) = y}.
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For “estetic reasons”, let us observe that the condition stated in 5.2 is also necessary;
in fact we have the folowing lemma:

Lemma 7 Let T be a monad over a category A;

1) if EM(T) is regular and free algebras are projectives, then U sends epi’s in split epi’s

2) if U sends epi’s in (split) epi’s, then the coequalizer in A of an exact sequences in
EM(T) is a (split) epi in A

Now we can summarize the previous discussion as follows:

Proposition 8 let A be an exact category and T a monad over A; the following conditions
are equivalent:

1) EM(T) is exact and free algebras are projectives

2) the coequalizer in A of an equivalence relation in EM(T) is a split epi in A

3. Exact categories with enough projectives

In this section we obtain a property of exact categories which, in the case of monadic
categories over Set, will allow us to give a short proof of the characterizing theorem.

Definition 9 A full subcategory PA of a category A is said to be a projective cover of A
if

• every object of PA is projective in A

• every object of A is a quotient of an object of PA

Lemma 10 Let A be a category with kernel pairs and PA a projective cover of A; PA

“generates” A via coequalizers.

(The assertion means that, given a morphism f : A → B in A, we are able to build
up a commutative diagram

P ′
a1 //
a2

//

f ′

��

P
p //

f̄

��

A

f

��
Q′

b1 //

b2

// Q
q // B

such that the left square is in PA and the two horizontal lines are coequalizers, so that f

is the unique extension to the quotient.)
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Proof: Given A in A, there exists P in PA and an epi p : P → A; now consider the kernel
pair

N(p)
p1 //
p2

// P
p // A

and again there exists an epi p′ : P ′ → N(p) with P ′ in PA, so that p is the coequalizer
of p1 and p2 and then of p′p1 = a1 and p′p2 = a2; analogously one can work over B and
now the three dotted arrows making the following diagram commutative arise respectively
from the fact that P is projective and q is an epi, from the universality of q1, q2 : N(q) ⇉ Q

and from the fact that P ′ is projective and q′ is an epi

P ′
p′ //

f

��

N(p)
p1 //
p2

//

f̃
��

P
p //

f̄

��

A

f

��
Q′ q′ // N(q)

q1 //
q2

// Q
q // B

Proposition 11 Let A and B be two exact categories with enough projectives, PA and
PB two projective covers and P (A) and P (B) the full subcategories of projective objects;

1) A is equivalent to B if and only if P (A) is equivalent to P (B)

2) if PA is equivalent to PB, then P (A) is equivalent to P (B)

Proof: 1) the non-trivial implication is the “if”: let F : P (A) → P (B) be an equivalence;
define F ′ : A → B as follows: if f : A → B is in A, consider its presentation as in the
previous lemma

P ′
a1 //
a2

//

f ′

��

P
p //

f̄

��

A

f

��
Q′

b1 //

b2

// Q
q // B

and put F ′f as the unique extension to the quotient of

FP ′
Fa1 //

Fa2

//

Ff ′

��

FP
F ′p //

F f̄

��

F ′A

F ′f

��
FQ′

Fb1 //

Fb2

// Q
F ′q // F ′B

The existence of F ′ depends on the fact that the (jointly) monic part (i1, i2) of the epi-
(jointly) mono factorization

FP ′
Fa1 //

Fa2

//

n
##F

F

F

F

F

F

F

F

F

FP

N

i1

OO

i2

OO
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is an equivalence relation in B; this follows from the fact that the pair (a1, a2) is a pseudo-
equivalence relation in P (A) (i.e. as an equivalence relation but we do not require that a1

and a2 are jointly monic) and so the same holds for (Fa1, Fa2) in P (B). See for instance
the transitivity condition: consider the following diagram

M ′
l1 //

m
""E

E

E

E

E

E

E

E

l2

��

FP ′

n

��
M

n1 //

n2

��

N

i2
��

FP ′
n

// N
i1

// FP

where M is the pullback of i1 and i2 and M ′ the pullback of Fa1 and Fa2, so that the
unique factorization m : M ′ → M is an epi; consider again a projective cover m′ : R →
M ′; the transitivity of (Fa1, Fa2) in P (B) means exactly that there exists a morphism
t : R → FP ′ making commutative the following diagram

R
m′

//

t

��

M ′ m // M
(n1i1,n2i2) // FP × FP

id

��
FP ′

n
// N

(i1,i2)
// FP × FP

The fact that m′m is an epi and (i1, i2) is a mono implies the existence of a morphism
τ : M → N which exhibits the transitivity of i1, i2 : N ⇉ FP . To show that F ′ is a full
and essentially surjective functor is quite obvious (for this recall that F is an equivalence);
the faithfulness of F ′ essentially depends on the fact that the image of (Fb1, F b2), being
an equivalence relation in B, is the kernel pair of its coequalizer F ′q.

2) is trivial under the only condition that A and B have enough projectives.

The previous proposition explains the name ”free” given to an exact category with
enough projectives: it is completely determined by the full subcategory of projective
objects. In [4] we have discussed the universal property satisfied by this kind of categories.

4. Characterization theorem

Proposition 12 Let C be a category; the following conditions are equivalent:

1) C is equivalent to the category KL(T) for a monad T over Set

2) there exists an object G ∈ C such that
- ∀ I ∈ Set ∃ I • G

- ∀ X ∈ C ∃ I ∈ Set such that X ∼= I • G



6

Proof: 2) ⇒ 1) consider the pair of functors

Set
−•G

// C
C(G,−)oo

The first condition says that − • G is left adjoint to C(G,−); the second condition says
that the comparison functor KL(T) → C is essentially surjective and so it is an equivalence
(here T is the monad induced by − • G ⊣ C(G,−)).

Proposition 13 Let A be a category; the following conditions are equivalent:

1) A is equivalent to the category EM(T) for a monad T over Set

2) A is an exact category and there exists an object G ∈ A such that
- G is projective
- ∀ I ∈ Set ∃ I • G

- ∀ A ∈ A ∃ I • G → A epi

Proof: 2) ⇒ 1) let C be the full subcategory of A spanned by I • G for I ∈ Set; by
proposition 12, C ≃ KL(T) for a monad T over Set; so, by proposition 11, A ≃ EM(T)
because C is a projective cover of A and KL(T) is a projective cover of EM(T).

5. Presheaf categories

The two previous propositions can be generalized to characterize KL(T) and EM(T) when
T is a monad over SetX for X ∈ Set (to get examples as presheaf categories); the short
proof suggested for proposition 13 remains, of course, unchanged. It is not surprising
(cf. [6]) that proposition 11 allows us also to give a short proof for the characterization
of presheaf categories (cf. [2, 3]). In the next lemma, FamC is the sum completion of a
small category C.

Lemma 14 Let C be a small category and B the full subcategory of SetC
op

spanned by
sums of representable functors; B is equivalent to FamC.

Proof: Consider the unique extension Y ′ : FamC → B of the Yoneda embedding Y : C →
B; obviously Y ′ is essentially surjective; its fullness and faithfulness easily follow from
Yoneda’s lemma.
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Lemma 15 Let B be a category with disjoint sums and strict initial object; the following
conditions are equivalent

(1) B is equivalent to the category FamC for a small category C

(2) there exists a small subcategory C of B such that

• ∀ B ∈ B ∃ {Ci}I with Ci ∈ C such that B ∼=
∐

ICi

• ∀ f : C →
∐

ICi with C, Ci ∈ C ∃ i0 ∈ I such that f can be factorized through
the injection Ci0 →

∐
ICi

• the initial object 0 6∈ C

Proof: 2) ⇒ 1) consider the unique extension F : FamC → B of the full inclusion of C in
B; the first condition implies that F is essentially surjective; the second conditions implies
that F is full; the third condition (together with the disjointness and the fact that the
initial object is strict) implies that F is faithful.

Proposition 16 Let A be an exact category with disjoint sums and strict initial objects;
the following conditions are equivalent

(1) A is equivalent to the category of presheaves on a small category

(2) A has a set {Gj}J of regular generators such that

• ∀ j ∈ J Gj is projective

• ∀ f : G →
∐

IGi with G, Gi ∈ {Gj}J ∃ i0 ∈ I such that f can be factorized
through the injection Gi0 →

∐
IGi

(3) A has a family of absolutely presentable generators

Proof: 1) ⇒ 3) and 3) ⇒ 2) are obvious (recall that an object G ∈ A is absolutely
presentable if A(G,−) : A → Set preserves colimits).
2) ⇒ 1): two cases: first, if the initial object 0 ∈ {Gj}J but {Gj}J \ 0 is not a family of

generators, then {Gj}J = {0} and so A ≃ 1 ≃ Set∅; second, if 0 6∈ {Gj}J let C be the full
subcategory of generators and B the full subcategory spanned by sums of generators; by
lemma 15, B ≃ FamC and, by lemma 14, FamC is a projective cover of SetCop

; but B is
a projective cover of A, so, by proposition 11, A ≃ SetCop

.
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