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Abstract. We show how the exact completion of a regular category
constitutes a unifying framework for the abstract characterization of
various classes of quasi-varieties.

1 Introduction

It is well known that a variety (in the classical sense of an HSP class of
algebras) can be described in categorical terms as a category of algebras for a
monad over SET, where the monad is finitary, i.e. it preserves filtered colimits.
Varieties have been also characterized by Lawvere [16] (see theorem 2.3) as exact
categories (in the sense of Barr [2]) with an abstractly finite, regular projective,
regular generator.

Quasi-varieties are regular epireflective subcategories of varieties such that
the inclusion functor is finitary. Recall that a full subcategory is regular epire-
flective when the inclusion has a left adjoint and units are regular epis, and that
quasi-varieties correspond to classical SP classes of algebras closed under filtered
colimits. Categorically, in a quasi-variety we cannot expect to get exactness any
more, but we have to replace it with the weaker notion of regularity.

The aim of this note is to show that the characterization theorem for quasi-
varieties (corollary 4.6) can be easily deduced from the characterization theorem
for varieties (theorem 2.3), using some very simple and general facts about the
exact completion of a regular category. In section 3 we will recall the definition
and basic properties of such a completion ; then we will show how the same idea
works also without any assumption of finiteness, that is for monadic categories
over SET and their regular epireflective subcategories.

We will consider characterization theorems for the following five different
kinds of categories:

- monadic categories over SET and, among them, varieties;

- (in decreasing order of generality) regular epireflective subcategories of
monadic categories over SET, regular epireflective subcategories of vari-
eties, quasi-varieties.
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Some known examples show that the various inclusions are strict:

i - compact Hausdorff spaces, sup-lattices, the category GR of grids and the
category FR of frames are monadic over SET, but the monad is not fini-
tary, so they are not varieties;

ii - the dual of the category of topological spaces is regular epireflective in GR
and the dual of the category of sober spaces is regular epireflective in FR,
but they are not regular epireflective in any variety [3];

iii - the groups which can be embedded in a product of countable groups form
a regular epireflective subcategory of the variety of groups ; but this sub-
category is not a quasi-variety since it is not closed under filtered colimits
[1];

iv- a typical example of quasi-variety is the category of torsion-free abelian
groups.

2 Preliminaries

In this section we recall the basic definitions we will use in the following, as
well as the characterizations theorem for monadic categories over SET and for
varieties. We also compare some notions of finiteness.

Our categories will always be regular, in the sense of Barr [2] ; we recall that
a category is regular if it has finite limits, each arrow factors as a regular epi
followed by a mono, and regular epis are pull-back stable. (It turns out that in
a regular category the kernel pair of an arrow always has a coequalizer, given
by the regular epi part of the factorization of the arrow. Notice that, unlike [2],
in [4] the existence of all coequalizers is assumed. Since regular functors (see
section 3 for the definition) do not preserve arbitrary coequalizers, we stick to
the former definition.) A regular category is exact if each equivalence relation
has a coequalizer and it is the kernel pair of its coequalizer.
To formulate the characterization theorem 2.1, we also need the following def-
initions : an object P of a category B is regular projective if the representable
functor B(P,−): B →SET preserves regular epis ; an object P is a regular gen-
erator if, for any small set S, there exists the S-indexed copower S •P of P and,
moreover, for any object X of B the canonical morphism B(P,X) • P → X is a
regular epi. Now, we can state the following

Theorem 2.1 [9] A category B is equivalent to a monadic category over SET

if and only if it is exact and it has a regular projective, regular generator P.

This theorem is due to Duskin [9]. It can be found in standard textbooks in
category theory, e.g. [4] and [5] (see also [22]). To give an idea of the proof, we
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recall that for any object P which has copowers indexed by small sets, we have
two functors

U : B -SET U = B(P,−) and F : SET -B F = − • P

such that U is right adjoint to F. Then the functor

T = F · U = B(P,− • P ): SET -SET

is a monad over SET ; the hypotheses on P in 2.1 imply that B is equivalent
to the category of T -algebras. Observe that in this equivalence the object P

corresponds to the free algebra F (1) on one generator.
Consider now the following definitions :

Definition 2.2 ([12], [5], [16]) Let P be an object of a category B;

i - P is finitely presentable if the representable functor B(P,−) is finitary;

ii - P is finitely generated if the representable functor B(P,−) preserves fil-

tered unions (i.e. filtered colimits such that the canonical injections are

monos);

iii - P is abstractly finite if for any small set S there exists the S-indexed

copower S • P of P and, moreover, any arrow P → S • P factors through

S′ • P for some finite subset S′ of S.

Observe that an object P is abstractly finite if and only if the functor
T = B(P,− • P ): SET →SET induced by P is finitary. In fact, if B(P,− • P )
preserves filtered colimits, then P is abstractly finite since a set S is the filtered
union of its finite subsets. Conversely, it is known that a functor T : SET →SET
preserves filtered colimits iff it preserves filtered colimits of diagrams of monos,
and this holds for T = B(P,− • P ) since P is abstractly finite (see [8]).
This remark together with theorem 2.1 gives Lawvere characterization of vari-
eties.

Theorem 2.3 [16] A category is equivalent to a variety, i.e. to a monadic

category over SET for a finitary monad, if and only if it is exact and it has an

abstractly finite, regular projective, regular generator P.

Remark: The passage from one-sorted varieties to many-sorted varieties
corresponds to the passage from monads over SET to monads over a power of
SET. The two previous theorems still hold provided that we replace the single
generator by a small family of generators.

Observe that in a variety, the free algebra on one generator is finitely pre-
sentable. Consequently, in theorem 2.3 “abstractly finite” can be equivalently
replaced by “finitely presentable”. Dropping the assumption of exactness, this is
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no longer true, as attested by example (iii) in the introduction (Z is abstractly
finite but not finitely presentable in the quoted regular epireflective subcate-
gory of the variety of groups) (see also [13]). The next proposition shows what
remains true in general.

Proposition 2.4 Let P be an object in a category B.

i - if P is finitely generated and P has copowers, then P is abstractly finite;

ii - if P is an abstractly finite, regular projective, regular generator, then P

is finitely generated.

Proof: i): let S be a non-empty set ; S is the filtered union of its non-empty
finite subsets S′. Since any inclusion S′ ↪→ S has a retraction, S • P is the
filtered union of the various S′ • P.

ii): first observe that any arrow f :P →
∐

IAi factors through a finite coprod-
uct of the Ai’s. In fact, since P is a regular generator, for each element i of
I there exists a regular epi σi:Si • P → Ai. These various σi’s give rise to a
regular epi σ =

∐
σi and, since P is regular projective, f factors through σ. Let

g:P → (
∐

ISi) • P be this factorization. Since P is abstractly finite, g factors
through S′ • P for some finite subset S′ of

∐
ISi. Since S′ is finite, there are

only finitely many elements i in I such that S′ ∩ Si is not empty. Finally, f

factors through the coproduct of the Ai’s indexed by those i.

Now, given a filtered colimit colimAi and an arrow h:P → colimAi, we can
see colimAi as a regular quotient of a coproduct

∐
IAi. Since P is regular pro-

jective, h factors through some f :P →
∐

IAi. By the previous argument, f

factors through a finite coproduct Ai1 + . . . + Ain and, by filteredness, through
a single Ai0 . This shows that the canonical factorization colim(B(P,Ai)) →
B(P, colimAi) is surjective. It is surely injective if the injections Ai → colimAi

are monos, that is if colimAi is a filtered union.

3 The exact completion of a regular category

We recall that the exact completion of a regular category B is defined as an
exact category Bex together with a regular (= finite limits and regular epimor-
phisms preserving) functor

γ: B -Bex ,

such that the following universal property holds :
for any exact category C and for any regular functor F : B -C there exists a
unique (up to natural isomorphisms) regular functor F̂ : Bex -C with γ · F̂ '
F
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B -γ Bex
@

@
@
@R

F
?

F̂

C

More precisely, composition with γ induces an equivalence between the category
of regular functors from B to C and the category of regular functors from Bex to
C. The construction of Bex for a regular category B and its universal property
are discussed in detail in [6], [7], [11] and [20]. Objects in Bex are equivalence
relations in B, and an arrow α: (r0, r1:R ⇒ X) → (s0, s1:S ⇒ Y ) in Bex is a
relation from X to Y such that R ·α ·S = α , αo ·α < S and α ·αo > R (where
the point · denotes the composition of relations and αo the opposite of α). For
basic notions on relations and equivalence relations, see [5]. Composition in
Bex is the usual composition of relations of B, and the identity of an object
(r0, r1:R ⇒ X) is the relation itself.

In the next lemma we list the properties of the unit γ: B → Bex needed
to obtain the announced characterization of quasi-varieties. The first point is
known and we omit the proof (see for example [20]) ; the second and the third
points strengthen some facts already implicit in [6].

Lemma 3.1 Let B be a regular category and consider its exact completion

γ: B → Bex

1) γ is full, faithful and exact;

2) γ preserves regular projective objects and their coproducts;

3) B is equivalent to a regular epireflective subcategory of Bex iff γ: B -Bex
has a left adjoint and units are regular epimorphisms iff B has coequalizers

of equivalence relations.

Proof: 2): recall from [20] that, for each object (r0, r1:R ⇒ X) (which we
write [r0, r1]) of Bex, the following is an exact sequence

γ(R) -
-

γ(r0)

γ(r1)
γ(X) -R [r0, r1]

(that is, a kernel pair - coequalizer sequence). Now consider a regular projective
object P of B and a regular epi α: [r0, r1] → γ(P ) ; the composite R ·α is of the
form γ(f) for a unique f :X → P. Since γ is full, faithful and preserves finite
limits, it reflects regular epis, so that f is a regular epi and then it has a section
s:P → X. Finally, γ(s) · R is a section for α. This implies that γ(P ) is regular
projective, since in Bex regular epis are pull-back stable.
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Now, we have to prove that γ preserves coproducts of regular projective objects.
Consider a small family (Pi)i∈I of regular projective objects in B and let

(σi:Pi
-

∐
I

Pi)I

be their coproduct. Consider also an object [r0, r1] in Bex and a family of arrows

(xi: γ(Pi) - [r0, r1])I .

Since R: γ(X) - [r0, r1] is a regular epi and each γ(Pi) is regular projective,
we obtain a family of arrows

(yi: γ(Pi) -γ(X))I

such that, for each i in I, one has yi · R = xi. Since γ is full and faithful, for
each i in I there exists a unique zi:Pi

-X such that γ(zi) = yi. Since
∐

I Pi

is a coproduct in B, there exists a unique z:
∐

I Pi
-X such that σi · z = zi

for each i. In this way we get an arrow γ(z) ·R: γ(
∐

I Pi) - [r0, r1] such that
γ(σi)·γ(z)·R = xi for each i. It remains to prove that such a factorization γ(z)·R
is unique. For this, suppose there are two arrows f, g: γ(

∐
I Pi) - [r0, r1]

such that γ(σi) · f = xi and γ(σi) · g = xi for each i in I. Since each Pi

is regular projective in B, their coproduct
∐

I Pi is regular projective in B,

and then γ(
∐

I Pi) is regular projective in Bex. We get then two factorizations
f, g: γ(

∐
I Pi) -γ(X) such that f · R = f and g · R = g. Now fix an i in

I and observe that γ(σi) · f · R = γ(σi) · f = xi = γ(σi) · g = γ(σi) · g · R.

Since γ(r0), γ(r1): γ(R) -γ(X) is the kernel pair of R: γ(X) - [r0, r1], there
exists a unique arrow ti: γ(Pi) -γ(R) such that ti · γ(r0) = γ(σi) · f and
ti · γ(r1) = γ(σi) · g. Once again, the arrow ti is γ(τi) for a unique τi:Pi

-R.

From the family of arrows
(τi:Pi

-R)I

we get a unique τ :
∐

I Pi
-R such that σi · τ = τi for each i. Now call

f̃ , g̃:
∐

I Pi
-X the arrows such that γ(f̃) = f and γ(g̃) = g and observe

that for each i one has γ(σi · f̃) = γ(σi) · f = ti ·γ(r0) = γ(τi · r0) = γ(σi · τ · r0).
This implies that f̃ = τ · r0 because γ is full and faithful and

∐
I Pi is a co-

product in B. In the same way, g̃ = τ · r1. Finally, f = f · R = γ(f̃) · R =
γ(τ) · γ(r0) ·R = γ(τ) · γ(r1) ·R = γ(g̃) ·R = g ·R = g.

3): Clearly, if B is a regular epireflective subcategory of the exact category
Bex, then it has coequalizers of equivalence relations. The only non-trivial im-
plication which remains to prove is that if B has coequalizers of equivalence
relations, then γ has a left adjoint and units are regular epimorphisms. Let
[r0, r1] be an object of Bex; by assumption, the coequalizer q:X → Q of the
pair r0, r1 exists in B. Since γ(r0) · γ(q) = γ(r1) · γ(q), there exists a unique
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arrow η[r0,r1]: [r0, r1] → γ(Q) such that R ·η[r0,r1] = γ(q). Moreover, since γ pre-
serves regular epis, η[r0,r1] is a regular epi. It remains to prove the universality
of η[r0,r1]. Let α: [r0, r1] → γ(Y ) be an arrow in Bex and consider the composite
R·α, which is of the form γ(ε) for ε:X → Y. Observe that γ(r0)·R·α = γ(r1)·R·α,

so that r0 · ε = r1 · ε and then there exists ε′:Q → Y such that q · ε′ = ε. Since
R is a (regular) epi, this implies that η[r0,r1] · γ(ε′) = α. This factorization is
certainly unique because η[r0,r1] is an epi and γ is faithful.

4 Characterization of quasi-varieties

Proposition 4.1 Let B be a regular category with a regular projective, regular

generator P ; then Bex is equivalent to a monadic category over SET.

Proof: The category Bex is exact and, by part 2 of lemma 3.1, γ(P ) is
regular projective. To show that Bex satisfies all the conditions of theorem 2.1,
it remains to prove that γ(P ) is a regular generator. For this, let [r0, r1] =
(r0, r1:R ⇒ X) be an object of Bex and consider the following commutative
diagram

Bex(γ(P ), [r0, r1]) • γ(P ) - [r0, r1]

6 6
R

Bex(γ(P ), γ(X)) • γ(P ) -γ(X)

where the left-hand arrow is induced by composition with R. The vertical arrow
R is a coequalizer. Moreover by 1 and 2 of lemma 3.1, the bottom arrow is a
regular epi since it is γ of the regular epi B(P,X)•P -X, then the top arrow
is a regular epi. (The coproducts of γ(P ) involved in the previous diagram exist,
by point 2 of lemma 3.1, because they are indexed by small sets : in fact B is
regular with a regular generator so that, by proposition 4.5.15 in [5], Bex is
locally small.)

Corollary 4.2 Let B be a category ; the following conditions are equivalent:

1) B is a regular category with a regular projective, regular generator P and,

moreover, it has coequalizers of equivalence relations;

2) B is equivalent to a regular epireflective subcategory of a monadic category

over SET.
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Proof: 2)⇒1) is standard (take as P the reflection of the free algebra on
one generator). 1)⇒2): by part 3 of lemma 3.1, B is a regular epireflective
subcategory of Bex, so we can conclude by proposition 4.1.

Proposition 4.3 Let B be a regular category with an abstractly finite, regular

projective, regular generator P ; then Bex is equivalent to a variety.

Proof: By part 2 of lemma 3.1, the condition to be abstractly finite is pre-
served by γ, so that Bex satisfies all the conditions of theorem 2.3: hence Bex
is a variety.

Corollary 4.4 Let B be a category ; the following conditions are equivalent:

1) B is a regular category with an abstractly finite, regular projective, regular

generator P and, moreover, it has coequalizers of equivalence relations;

2) B is equivalent to a regular epireflective subcategory of a variety.

Proof: 2)⇒1): to prove that the reflection in B of the free algebra on one
generator is abstractly finite, one uses the regular projectivity of the free algebra
on one generator. 1)⇒2): it follows from proposition 4.3 and part 3 of lemma
3.1.

Proposition 4.5 Let B be a regular category with a finitely presentable, reg-

ular projective, regular generator P ; then Bex is equivalent to a variety and

γ: B → Bex is finitary.

Proof: Consider the following commutative diagram

B -γ Bex
@

@
@

@@R

B(P,−)

�
�

�
��	

Bex(γ(P ),−)

SET

Since finitely presentable implies abstractly finite, we already know that Bex
is equivalent to a variety. In this equivalence γ(P ) corresponds to the free
algebra on one generator, so that Bex(γ(P ),−) reflects filtered colimits. Then
γ preserves filtered colimits since, by assumption, B(P,−) preserves them.
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Corollary 4.6 Let B be a category ; the following conditions are equivalent:

1) B is a regular category with a finitely presentable, regular projective, regu-

lar generator P and, moreover, it has coequalizers of equivalence relations;

2) B is equivalent to a regular epireflective subcategory of a variety, and the

inclusion functor is finitary, i.e. B is equivalent to a quasi-variety.

Proof: 2)⇒1): if the right adjoint preserves filtered colimits, then the left
adjoint sends finitely presentable objects to finitely presentable objects. 1)⇒2):
by proposition 4.5, Bex is a variety and γ is finitary. Moreover, by part 3 of
lemma 3.1, B is a regular epireflective subcategory of Bex.

Remarks: 1) once again, the passage from monads over SET to monads
over a power of SET (or from one-sorted varieties to many-sorted varieties) is
straightforward: it is enough to replace the single generator by a small family
of generators.
2) The characterization of regular epireflective subcategories of varieties given in
corollary 4.4 is due to Isbell [14]. The case of regular epireflective subcategories
of monadic categories comes back to Felscher [10], Keane [15] and Tholen [21]; a
proof which uses the exact completion of a weakly left exact category is sketched
in [23]. Corollary 4.2 also appears in [18] where the case of k-permutable quasi-
varieties is considered.
3) Asking, in propositions 4.1, 4.3 and 4.5, that B is preadditive, one has that
Bex is abelian. But abelian varieties are exactly module categories over uni-
tal rings (see [16]). For this reason, adding preadditivity on B, corollaries 4.4
and 4.6 give characterizations of (regular) epireflective subcategories of module
categories.
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