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aDepartamento de Álgebra. Facultad de Ciencias. Universidad de Granada. 18071,
Granada, Spain (mcarrasc,agarzon@ugr.es)
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Abstract

The well-known notion of crossed module of groups is raised in this paper to the
categorical level supported by the theory of categorical groups. We construct the
cokernel of a categorical crossed module and we establish the universal property
of this categorical group. We also prove a suitable 2-dimensional version of the
kernel-cokernel lemma for a diagram of categorical crossed modules. We then study
derivations with coefficients in categorical crossed modules and show the existence
of a categorical crossed module given by inner derivations. This allows us to define
the low-dimensional cohomology categorical groups and, finally, these invariants
are connected by a six-term 2-exact sequence obtained by using the kernel-cokernel
lemma.

Introduction

Crossed modules of groups were introduced by J.H.C. Whitehead [39]; they
have been shown to be relevant both in topological and algebraic contexts.
They provided algebraic models for connected 2-types [26,28] and allowed to
develop, as adequate coefficients, a non-abelian cohomology of groups [12,25].
It is convenient and sensible to regard crossed modules of groups as 2-dimen-
sional versions of groups (c.f. [30]). They correspond, in fact, to strict categori-
cal groups, that is, strict monoidal groupoids where each object is invertible up
to isomorphism. Categorical groups have been studied in the last twenty-five
years by several authors from different points of view (algebraic models for ho-
motopy types [4,6], cohomology [8,36], extensions [1,2,31], derivations [18,19],
ring theory [15,37]). All of these investigations have clarified the relevance of
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this 2-dimensional point of view. Nevertheless, with respect to cohomology,
the reader could wonder why to study cohomology of non-necessarily strict
categorical groups, since the strict case has been already studied by several
authors (see [9,12,20,21,30] and the references therein). We want to make this
fact clear underlining the relevance of some approaches made in this direction.
Thus, in order to give an interpretation of Hattori cohomology in dimension
three (see [22]) Ulbrich developed a group cohomology for Picard (i.e., sym-
metric) categorical groups, providing in this way a remarkable example of
cohomology in the non-strict case. Also, we should emphasize Breen’s work
[2] about the Schreier theory for categorical groups by means of a cohomology
set able of codifying equivalence classes of extensions of a group by a categor-
ical group. The above results led to the development carried out in [6], where,
via an adequate nerve notion of a (braided) categorical group, it is stated how
the cohomology set of categorical groups, there studied, allows to codify sets of
homotopy classes of continuous maps between spaces which are algebraically
modelled by (braided) categorical groups. This kind of interpretation could be
carried out thanks to the fact that the non-strict algebraic model associated to
a space, whose simplices actually have a nice geometrical description, is easier
to handle than the strict one. Together with this topological interpretation, we
point out that these cohomology sets classify equivalence classes of extensions
of categorical groups [7]. From a 2-dimensional categorical point of view, the
reader can also find in Remark 6.7 other reasons why the study of categorical
group cohomology is worth.
In the context of categorical groups, the notion of crossed module was sug-
gested by L. Breen in [2]. It was given in a precise form (although in the
restricted case of the codomain of the crossed module being discrete) by P.
Carrasco and J. Mart́ınez in [8], in order to obtain an interpretation of the 4-
th Ulbrich’s cohomology group [36]. (Recently the definition by Carrasco and
Mart́ınez has been further generalized by Turaev assuming that the domain
of the crossed module is just a monoidal category [35].)
In the papers quoted above, a lot of interesting and relevant examples are
discussed. In our opinion, they justify a general theory of categorical crossed
modules, which is the aim of this paper.
After the preliminaries, Section 2 is devoted to present definitions of categor-
ical precrossed and crossed modules and to state some basic examples.
A way to think about a crossed module of groups δ : H → G is as a mor-
phism δ of groups which believes that the codomain G is abelian. In fact,
the image of δ is a normal subgroup of G, so that the cokernel G/Im(δ) of
δ can be constructed as in the abelian case. This is relevant in non-abelian
cohomology of groups, where the first cohomology group of a group G with
coefficients in the crossed module δ is defined as the cokernel of the crossed
module given by inner derivations [27,20]. This intuition on crossed modules
of groups can be exploited also at the level of categorical groups. In fact, in
Section 3 we associate to a categorical crossed module T : H → G a new
categorical group G/〈H,T〉, which we call the quotient categorical group, and
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we justify our terminology establishing its universal property. As in the case
of groups, the notion of categorical crossed module subsumes the notion of
normal sub-categorical group. To test our definition, we show that, in the 2-
category of categorical groups, normal sub-categorical groups correspond to
kernels and quotients correspond to essentially surjective morphisms. Also, for
a fixed categorical group G, normal sub-categorical groups of G and quotients
of G correspond each other. In Section 4, we establish a higher dimensional
version of the kernel-cokernel lemma: We associate a six-term 2-exact sequence
of categorical groups to a convenient diagram of categorical crossed modules.
In next two sections we apply the machinery developed for categorical crossed
modules, to define low-dimensional cohomology categorical groups, following a
parallel process to that made in [20,27,38], where the Whitehead group of regu-
lar derivations was the basic ingredient to develop low-dimensional non-abelian
cohomology of groups. Thus, we introduce derivations with coefficients in cat-
egorical crossed modules and we study the monoidal structure inherited by
the groupoid of derivations Der(G,H) whenever H is a categorical G-crossed
module (c.f. [17] in the particular case of G being discrete and [19] in the case
of H being a G-module). Then, we define the Whitehead categorical group of
regular derivations, Der∗(G,H), as the Picard categorical group associated to
this monoidal groupoid. This categorical group actually coherently acts on H.
In fact, the functor H −→ Der∗(G,H) given by inner derivations, provides
our most relevant example of categorical crossed module that allows us, in
last section, to define the low-dimensional cohomology categorical groups of a
categorical group G with coefficients in a G-categorical crossed module H, as
the kernel and the quotient of the categorical crossed module of inner deriva-
tions. Further, we apply the kernel-cokernel lemma to get a six-term 2-exact
sequence for the cohomology categorical groups from a short exact sequence of
categorical G-crossed modules. This sequence generalizes and unifies several
similar exact sequences connecting cohomology sets, groups, groupoids and
categorical groups (c.f. [3,13,14,18–21,27,32]).

1 Preliminaries

A categorical group G = (G,⊗, a, I, l, r) (see [33,2,31,16] for general back-
ground) is a monoidal groupoid such that each object is invertible, up to
isomorphism, with respect to the tensor product. This means that, for each
object X, there is an object X∗ and an arrow m

X
: I → X⊗X∗. It is then pos-

sible to choose an arrow n
X

: X∗⊗X → I in such a way that (X,X∗,m
X
, n

X
)

is a duality. Moreover, one can choose I∗ = I. When it is irrelevant, we will
omit the associativity isomorphism “a” of any categorical group G and we will
write “can” for any canonical structural isomorphism of G.
Categorical groups are the objects of a 2-category CG, whose arrows are
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monoidal functors T = (T, µ) and whose 2-cells are monoidal natural trans-
formations. A categorical group is said to be braided (symmetric) (see [23]) if
it is braided (symmetric) as a monoidal category. If G is a categorical group,
we write π0G for the group (abelian if G is braided) of isomorphism classes of
objects, and π1G for the abelian group G(I, I) of automorphisms of the unit
object. If G is a group, we can see it as a discrete categorical group, which we
write G[0]. If G is an abelian group, we can see it also as a categorical group
with only one object, which we write G[1].
Fix a categorical group G. A G-categorical group [16] consists of a categor-
ical group H together with a morphism of categorical groups (a G-action)
(z, µ) : G → Eq(H) from G to the categorical group of monoidal autoequiva-
lences, Eq(H), of H [2]. Equivalently, we have a functor

ac : G×H→ H , (X, A) 7→ ac(X,A) = XA

together with two natural isomorphisms

ψX,A,B : X(A⊗B) → XA⊗ XB, ΦX,Y,A : (X⊗Y )A → X( YA)

satisfying the coherence conditions, [16,19]. Note that a canonical morphism
φ0,A : IA → A can be then deduced from them.

Let H and H′ be G-categorical groups. A morphism (T, ϕ) : H → H′ con-
sists of a categorical group morphism T = (T, µ) : H → H′ and a natural
transformation ϕ

G×H ac //

Id×T
²²

ϕ⇓
H

T
²²

G×H′ ac
//H′

compatible with ψ, φ and φ0 in the sense of [16]. G-categorical groups and
morphisms of G-categorical groups are the objects and 1-cells of a 2-category,
denoted by G − CG, where a 2-cell α : (T, ϕ) ⇒ (T′, ϕ′) : H → H′ is a 2-cell
α : T ⇒ T′ in CG satisfying the corresponding compatibility condition with
ϕ and ϕ′.
If H is a G-categorical group, then the categorical group of autoequivalences
Eq(H) also is a G-categorical group under the diagonal action, X(T, µ) =
( XT, Xµ), where, for any A ∈ H, ( XT )(A) = XT ( X∗

A) and , for any A,B ∈ H,
( Xµ)

A,B
= ψ

X,T ( X∗A),T ( X∗B)
· Xµ

X∗A, X∗B
· XT (ψ

X∗,A,B
).

Besides, considering the morphism which defines the G-action on H, (z, µ) :
G → Eq(H), we have a morphism in G − CG, ((z, µ), ϕz) : G → Eq(H),

where (ϕz)
X,Y

: z( XY ) ⇒ Xz(Y ) is given, for any A ∈ H, by
(
(ϕz)

X,Y

)

A
=

φ
X,Y, X∗A

· φ
X⊗Y,X∗,A

: X⊗Y⊗X∗
A → X( Y( X∗

A)).

Furthermore, considering now the morphism i = (i, µi) : H→ Eq(H) given by
conjugation, we also have a morphism in G− CG, (i, ϕi) : H→ Eq(H), where
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(ϕi)X,A
: i( XA) ⇒ Xi(A) is given, for any B ∈ H, by the composition

(
(ϕi)X,A

)

B
= ψ−1

X,A⊗X∗B,A∗
· (ψ−1

X,A, X∗B
⊗ 1) · (1⊗ φ

X,X∗,B
⊗ can) · (1⊗ φ−1

0,B
⊗ 1).

2 Categorical G-crossed modules.

In this section we define the notion of categorical G-crossed modules and give
some examples. Fix a categorical group G and consider it as a G-categorical
group by conjugation. We first give the following

Definition 2.1 The 2-category of categorical G-precrossed modules is the slice
2-category G− CG/G.

More explicitly, a categorical G-precrossed module is a pair 〈H, (T, ϕ)〉 where
(T, ϕ) : H→ G is a morphism in G− CG, thus we have a picture

G×H ac //

Id×T
²²

ϕ⇓
H

T
²²

G×G
conj

//G .

which means that, for any objects X ∈ G and A ∈ H, there is a natural family
of isomorphisms

ϕ = ϕX,A : T ( XA) → X ⊗ TA⊗X∗

satisfying the corresponding compatibility conditions with the natural iso-
morphisms of the G-action on H. Observe that the family ϕX,A of natural
isomorphisms corresponds to a family of natural isomorphisms

ν = νX,A : T ( XA)⊗X −→ X ⊗ T (A) ,

and now, using this family ν = ν
X,A

, we give the following equivalent definition
of categorical G-precrossed module:

Definition 2.2 Let G be a categorical group. A categorical G-precrossed mod-
ule is a triple 〈H,T, ν〉, where H is a G-categorical group, T = (T, µ) : H→ G
is a morphism of categorical groups and

ν =
(
νX,A : T ( XA)⊗X −→ X ⊗ T (A)

)
(X,A)∈G×H

is a family of natural isomorphisms in G, making commutative the following
diagrams (which are the translations, in terms of the family ν = ν

X,A
, of the

coherence conditions that ϕ satisfies) :
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(pcr1)

T ( X( YA))⊗X ⊗ Y
T (φ−1)⊗1⊗1 //

ν⊗1
²²

T ( (X⊗Y )A)⊗X ⊗ Y

ν

²²
X ⊗ T ( YA)⊗ Y 1⊗ν

// X ⊗ Y ⊗ T (A) ,

(pcr2)

T ( XA)⊗ T ( XB)⊗X
1⊗ν //

can

²²

T ( XA)⊗X ⊗ T (B)

ν⊗1

²²
T ( XA⊗ XB)⊗X

T (ψ−1)⊗1
²²

X ⊗ T (A)⊗ T (B)

can

²²
T ( X(A⊗B))⊗X ν

// X ⊗ T (A⊗B) ,

Now, a morphism of categorical G-precrossed modules is a triple

(F, η, α) : 〈H,T, ν〉 → 〈H′,T′, ν ′〉
with (F, η) : H→ H′ a morphism in G− CG and α : T ⇒ T ′F a 2-cell in CG
such that, for any X ∈ G and A ∈ H, the following diagram is commutative
(which corresponds to the coherence condition for α : T ⇒ T ′F being a 2-cell
in G− CG):

T ( XA)⊗X ν //

α⊗1
²²

X ⊗ T (A)

1⊗α

²²
T ′F ( XA)⊗X

T ′(η)⊗1 ))SSSSSSSSSSSSSS
X ⊗ T ′F (A)

T ′( XF (A))⊗X .

ν′

55kkkkkkkkkkkkkk

Finally, a 2-cell β : (F, η, α) ⇒ (F′, η′, α′) is a 2-cell β : (F, η) ⇒ (F′, η′) :
H→ H′ in G− CG, such that for any A ∈ H, the diagram

T (A)
α

A //

α′
A ((QQQQQQQQQQQQQ T ′F (A)

T ′(β
A

)

²²
T ′F ′(A)

is commutative (which corresponds to the condition for β : (F, η) ⇒ (F′, η′)
being a 2-cell in the slice 2-category G− CG/G.

As an easy example, note that giving a G-precrossed module structure on the
identity morphism 1G : G → G, of the trivial G-categorical group G, is the
same as giving a braiding c on G via the formula c

X,A
= ν−1

X,A
: X⊗A → A⊗X.

We will see more examples after defining categorical G-crossed module. As for
precrossed modules, we next give the following short definition:

6



Definition 2.3 A categorical G-crossed module is given by a categorical G-
precrossed module 〈H, (T, ϕ)〉 together with a 2-cell in G− CG

H
(i,ϕi) //

(T,ϕ) ÃÃ@
@@

@@
@@

@

ε⇓

Eq(H)

G ,
(z,ϕz)

;;wwwwwwww

where (z, ϕz) : G → Eq(H) and (i, ϕi) : H → Eq(H) are the morphism of G-
categorical groups remarked in the Preliminaries. The following compatibility
condition between ϕ and ε have to be satisfied:

H×H conj //

T×Id
²²

ε̄ ⇓
H

Id
²²

G×H ac //

Id×T
²²

ϕ ⇓
H

T
²²

=

G×G
conj

//G

H×H conj //

T×T
²²

can ⇓
H

T
²²

G×G
conj

//G.

(where, for any A,B ∈ H, ε̄
A,B

= (ε
A
)

B
)

We refer to ϕ as the precrossed structure of the categorical crossed module
and to ε as its crossed structure, even if for a categorical G-precrossed module
to be crossed is a property and not a structure (see Remark 3.1 below).
In order to unpack the above definition we proceed in the same way we did
for categorical precrossed modules. The picture

H×H conj //

T×Id
²²

ε̄ ⇓
H

Id
²²

G×H ac //H

means that there is a natural family of isomorphisms in H

ε̄ = ε̄
A,B

: A⊗B ⊗ A∗ −→ T (A)B

and then, there is also a corresponding family of natural isomorphisms in H

χ = χ
A,B

: TAB ⊗ A −→ A⊗B

through which we obtain the following equivalent definition of categorical G-
crossed module:

Definition 2.4 A categorical G-crossed module consists of a 4-tuple 〈H,T, ν, χ〉,
where 〈H,T, ν〉 is a categorical G-precrossed module as in definition 2.2, and

χ =
(
χ

A,B
: TAB ⊗ A −→ A⊗B

)
(A,B)∈H
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is a family of natural isomorphisms in H such that the following diagrams
(which are the translations in terms of χ of the fact that ε is a 2-cell in
G− CG) are commutative:

(cr1)

T (A⊗B)C ⊗ A⊗B
χ //

can

²²

A⊗B ⊗ C

(TA⊗TB)C ⊗ A⊗B φ⊗1
// TA(TBC)⊗ A⊗B χ⊗1

// A⊗ TBC ⊗B

1⊗χ

OO

(cr2)
TA(B ⊗ C)⊗ A

χ //

ψ⊗1

²²

A⊗B ⊗ C

TAB ⊗ TAC ⊗ A 1⊗χ
// TAB ⊗ A⊗ C

χ⊗1

OO

(cr3)

X(TAB ⊗ A)
Xχ //

ψ
²²

X(A⊗B)

ψ

²²
X(TAB)⊗ XA

φ−1⊗1

²²

XA⊗X B

(X⊗TA)B ⊗ XA
ν−1

B⊗1

// (T (XA)⊗X)B ⊗ XA φ⊗1
// T (XA)(XB)⊗ XA

χ

OO

and such that the following diagram (expressing the compatibility between the
precrossed structure and the crossed structure) is also commutative:

(cr4)

T (TAB ⊗ A)
T (χ) //

can

²²

T (A⊗B)

can

²²
T (TAB)⊗ T (A) ν

// T (A)⊗ T (B) .

Remark 2.5

If T : H → G is a precrossed module of groups and the morphism T is
injective, then the precrossed module actually is a crossed module. A trace of
this property remains in the case of categorical groups. Indeed, if the functor-
part T : H → G of a categorical G-precrossed module is faithful, then there
is at most one structure of G-crossed module compatible with the precrossed
structure. If, moreover, T : H→ G is full, then there is exactly one structure
of G-crossed module on the categorical G-precrossed module 〈H, (T, ϕ)〉.
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We define the 2-categoryG−cross of categoricalG-crossed modules as the sub-
2-category of the 2-category of categoricalG-precrossed modules whose objects
are the categorical G-crossed modules. An arrow (F, η, α) : 〈H,T, ν, χ〉 →
〈H′,T′, ν ′, χ′〉 is an arrow between the underlying categorical G-precrossed
modules such that, for any A,B ∈ H, the following diagram (expressing a
compatibility condition between the natural isomorphisms χ and χ′) is com-
mutative:

F ( T (A)B ⊗ A)
F (χ) //

can

²²

F (A⊗B)

can

²²
F ( T (A)B)⊗ F (A)

η⊗1

²²

F (A)⊗ F (B)

T (A)F (B)⊗ F (A)
αF (B)⊗1 // T ′F (A)F (B)⊗ F (B) .

χ′
OO

Finally G− cross is full on 2-cells.

Example 2.6 i) Any crossed module of groups H
δ→ G is a categorical

crossed module when both G and H are seen as discrete categorical groups.

ii) Let (N
δ→ O

d→ G, {−,−}) be a 2-crossed module in the sense of Conduché,
[11]. Then, following [8], it has associated a categorical G[0]-crossed module
〈G(δ), d, id, χ〉, where G(δ) is the strict categorical group associated to the
crossed module δ, ν is the identity and χx,y = ({x, y}, d(x)y+x), for all x, y ∈ O.

iii) In [7] a G-module is defined as a braided categorical group (A, c) provided
with a G-action such that c

X
A,

X
B
· ψ

X,A,B
= ψ

X,B,A
· X

c
A,B

, for any X ∈ G
and A,B ∈ H. If (A, c) is a G-module, the zero-morphism 0 : A → G is a
categorical G-crossed module where, for any A, B ∈ A, χ

A,B
:I B⊗A → A⊗B

is given by the braiding c
B,A

, up to composition with the obvious canonical
isomorphism.

iv) Consider a morphism T : H→ G of categorical groups and look at H as a
trivial G-categorical group (i.e., via the second projection p2 : G×H→ H). If
G is braided, then we get a precrossed structure by νX,A = c−1

X,TA : TA⊗X →
X⊗TA. Now to give a crossed structure is the same as giving a braiding on H
via the formula χA,B = cB,A : B ⊗A → A⊗B and the compatibility between
ν and χ precisely means that T preserves the braiding.

v) Let L : G → K be a morphism in CG and KerL
e
L //G L //K , ε

L
:

Le
L
⇒ 0, its kernel (see [24]). The categorical group KerL is a G-categorical

group with action given by X(A, ε
A

: L(A) → I) = (X ⊗ A ⊗ X∗, Xε
A

:
L(X ⊗ A⊗X∗) → I) where

Xε
A

: L(X⊗A⊗X∗) can−→ L(X)⊗L(A)⊗L(X)∗
1⊗ε

A
⊗1−→ L(X)⊗I⊗L(X)∗ can→ I

9



and with natural isomorphisms ψ, φ, φ0 induced by (X⊗Y )∗ ' Y ∗⊗X∗, A '
I ⊗ A⊗ I∗ and I ' X∗ ⊗X.

Moreover, the morphism e
L

: KerL → G, e
L
(f : (A, ε

A
) → (B, ε

B
)) = f :

A → B, is a categorical G-crossed module, with both natural isomorphisms ν
and χ given by canonical isomorphisms.

vi) Let H ′ δ′→ G′ be a normal subcrossed module of a crossed module of groups

H
δ→ G (see [30]). Then the inclusion induces a homomorphism G(δ′) → G(δ)

which defines a categorical G(δ)-crossed module, where both ν and χ are
identities and the action is given by conjugation on objects and on arrows.

vii) For any categorical group H, the conjugation homomorphism H→ Eq(H)
provides a categorical Eq(H)-crossed module, where the action corresponds to
the identity morphism in Eq(H), and ν and χ are canonical.

viii) In Example 3.10 we will show that any central extension of categorical
groups gives rise to a categorical crossed module.

ix) If T : H → G is a categorical crossed module then π0(H → G) and
π1(H→ G) are crossed modules of groups.

It is well known that the kernel of a crossed module of groups is an abelian
group. In our context of categorical groups this fact translates into the follow-
ing:

Proposition 2.7 Let 〈H,T, ν, χ〉 be a categorical G-crossed module. Then
KerT can be equipped with a braiding.

Proof : Let (A, ε
A
) and (B, εB) be in the kernel; the braiding is given by

B ⊗ A
φ0,B⊗1 // IB ⊗ A

ε−1
A B⊗1 // T (A)B ⊗ A

χ
A,B // A⊗B.

To check that the previous arrow is a morphism in the kernel, use conditions
(pcr3) and (cr4). The coherence conditions for the braiding follow from (cr1)
and (cr2). |||||

Remark 2.8 In the previous proof observe that the construction of the braid-
ing does not use ε

B
. This means that e

T
: KerT → H factors through the

center of H [23].
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3 The quotient categorical group.

We start with the construction of the quotient categorical groupoid of a mor-
phism of categorical groups and, then, we see that the structure natural iso-
morphisms of a categorical crossed module allow us to obtain a monoidal
structure in the quotient.

Consider a morphism of categorical groups T = (T, µ) : H→ G. The quotient
pointed groupoid G/〈H,T〉 is defined in the following way:

- Objects: those of G;
- Premorphisms: pairs (A, f) : X → Y, with A ∈ H and f : X → T (A)⊗Y ;
- Morphisms: classes of premorphisms [A, f ] : X ◦ // Y , where two pairs

(A, f) and (A′, f ′) are equivalent if there is a : A → A′ in H such that
f ′ = (T (a)⊗ 1

Y
)f

Given two morphisms [A, f ] : X ◦ // Y , [B, g] : Y ◦ // Z we define their
composition by [A⊗B, ?] : X ◦ // Z , with arrow-part

? : X
f // T (A)⊗ Y

1⊗g // T (A)⊗ T (B)⊗ Z can // T (A⊗B)⊗ Z.

For an object X the identity [I, ?] : X ◦ // X has arrow-part X
can' T (I)⊗X.

Note tha G/〈H,T〉 is indeed a groupoid (pointed by I) where the inverse of
[A, f ] : X ◦ // Y is [A∗, ?] : Y ◦ // X with arrow-part Y

can→ T (A∗)⊗T (A)⊗
Y

1⊗f−1−→ T (A∗)⊗X. Let us point out that G/〈H,T〉 is the classifying groupoid
of a bigroupoid having as 2-cells arrows a : A → A′ compatible with f and f ′

as before.

Suppose now we have a categorical G-crossed module 〈H,T : H → G, ν, χ〉
as defined in Section 2. Then we can define a tensor product on G/〈H,T〉 in
the following way: given two morphisms [A, f ] : X ◦ // Y , [B, g] : H ◦ // K
their tensor product is [A⊗ YB, ?] : X ⊗H ◦ // Y ⊗K with arrow-part

X ⊗H
f⊗g // T (A)⊗ Y ⊗ T (B)⊗K1⊗ν−1⊗1 // T (A)⊗ T ( YB)⊗ Y ⊗K

can

²²
T (A⊗ YB)⊗ Y ⊗K

Let us just point out that the natural isomorphism χ, and its compatibil-
ity with ν, are needed to prove the bifunctoriality of this tensor product. To
complete the monoidal structure of G/〈H,T〉, we use the essentially surjec-
tive functor PT : G → G/〈H,T〉 PT (f : X → Y ) = [I, ?] : X ◦ // Y , with

arrow-part X
f→ Y

can' T (I) ⊗ Y. Now, as unit and associativity constraints
in G/〈H,T〉, we take the constraints in G. It is long but essentially straight-

11



forward to check that G/〈H,T〉 is a categorical group and PT is a monoidal
functor. Moreover, there is a 2-cell in CG

G
PT

$$JJJJJJJJJJ

π
T
⇓

H 0
//

T

??¡¡¡¡¡¡¡¡
G/〈H,T〉

(where 0 is the morphism sending each arrow into the identity of the unit

object) defined by (π
T
)

A
= [A, ?] : T (A) ◦ // I , with arrow-part T (A)

can'
T (A)⊗ I.

Remark 3.1 Observe that if a categorical G-precrossed module 〈H,T, ν〉 has
two different crossed structures χ and χ′, the quotient categorical groups we
obtain using χ and χ′ are equal. This is why we consider the crossed structure
as a property.

Example 3.2 i) Let δ : H → G be a crossed module of groups. As in Ex-
ample 2.6 i) we can look at it as a categorical crossed module. Its quotient
G[0]/〈H[0], δ〉 is the strict (but not discrete) categorical group G(δ) corre-
sponding to δ in the biequivalence between crossed modules of groups and
categorical groups (see [5,34]). Note that π0(G(δ)) = Coker(δ) and π1(G(δ)) =
Ker(δ).

ii) If (d : H→ G,χ) is a categorical G-crossed module as in [8], then G/〈H, d〉 =
G/〈π0(H)[0], π0(d)〉 = G(π0(d)) .

iii) If T : A→ B is a morphism of symmetric categorical groups, then B/〈A,T〉
is the cokernel of T studied in [37].

iv) Let H be a categorical group and consider the “inner automorphism”
categorical crossed module i : H → Eq(H) as in Preliminaries. Its quotient is
equivalent to the categorical group Out(H) defined in [10] and used to study
obstruction theory for extensions of categorical groups. Note also that Out(H)
is the classifying category of the bicategory used in [31] to classify extensions
of categorical groups.

We next deal with The universal property of this quotient.
The previous construction (G/〈H,T〉, PT : G → G/〈H,T〉, π

T
: PT T ⇐ 0) is

universal with respect to triples in CG, (F, G : G→ F, δ : GT ⇒ 0) satisfying

12



the following condition: For any X ∈ G and A ∈ H the diagram

G(X)⊗ I

can

²²

G(X)⊗GT (A)
1⊗δ

Aoo

I ⊗G(X) G(X ⊗ T (A))

can

OO

GT ( XA)⊗G(X)

δ
XA

⊗1

OO

G(T ( XA)⊗X)can
oo

G(ν
X,A

)

OO

(1)

is commutative. In fact, the word universal means here two different things.

1) G/〈H,T〉 is a standard homotopy cokernel: for each triple (F, G : G →
F, δ : GT ⇒ 0) in CG, satisfying condition (1) there is a unique morphism

G′ : G/〈H,T〉 → F

in CG such that G′PT = G and G′π
T

= δ.
2) G/〈H,T〉 is a bilimit: for each triple (F, G : G → F, δ : GT ⇒ 0) in CG,

satisfying condition (1) there are G′ : G/〈H,T〉 → F and δ′ : G′PT ⇒ 0
in CG making commutative the following diagram

G′PT T δ′T +3

G′π
T

®¶

GT

δ

®¶
G′0 +3 0

Moreover, if G′′ : G/〈H,T〉 → F, δ′′ : G′′PT ⇒ 0 are in CG and make
commutative an analogous diagram as above, then there is a unique λ :
G′ ⇒ G′′ in CG such that the following diagram commutes

G′PT
λPT +3

δ′ Á&
EE

EE
EE

EE

EE
EE

EE
EE

G′′PT

δ′′x¡ yy
yy

yy
yy

yy
yy

yy
yy

G

Observe that the first universal property characterizes G/〈H,T〉 up to isomor-
phism, whereas the second one characterizes it up to equivalence.
The proof of the uniqueness, in both the universal properties, is based on the
following lemma.

Lemma 3.3 Let [A, f ] : X ◦ // Y be an arrow in G/〈H,T〉. The following
diagram commutes

X ◦[A,f ] //

◦PT (f)
²²

Y

◦can

²²
T (A)⊗ Y ◦

(π
T

)
A
⊗1

// I ⊗ Y

13



Now, as far as the first universal property is concerned, define G′ : G/〈H,T〉 →
F by

G′[A, f ] : G(X)
G(f)// G(T (A)⊗ Y )

can' G(T (A))⊗G(Y )
δ
A
⊗1// I ⊗G(Y )

can' G(Y )

and use condition (1) to check that the monoidal structure of G′, which is that
of G, is natural with respect to the arrows of G/〈H,T〉. As far as the second
universal property is concerned, just take δ′ to be the identity and define λ
via the formula λ

X
= (δ′′

X
)−1 : G′(X) = G(X) → G′′(X).

Remark 3.4 The fact that to make the functor G′ : G/〈H,T〉 → F monoidal
we need a condition (1) relating δ only to ν (and not to χ) is not a surprise.
The fact that G′ is monoidal or not depends only on the definition of the
tensor product in G/〈H,T〉 and not on its functoriality, and the definition of
the tensor in G/〈H,T〉 only uses ν (whereas χ is needed to make this tensor
a functor).

Example 3.5 Consider the categorical G-crossed module structure associ-
ated to a morphism T : H→ G of braided categorical groups, as in Example
2.6 iv), and the corresponding quotient categorical group. Consider also F, G
and δ in CG as in the following diagram

H T //

0
ÂÂ>

>>
>>

>>
> G

δ⇓
G

²²

PT //G/〈H,T〉

F

Condition (1) is satisfied if F is braided and G is compatible with the braiding.
(Recall that, as pointed out in [37], G/〈H,T〉 in general is not braided. Indeed,
to prove that the braiding of G is natural in G/〈H,T〉, one needs that the
braiding is a symmetry.)

In Example 2.6 v) we saw that the kernel of a morphism of categorical groups
is a categorical crossed module. In the following proposition we consider the
kernel of the ”projection” PT : G→ G/〈H,T〉:

Proposition 3.6 Consider a categorical G-crossed module T : H → G and
the factorization T′ of T through the kernel of PT

H T //

T ′ ##FFFFFFFFF G PT //G/〈H,T〉

KerPT

e
PT

OO

The functor T ′ is a morphism of categorical G-crossed modules. Moreover, it
is full and essentially surjective on objects.

14



The previous proposition means that the sequence

π
T
⇑

H T //

0

''
G PT //G/〈H,T〉

is 2-exact (see Definition 4.4 below). More important, it means that T ′ is an
equivalence if and only if T is faithful. Therefore, we can give the following
definition.

Definition 3.7 A normal sub-categorical group of a categorical group G is a
categorical G-crossed module T : H→ G with T faithful.

Proposition 3.8 Let L : G → K be a morphism in CG and consider its

kernel KerL
e
L //G L //K , ε

L
: Le

L
⇒ 0. Consider also the normal sub-

categorical group 〈KerL, e
L
〉 of G, the corresponding quotient categorical group

and the factorization of L through the quotient:

KerL
e
L //G L //

PeL
²²

K

G/〈KerL, e
L
〉
L′

88qqqqqqqqqqq

Then L′ is a full and faithful functor.

In the previous proposition, the factorization L′ exists because the condition
(1) in the universal property of the quotient is verified when δ = ε

L
.

The previous proposition means that L : G → K is essentially surjective on
objects if and only if L′ : G/〈KerL, e

L
〉 → K is an equivalence. In other

words, quotients in the the 2-category CG are, up to equivalence, precisely the
essentially surjective morphisms.

Remark 3.9 Let us recall that the image of a precrossed module of groups
is a normal subgroup of the codomain. The situation for categorical groups is
similar. If, in Proposition 3.8, G is a K-categorical group and L is equipped
with the structure of categorical K-precrossed module, then L′ inherits such
structure and Pe

L
is a morphism of categorical K-precrossed modules. In fact,

following Remark 2.5, L′ is a categorical K-crossed module. (In other words
the full image of a categorical precrossed module and the not full image of
a categorical crossed module are normal sub-categorical groups.) Let us just
describe the action K×G/〈KerL, e

L
〉 → G/〈KerL, e

L
〉.

On objects, it is given by the action of K over G. Now consider an arrow
[(N, ε

N
), f ] : G1 ◦ // G2 in the quotient and an object K ∈ K. We need an

arrow KG1 ◦ // KG2 . Since L′ is full and faithful, it suffices to define an arrow
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L′( KG1) // L′( KG2) in K. This is given by the following composition:

L( KG1)

²²

ϕ
K,G1 // K ⊗ L(G1)⊗K∗ 1⊗L(f)⊗1 // K ⊗ L(N ⊗G2)⊗K∗

can

²²
L( KG2) K ⊗ L(G2)⊗K∗

ϕ−1
K,G2

oo K ⊗ L(N)⊗ L(G2)⊗K∗ .
1⊗ε

N
⊗1

oo

Example 3.10 An important example of crossed module of groups is given
by a central extension. Recall that a central extension of groups is defined

as a surjective morphism H
δ→ G such that the kernel of δ is contained in

the center of H. To define the action of G on H (well-defined because of the
centrality), you have to choose, for given g ∈ G, an element x ∈ H such that
δ(x) = g and you put gh = xhx−1. Looking for a generalization to categorical
groups, let us reformulate the definition of central extension in such a way
we can avoid the choice of the element x. Since δ is surjective and the center
of H is the kernel of the inner automorphism i : H → Aut(H), to give a
central extension is equivalent to give a surjective morphism δ together with
a (necessarily unique) morphism α : G → Aut(H) such that αδ = i. With
the previous discussion in mind, we define a central extension of categorical
groups to be an essentially surjective morphism T : H→ G together with an
action ac : G→ Eq(H) such that ac · T = i : H→ Eq(H).
Now we provide a categorical G-crossed module structure on T: The ac-
tion of G on H is given by ac. By Proposition 3.8, the comparison mor-
phism T′ : H/〈KerT, e

T
〉 → G is an equivalence, so that we get an ac-

tion of H/〈KerT, e
T
〉 on H. Because of the identity ac · T = i, such an

action must be given, on objects, by conjugation. Finally, the precrossed
structure and the crossed structure are given by the canonical isomorphism
X ⊗ A ⊗ X∗ ⊗ A → X ⊗ A in H/〈KerT, e

T
〉 (for the precrossed structure)

and in H (for the crossed structure).

4 The kernel-cokernel lemma

The aim of this section is to obtain an analogous to the classical kernel-cokernel
lemma (see [29]). For it, we first extend the definitions given in Section 2, con-
sidering categorical precrossed modules based on different categorical groups:

Definition 4.1 The 2-category of categorical precrossed modules “PreCross”,
has as objects the categorical precrossed modules. Given two categorical pre-
crossed modules 〈H,T : H → G, ν〉 and 〈H′,T′ : H′ → G′, ν ′〉, a morphism
between them consists of a 4-tuple (F,G, η, α), as in the following diagram
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G×H
G×F

²²

ac //

η⇓
H

F
²²

T //

α⇓
G

G
²²

G′ ×H′ ac
//H′ T ′

//G′

where F : H→ H′, G : G→ G′ and α : GT ⇒ T ′F are in CG. (F, η) : H→ H′
is a morphism in G−CG, considering H′ a G-categorical group via G : G→ G′
(see the Preliminaries section). In addition, for any X ∈ G and A ∈ H, the
following diagram has to be commutative

G(T ( XA)⊗X)
G(ν

X,A
)

//

can

²²

G(X ⊗ T (A))

can

²²
GT ( XA)⊗G(X)

α
XA

⊗1

²²

G(X)⊗GT (A)

1⊗α
A

²²
T ′F ( XA)⊗G(X)

T ′(η
X,A

)⊗1 **UUUUUUUUUUUUUUUU
G(X)⊗ T ′F (A)

T ′( G(X)F (A))⊗G(X)

ν′
G(X),F (A)

44iiiiiiiiiiiiiiii

(2)

Given two parallel morphisms (F,G, η, α) and (F′,G′, η′, α′), a 2-cell is a pair
(β, λ) : (F,G, η, α) ⇒ (F′,G′, η′, α′) where β : F ⇒ F′ and λ : G ⇒ G′ are
2-cells in CG such that, for any X ∈ G, A ∈ H, the following diagrams are
commutative

F ( XA)
η

X,A //

β
XA

²²

G(X)F (A)
λ

XF (A)
²²

F ′( XA)

η′
X,A &&MMMMMMMMMM

G′(X)F (A)

G′(X)β
Awwppppppppppp

G′(X)F ′(A)

(3)

GT (A)
α

A //

λ
T (A)

²²

T ′F (A)

T ′(β
A

)

²²
G′T (A)

α′
A

// T ′F ′(A)

(4)

Remark 4.2 i) In the previous definition, consider the natural isomorphisms
ϕ = ϕ

X,A
: T ( XA) → X ⊗ T (A) ⊗ X∗ in G, and ϕ′ = ϕ′

X′,A′
: T ( X′

A′) →
X ′⊗T (A′)⊗X ′∗ in G′, obtained from ν and ν ′ respectively, such that (T, ϕ) :
H → G is a morphism in G − CG and (T′, ϕ′) : H′ → G′ is a morphism in
G′ − CG (see Section 2). Then the compatibility condition (2) means that
α : (GT, canϕ) ⇒ (T′F, ϕ′T ′η) : H → G′ is a 2-cell in G − CG, where the
G-action over G′ is that obtained via G : G→ G′.
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ii) The compatibility condition (3) means that β : (F, η̄) ⇒ (F′, η′) : H → H′
is a 2-cell in G − CG, considering in H′ the action given via G′ and where
η̄

X,A
: F ( XA) → G′(X)F (A) is given by η̄

X,A
=λ

X F (A) · η
X,A

. Finally the
compatibility condition (4) means that (β, λ) is a 2-cell in the 2-category of
morphisms CG→.

iii) If, in the previous definition, we take G,G′ and λ to be identities, we
get the 2-category G− CG/G of categorical G-precrossed modules defined in
Section 2.

iv) Given two categorical precrossed modules there is a “zero-morphism” be-
tween them taking F and G as the zero-morphism, and where α, η are given
by canonical isomorphisms.

The consideration of the 2-category PreCross is justified by the following
proposition

Proposition 4.3 Consider two categorical precrossed modules 〈H,T : H →
G, ν〉 and 〈H′,T′ : H′ → G′, ν ′〉, and a morphism between them (F,G, η, α).
Assume that the categorical precrossed modules are in fact crossed modules.
Then the triple (F, α,G) extends to a morphism between the quotient categor-
ical groups

Ĝ : G/〈H,T〉 → G′/〈H′,T′〉
(that is, there is a monoidal functor Ĝ and a monoidal natural transformation
g : ĜPT ⇒ PT ′G compatible with α, π

T
and π

T ′ ).

Proof : Consider the natural transformation

PT ′GT
PT ′α +3 P

T ′T
′F

π
T ′F +3 0F +3 0

Using the compatibility condition on (η, α), one can check that this natural
transformation satisfies condition (1) in the universal property of G/〈H,T〉. |||||

We now recall two definitions needed for establishing the kernel-cokernel se-
quence (c.f. [24,31]). Consider the following diagram in CG

A 0 //

G ÂÂ?
??

??
??

C

B
G′

??ÄÄÄÄÄÄÄ

β⇑

Definition 4.4 We say that the triple (G, β,G′) as in the previous diagram is
2-exact if the factorization of G through the kernel of G′ is a full and essentially
surjective functor.
We say that the triple (G, β,G′) as in the previous diagram is an extension if
it is 2-exact, G is faithful and G′ is essentially surjective; or, equivalently, if
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the factorization of G through the kernel of G′ is an equivalence and, moreover,
G′ is essentially surjective.

Consider three categorical crossed modules 〈H,T : H → G, ν, χ〉, 〈H′,T′ :
H′ → G′, ν ′, χ′〉 and 〈H′′,T′′ : H′′ → G′′, ν ′′, χ′′〉 and two morphisms of
categorical precrossed modules, (F,G, η, α) : 〈H,T, ν)〉 → 〈H′,T′, ν ′)〉 and
(F′,G′, η′, α′) : 〈H′,T′, ν ′)〉 → 〈H′′,T′′, ν ′′)〉. Consider also a 2-cell (β : F′F ⇒
0, λ : G′G ⇒ 0) from the composite morphism to the zero-morphism. Using
the universal property of the kernel and Proposition 4.3, we get the following
diagram in CG

β̂ ⇑
KerT

F̂ //

e
T

²²
f⇒

0

))
KerT′ F̂ ′ //

e
T ′

²²
f ′⇒

KerT′′

e
T ′′

²²
H F //

T
²²

α⇒

H′

T ′
²²

F ′ //

α′⇒

H′′

T ′′
²²

G G
//

PT

²²
g⇒

G′ G′
//

PT ′
²²

g′⇒

G′′

PT ′′
²²

G/〈H,T〉
Ĝ

//

0

55G′/〈H′,T′〉
Ĝ′

//G′′/〈H′′,T′′〉
λ̂ ⇓

Using the previous notation, we get the following facts.

Lemma 4.5 (1) If the triple (F, β,F′) is 2-exact and the morphism G is
faithful, then the triple (F̂, β̂, F̂′) is 2-exact.

(2) If the triple (G, λ,G′) is 2-exact and the morphism F′ is essentially sur-
jective, then the triple (Ĝ, λ̂, Ĝ′) is 2-exact.

Proposition 4.6 If the triples (F, β,F′) and (G, λ,G′) are extensions, then
there are a morphism D and two 2-cells Σ, Ψ in CG such that the following
sequence is 2-exact in KerT′, KerT′′, G/〈H,T〉 and G′/〈H′,T′〉

Σ⇑ λ̂⇑
KerT

0

;;
F̂ // KerT′ F̂′ //

0

$$
KerT′′ D //

0

88G/〈H,T〉

0

''
Ĝ //G′/〈H′,T′〉 Ĝ′ //G′′/〈H′′,T′′〉

β̂ ⇓ Ψ⇓

Moreover, F̂ is faithful and Ĝ′ is essentially surjective.
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Proof : Let us just describe the functor

D : KerT′′ → G/〈H,T〉

Observe that, since F is faithful and (F, β,F′) is 2-exact, F : H→ H′ inherits
from the kernel of F′ a structure of categorical H′-crossed module. Moreover,
since F ′ is essentially surjective, up to equivalence H′′ is the quotient cat-group
H′/〈H,F〉 and F′ is the projection PF . Observe also that, since G is faithful
and (G, λ,G′) is 2-exact, G is equivalent to the kernel of G′ and G is the
injection eG′ . We use these descriptions of H′′ and G to construct the functor
D.
An object in KerT′′ is a pair (B ∈ H′, b : T ′′(B) → I). We get an object in

KerG′, (T ′(B), G′(T ′(B))
α′

B→ T ′′(PF (B)) = T ′′(B)
b→ I), and we define

D(B, b) = PT

(
T ′(B), bα′

B

)

An arrow in KerT′′ is [A, x] : (B1, b1 : T ′′(B1) → I) → (B2, b2 : T ′′(B2) → I),
with [A, x] : B1 ◦ // B2 a morphism in H′/〈H,F〉 (with representative x :
B1 → F (A)⊗B2) such that the following diagram commutes

T ′′(B1)
T ′′[A,x] //

b1
##FF

FF
FF

FF
F T ′′(B2)

b2
{{xx

xx
xx

xx
x

I

We define

D[A, x] = [A, ?] : (PT (T ′(B1)), b1α
′
B1

) ◦ // (PT (T ′(B2)), b2α
′
B2

)

where the arrow part must be an arrow ? : (T ′(B1), b1α
′
B1

) → T (A)⊗(T ′(B2), b2α
′
B2

)

in KerG′, that is an arrow ? : T ′(B1) → eG′(T (A)) ⊗ T ′(B2) in G′ making
commutative the following diagram

G′(T ′(B1))
G′(?) //

α′
B1

²²

G′(eG′(T (A))⊗ T ′(B2))

can

²²
T ′′(B1)

b1

²²

G′(eG′(T (A)))⊗G′(T ′(B2))

ε
G′ (T (A))⊗α′

B2
²²

I T ′′(B2)b2
oo I ⊗ T ′′(B2)can

oo

For this, we take

? : T ′(B1)
T ′(x) // T ′(F (A)⊗B2)

can' T ′(F (A))⊗ T ′(B2)
α−1

A
⊗1

// eG′(T (A))⊗ T ′(B2)
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and, to check that it is an arrow in the kernel of G′, one uses that (β, λ) is a
2-cell in the 2-category of morphisms CG→ (see ii) in Remark 4.2).
In this way, we have defined D : KerT′′ → G/〈H,T〉. It is easy to verify
that it is well-defined and that it is a functor. To prove that its (obvious)
monoidal structure is natural with respect to the arrows of KerT′′, one uses
the compatibility condition between the precrossed structure and the crossed
structure of T ′ : H′ → G′ (see condition (cr4) of the definition of categorical
crossed module in Section 2). |||||

Remark 4.7 Observe that in the previous proposition, the assumption that
G′ is essentially surjective is needed only to get that Ĝ′ slso is essentially
surjective.

For the sake of generality, let us point out that, to establish the results of
Section 3 and Section 4 we do not need condition (cr3) in the definition of
categorical crossed module.

5 The “inner derivations” categorical crossed module

We first recall the notion of derivation of categorical groups given in [18] (see
also [17,19]: Let a G-categorical group H be given, a derivation from G into
H is a functor D : G → H together with a family of natural isomorphisms
β = β

X,Y
: D(X ⊗ Y ) → D(X) ⊗ X

D(Y ), X, Y ∈ G, verifying a coherence
condition with respect to the canonical isomorphisms of the action.

Given two derivations (D, β), (D′, β′) : G → H, a morphism from (D, β) to
(D′, β′) consists of a natural transformation ε : D → D′ compatible with β
and β′ in the sense the reader can easily write.
The vertical composition of natural transformations determines a composi-
tion for morphisms between derivations so that we can consider the category
Der(G,H) of derivations from G into H, which is actually a groupoid. This
groupoid is pointed by the trivial derivation, that is, the pair (D0, β0) where
D0 is the constant functor with value the unit object I ∈ H and β0 is given
by canonicals.
If G = G[0] and H = H[0] are the discrete categorical groups associated to
groups G and H, then Der(G,H) is the discrete groupoid associated to the set
Der(G,H) of derivations from G into the G-group H. Now in [38], Whitehead
shows that Der(G,H) is a monoid provided that H is a G-crossed module. We
will first show an analogous result for categorical groups. That is, if (H,T, ν, χ)
is a categorical G-crossed module, then the groupoid Der(G,H) has a natural
monoidal structure, which is inherited from the G-crossed module structure
in H. When G is discrete, this fact was already observed in [18]. We first show
the following:
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Lemma 5.1 If (H,T, ν, χ) is a categorical G-crossed module, then there are
functors of pointed groupoids:

σ : Der(G,H) −→ EndCG(G) and θ : Der(G,H) −→ EndCG(H).

Proof : The functor σ : Der(G,H) −→ EndCG(G) is defined on objects
(D, β) ∈ Der(G,H) by σ(D, β) = (σ

D
, µσ

D
) where, for any X ∈ G and for

any arrow f in G,

σ
D
(X) = T (D(X))⊗X and σ

D
(f) = T (D(f))⊗ f .

Besides, for any X,Y ∈ G, (µσ
D

)
X,Y

: TD(X ⊗ Y )⊗X ⊗ Y → TD(X)⊗X ⊗
TD(Y )⊗Y is the composition (µσ

D
)

X,Y
= (1⊗ν

X,D(Y )
⊗1) ·((µ

T
)

D(X),XD(Y )
⊗1) ·

(T (β
X,Y

)⊗ 1). On arrows ε : (D, β) → (D′, β′), σ(ε) is given, for any X ∈ G,
by σ(ε)

X
= T (ε

X
)⊗ 1 : TD(X)⊗X → TD′(X)⊗X.

As far as the functor θ : Der(G,H) −→ EndCG(H) is concerned, it is defined
on objects (D, β) ∈ Der(G,H) by θ(D, β) = (θ

D
, µ

θ
D

) where, for any object

A ∈ H and for any arrow u ∈ H,

θ
D
(A) = DT (A)⊗ A and θ

D
(u) = DT (u)⊗ u .

Besides, for any A,B ∈ H, (µ
θ
D

)
A,B

: DT (A ⊗ B) ⊗ A ⊗ B → DT (A) ⊗ A ⊗
DT (B)⊗B is the composition (µ

θ
D

)
A,B

= (1⊗ χ
A,DT (B)

⊗ 1) · (β
T (A),T (B)

⊗ 1) ·
(D((µ

T
)

A,B
)⊗1). On arrows ε : (D, β) → (D′, β′), θ(ε) is given, for any A ∈ H,

by (θ(ε))
A

= ε
T (A)

⊗ 1 : DT (A)⊗ A → D′T (A)⊗ A. |||||

Both groupoids EndCG(G) and EndCG(H) are monoidal grupoids where the
tensor functor is given by composition of endomorphisms. Now, using the
endomorphism σ

D
defined in the above lemma, we can establish the following:

Theorem 5.2 If (H,T, ν, χ) is a categorical G-crossed module, then there
is a natural monoidal structure on Der(G,H) such that σ : Der(G,H) →
EndCG(G) and θ : Der(G,H) → EndCG(H) are monoidal functors.

Proof : The tensor functor for Der(G,H) is given, on objects, by (D1, β1) ⊗
(D2, β2) = (D1 ⊗D2, β1 ⊗ β2) where, for any X ∈ G,

(D1 ⊗D2)(X) = D1(σD2
(X))⊗D2(X) = D1(TD2(X)⊗X)⊗D2(X)

and, for any X,Y ∈ G, (β1 ⊗ β2)X,Y
is given by the composition:
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(D1 ⊗D2)(X ⊗ Y ) = D1 σ
D2

(X ⊗ Y )⊗D2(X ⊗ Y )

can

²²
D1(σD2

(X)⊗ σ
D2

(Y ))⊗D2(X ⊗ Y )

β1⊗β2

²²

D1 σ
D2

(X)⊗ σ
D2

(X)
D1 σ

D2
(Y )⊗D2(X)⊗ XD2(Y )

can

²²
D1 σ

D2
(X)⊗ TD2(X)[XD1 σ

D2
(Y )]⊗D2(X)⊗ XD2(Y )

1⊗χ⊗1

²²
D1 σ

D2
(X)⊗D2(X)⊗ XD1 σ

D2
(Y )⊗ XD2(Y )

can

²²
D1 σ

D2
(X)⊗D2(X)⊗ X [D1 σ

D2
(Y )⊗D2(Y )]

(D1 ⊗D2)(X)⊗ X(D1 ⊗D2)(Y )

.

It is straightforward to prove (D1 ⊗ D2, β1 ⊗ β2) ∈ Der(G,H). As for ar-
rows ε1 : (D1, β1) → (D′

1, β
′
1) and ε2 : (D2, β2) → (D′

2, β
′
2), we define, for any

X ∈ G, (ε1 ⊗ ε2)X
= [D′

1(T ((ε2)X
) ⊗ 1) ⊗ (ε2)X

] · [(ε1)TD2(X)⊗X
⊗ 1] and again

it is straightforward to see that ε1 ⊗ ε2 is a morphism of derivations.
This tensor functor defines a monoidal structure on the groupoid Der(G,H)
where the associativity canonical isomorphism is defined using the associativ-
ity morphisms in G and H together with the isomorphism µ of the monoidal
structure of T. The unit object is the trivial derivation (D0, β0) and the right
and left unit constraints are also defined by using canonical isomorphisms of
G, H and T (see [18] for the particular case of G being discrete).
Finally, the monoidal structure of the functor σ, (µσ)

D1,D2
: σ

D1⊗D2
→ σ

D1
σ

D2

is given, for any X ∈ G, by (µσ)
X

= µ
D1(TD2(X)⊗X),D2(X)

⊗ 1, and the corre-
sponding one for θ, (µθ)D1,D2

: θ
D1⊗D2

→ θ
D1

θ
D2

is given, for any A ∈ H, by
(µθ)A

= D1(µ
−1
D2T (A),A

)⊗ 1.

The required verifications of all these facts are straightforward. For instance,
the coherence condition for µθ means that, for derivations (Di, βi), i = 1, 2, 3
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the following diagram has to be commutative:

θ
D1

(θ
D2

θ
D3

)

nnnnnnnnnnnn

nnnnnnnnnnnn

(θ
D1

θ
D2

)θ
D3

θ
D1

θ
D2⊗D3

θ
D1
·(µθ)

D2,D3

ggOOOOOOOOOOOO

θ
D1⊗D2

θ
D3

(µθ)
D1,D2

·θ
D3

OO

θ
D1⊗(D2⊗D3)

(µθ)
D1,D2⊗D3

OO

θ
(D1⊗D2)⊗D3

.
(µθ)

D1⊗D2,D3

ggPPPPPPPPPPPP θa

77oooooooooooo

It is easy to see that the commutativity of this diagram follows from the
commutativity, for any A ∈ H, of the following one:

1

u

ÄÄ¡¡
¡¡

¡¡
¡¡

¡¡
¡¡

¡

f

ÂÂ>
>>

>>
>>

>>
>>

>>

(I)

2

v

ÂÂ>
>>

>>
>>

>>
>>

>>
w //

(II)

3

t

²²

(III)

4hoo

g

²²
5 6koo

(5)

where:

1 = T
(
D2T

(
D3T (A)⊗ A

)
⊗D3T (A)⊗ A

)
,

2 = TD2T
(
D3T (A)⊗ A

)
⊗ T

(
D3T (A)⊗ A

)
,

3 = TD2

(
TD3T (A)⊗ T (A)

)
⊗ T

(
D3T (A)⊗ A

)
,

4 = T
(
D2

(
TD3T (A)⊗ T (A)

)
⊗D3T (A)⊗ A

)
,

5 = TD2

(
TD3T (A)⊗ T (A)

)
⊗ TD3T (A)⊗ T (A),

6 = T
(
D2

(
TD3T (A)⊗ T (A)

)
⊗D3T (A)

)
⊗ T (A),

and
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u = µ
D2T (D3T (A)⊗A),D3T (A)⊗A

, v = TD2(µD3T (A),A
)⊗ µ

D3T (A),A
, t = 1⊗ µ

D3T (A),A

f = T (D2µD3T (A),A
⊗1), g = µ

D2(TD3T (A)⊗T (A))⊗D3T (A),A
, h = µ

D2(TD3T (A)⊗T (A)),D3T (A)⊗A

k = µ
D2(TD3T (A)⊗T (A)),D3T (A)

⊗ 1, w = TD2(µD3T (A),A
)⊗ 1.

Now, diagram (5) is commutative because (I) is commutative by naturality of
µ, (II) is commutative by bifunctoriality of ⊗ in G and (III) is commutative
due to the coherence condition for µ (omitting the associativity isomorphisms).

|||||

Let us recall now [37] that, for any monoidal category C, the Picard cate-
gorical group P(C) of C is the subcategory of C given by invertible objects
and isomorphisms between them. Clearly, P(C) is a categorical group and
any monoidal functor F : C → D restricts to a homomorphism of categorical
groups P(F ) : P(C) → P(D). In this way, there is a 2-functor P from the
2-category of monoidal categories to CG.

Definition 5.3 For any categorical group G and any categorical G-crossed
module (H,T, ν, χ) we define the Whitehead categorical group of derivations
Der∗(G,H) as the Picard categorical group, P(Der(G,H)), of the monoidal
category Der(G,H) introduced in Theorem 5.2.

Let us observe that this definition gives a 2-functor

Der∗(G,−) : G− cross
Der(G,−) // Mon. Cat.

P // CG
which is actually left 2-exact in the sense asserted in the following proposition
(c.f. [19]).

Proposition 5.4 Let (F, η, α) : (H,T, ν, χ) → (H′,T′, ν ′, χ′) be a morphism
of categorical G-crossed modules. Consider the categorical G-crossed module
structure in the kernel KerF inherited via T (see Example 2.6 v)). Then the
categorical group Der∗(G, KerF) is isomorphic to the kernel of the induced
homomorphism F∗ : Der∗(G,H) −→ Der∗(G,H′′). In particular the sequence

Der∗(G, KerF)
j∗ // Der∗(G,H) F∗ // Der∗(G,H′′)

is 2-exact.

Proof : This follows from the fact that Der(G,−) is representable by the
semidirect product H o G. When G is discrete this is proved in [17] and the
proof still works for any categorical group G. |||||

We remark that, when G = G[0] and H = H[0], the categorical group
Der∗(G,H) is exactly the discrete one associated to the Whitehead group
Der∗(G,H) of the regular derivations from G into H [38,20]. Also, note that
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if (A, c) is a G-module then Der∗(G,A) = Der(G,A), where the latter is the
categorical group of derivations studied in [18].
In the general case, if we apply the 2-functor P to the monoidal functor
θ : Der(G,H) → EndCG(H) (see Theorem 5.2), we obtain a homomorphism of
categorical groups, also denoted by θ, θ : Der∗(G,H) −→ Eq(H) which defines
in H a structure of Der∗(G,H)-categorical group. Explicitly, this structure is
given, for any (D, β) ∈ Der∗(G,H) and A ∈ H, by

(D,β)A = θ
D
(A) = DT (A)⊗ A . (6)

Using Theorem 5.2 we obtain the following characterization of the objects of
Der∗(G,H), that is, of the invertible derivations, whose proof is left to the
reader (c.f. [18]).

Proposition 5.5 Let G be a categorical group and (H,T, ν, χ) a categorical
G-crossed module. Then, the following statements on a derivation (D, β) are
equivalent: a) (D, β) ∈ Der∗(G,H), b) σ

D
∈ Eq(G), c) θ

D
∈ Eq(H).

If G is a group and H is a G-crossed module, then the morphism H →
Der∗(G,H) from H to the Whitehead group of regular derivations Der∗(G,H),
given by inner derivations, is a crossed module of groups (see [27]). This fact
translates also to our context:
Suppose a categorical G-crossed module (H,T, ν, χ) be given. Any object
A ∈ H defines a inner derivation (D

A
, β

A
) : G → H given, for any X ∈ G,

by D
A
(X) = A ⊗ XA∗ and where (β

A
)

X,Y
is a composition of canonical iso-

morphisms (see [18,19]). It is easy to see that (D
A
, β

A
) ∈ Der∗(G,H) and we

have:

Proposition 5.6 The functor T : H −→ Der∗(G,H) given by inner deriva-
tions, T (A) = (D

A
, β

A
), defines a homomorphism of categorical groups.

Proof : The natural isomorphisms µ
A,B

: T (A ⊗ B) −→ T (A) ⊗ T (B) are
given, for any X ∈ G, by the following composition:

D
A⊗B

(X) = A⊗B ⊗ X(A⊗B)∗

can

²²
A⊗D

B
(X)⊗ XA∗

1⊗χ−1

D
B

(X), XA∗
²²

A⊗ TD
B

(X)( XA∗)⊗D
B
(X)

can

²²
(D

A
⊗D

B
)(X) = A⊗ (TD

B
(X)⊗X)A∗ ⊗D

B
(X) .

The required coherence condition for µ̄ follows from the ones of the canonical
isomorphisms involved in the definition as well as those χ satisfies. |||||
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And, as in the case of groups, we have:

Proposition 5.7 Let (H,T, ν, χ) be a categorical G-crossed module. For any
(D, β) ∈ Der∗(G,H) and A,B ∈ H, there are natural isomorphisms

ν
(D,β),A

: T ( (D,β)A)⊗ (D, β) −→ (D, β)⊗ T (A), χ
A,B

: T (A)B ⊗ A −→ A⊗B

such that (H,T, ν, χ) is a categorical Der∗(G,H)-crossed module, where the
action of Der∗(G,H) on H is given in (6).

Proof : For any X ∈ G, (ν
(D,β),A

)
X

: (D
DT (A)⊗A

⊗D)(X) −→ (D ⊗D
A
)(X) is

given by the following composition:

DT (A)⊗ A⊗ (TD(X)⊗X)(DT (A)⊗ A)∗ ⊗D(X)

1⊗χ
D(X), X(DT (A)⊗A)∗

²²
DT (A)⊗ A⊗D(X)⊗ XA∗ ⊗ XDT (A)∗

1⊗χ−1
A,D(X)

⊗1

²²
DT (A)⊗ T (A)D(X)⊗ A⊗ XA∗ ⊗ XDT (A)∗

1⊗χ−1

D
A

(X), XDT (A)∗
²²

DT (A)⊗ T (A)D(X)⊗ (TD
A

(X)⊗X)DT (A)∗ ⊗D
A
(X)

can

²²
DT (A)⊗ T (A)[D(X)⊗ (T ( XA∗)⊗X)DT (A)∗]⊗D

A
(X)

1⊗ T (A)[1⊗ ν
X,A∗(DT (A)∗)]⊗1

²²
DT (A)⊗ T (A)[D(X)⊗ (X⊗T (A∗))DT (A)∗]⊗D

A
(X)

can

²²
DT (A)⊗ T (A)[D(X)⊗ XDT (A∗)]⊗D

A
(X)

1⊗ T (A)β−1
X,T (A∗)⊗1

²²
DT (A)⊗ T (A)D(X ⊗ T (A∗))⊗D

A
(X)

1⊗ T (A)D(ν−1
X,A∗ )⊗1

²²
DT (A)⊗ T (A)D(T ( XA∗)⊗X)⊗D

A
(X)

β−1

T (A),T ( XA∗)⊗X
⊗1

²²
D(T (A)⊗ T ( XA∗)⊗X)⊗D

A
(X)

can

²²
D(TD

A
(X)⊗X)⊗D

A
(X) .
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For any A,B ∈ H, χ
A,B

is given by the following diagram:

T (A)B ⊗ A
χ

A,B // A⊗B

A⊗ T (B)A∗ ⊗B ⊗ A 1⊗χ
B,A∗⊗1

// A⊗B ⊗ A∗ ⊗ A .

can

OO

We will only write down the proof of condition (cr4) and all the other con-
ditions are proved in a similar way. To prove (cr4) is equivalent to verify
the commutativity of the following diagram, where we have omitted all the
canonical isomorphisms:

1

(I)

1⊗χ⊗1 //

1⊗χ−1⊗1

²²

2

(III)

1⊗Xχ−1⊗1 //

1⊗χ−1⊗1

%%KKKKKKKKKKKKKKKKKKK 3

1⊗χ−1

²²

4

1⊗ ν(T (B)A)⊗1

99sssssssssssssssssss

5
(II)

1⊗χ⊗1

99ssssssssssssssssssssssssssssssssssssssss

1⊗χ−1

²²

1⊗χ−1

%%LLLLLLLLLLLLLLLLLLL 6
(V)

7
(VI)

1⊗χ−1⊗1
(VII)

§§±±
±±
±±
±±
±±
±±
±±
±±
±±
±±
±±
±±
±±
±±
±±
±±
±±
±

1⊗χ−1⊗1

²²

1⊗ ν(T (B)A)⊗1

%%LLLLLLLLLLLLLLLLLLL
1⊗χ⊗1 // 8

(IX)

(IV)

1⊗χ

BB§§§§§§§§§§§§§§§§§§§§§§§§§§ 1⊗ ν(T (B)A)⊗1 // 9

1⊗χ

GG±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±±

1⊗χ−1⊗1

99sssssssssssssssssss

10
1⊗ T (B)[ν(T (B)A)]⊗1

(VIII)

1⊗χ−1⊗1

££¦¦
¦¦

¦¦
¦¦

¦¦
¦¦

¦¦
¦¦

¦¦
¦¦

¦¦
¦¦

¦¦

²²

11

(XIII)

1⊗χ−1⊗1

yyssssssssssssssssss

1⊗χ⊗1

99ssssssssssssssssss

12
1⊗χ−1⊗1 // 13

(X)

(XI)
1⊗χ⊗1

OO 1⊗χ⊗1

BB§§§§§§§§§§§§§§§§§§§§§§§§§§

1⊗ T (B)(νA∗)⊗1

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

14

(XII) (XIV)1⊗ T (B)[ν(T (B)A)]⊗1

44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1⊗ T (B)( νD

A
T (B)∗)⊗1

// 15

1⊗ T (B)D
A

(ν−1)⊗1

OO

being:

1 = D
A
T (B)⊗B ⊗ A⊗ X

(
D

A
T (B)⊗B ⊗ A

)∗
,

2 = A⊗B ⊗ X

(
D

A
T (B)⊗B ⊗ A

)∗
,

3 = A⊗B ⊗ X(A⊗B)∗,
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4 = A⊗B ⊗ XA∗ ⊗ T ( XB∗)
(

(X⊗T (B))A
)
⊗ XB∗ ⊗ XA∗,

5 = D
A
T (B)⊗ T (B)D

A
(X)⊗B ⊗ X

(
D

A
T (B)⊗B

)∗
,

6 = A⊗ TD
B

(X)( XA∗)⊗D
B
(X),

7 = A⊗ (T (B)⊗X)A∗ ⊗B ⊗ T ( XB∗)
(

(X⊗T (B))A⊗ XA∗
)
⊗ XB∗,

8 = A⊗B ⊗ XA∗ ⊗ T ( XB∗)
(

(X⊗T (B))A⊗ XA∗
)
⊗ XB∗,

9 = A⊗B ⊗ XA∗ ⊗ (X⊗T (B∗))
(

T (B)A
)
⊗ T ( XB∗)( XA∗)⊗ XB∗,

10 = A⊗ (T (B)⊗X)A∗ ⊗ (TD
B

(X)⊗X)

(
T (B)A

)
⊗B ⊗ (T ( XB∗)⊗X)A∗ ⊗ XB∗,

11 = A⊗ (T (B)⊗X)A∗ ⊗B ⊗ (X⊗T (B∗))
(

T (B)A
)
⊗ T ( XB∗)( XA∗)⊗ XB∗,

12 = A⊗ (T (B)⊗X)A∗ ⊗ (T (B)⊗X)A⊗B ⊗ (T ( XB∗)⊗X)A∗ ⊗ XB∗,

13 = A⊗ (T (B)⊗X)A∗ ⊗ (T (B)⊗X)A⊗ (T (B)⊗T ( XB∗))
(

XA∗
)
⊗D

B
(X),

14 = D
A
T (B)⊗ T (B)D

A
(X)⊗ TD

B
(X)

(
XD

A
T (B)∗

)
⊗D

B
(X),

15 = D
A
T (B)⊗ T (B)D

A
(X)⊗ T (B)

(
(X⊗T (B∗))D

A
T (B)∗

)
⊗D

B
(X).

Now, diagrams (I), (VII), (X) and (XIII) are commutative by applying con-
dition (cr2) of the given G-crossed module; (II) is commutative by bifuncto-
riality of ⊗ and by (cr2); (III) is commutative by (cr3); (IV) and (V) are
commutative by (cr1); (VI) and (IX) are commutative by bifunctoriality of
⊗; (VIII) and (XII) are commutative by naturality of χ; (XI) is obviously
commutative and finally (XIV) is commutative by naturality of the canonical
isomorphism ψ of the action of G on H and by bifunctoriality of ⊗ . |||||

This categorical crossed module, given by inner derivations, provides the key
to develop below a low-dimensional cohomology for categorical groups with
coefficients in categorical crossed modules.

6 Cohomology with coefficients in categorical crossed modules.

We will define cohomology categorical groups at dimensions 0 and 1. Let us
first remember (c.f. [20,27]) that if G is a group and H is a G- crossed module,
then the cohomology groups H0(G,H) and H1(G,H) are, respectively, the
kernel and the cokernel of the group homomorphism H → Der(G,H), given
by inner derivations.

Now consider a categorical G-crossed module 〈H,T, ν, χ〉, and let 〈H,T :
H→ Der∗G,H), ν, χ〉 be the categorical Der∗(G,H)-crossed module we have
obtained in the previous section. Then taking into account what we have
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recalled for groups, we give the following definition:

Definition 6.1 Let G be a categorical group and 〈H,T, ν, χ〉 a categorical G-
crossed module. Then zero-th and first cohomology categorical groups of G with
coefficients in 〈H,T, ν, χ〉, are defined by

H0(G,H) = Ker(T : H→ Der∗(G,H))

H1(G,H) = Der∗(G,H)/〈H,T〉
where the second one is the quotient categorical group built in Section 3 for
the categorical crossed module 〈H,T, ν, χ〉.

Both definitions are functorial. Indeed, the existence of a 2-functor

H0(G,−) : G− cross −→ CG

is consequence of the fact that the kernel construction is 2-functorial. For the
2-functoriality of H1 we first prove the following lemma:

Lemma 6.2 Let (F, η, α) : 〈H,T, ν, χ〉 −→ 〈H′,T′, ν ′, χ′〉 be a morphism of
categorical G-crossed modules, then it extends to a morphism in PreCross
between the associated inner derivations categorical crossed modules:

(F,F∗, η∗, α∗) : 〈H,T, ν, χ〉 −→ 〈H′,T′
, ν, χ〉

Furthermore, if γ : (F, η, α) ⇒ (F′, η′, α′) is a 2-cell in G − cross, it induces
a 2-cell in PreCross, (γ, γ∗) : (F,F∗, η∗, α∗) ⇒ (F′,F′∗, η

′
∗, α

′
∗).

Proof : We first recall that the functor F∗ : Der∗(G,H) → Der∗(G,H′)
sends a derivation (D, β) ∈ Der∗(G,H) to F∗(D, β) = (FD,F∗β), where,
for any X,Y ∈ G, (F∗)X,Y

= (1⊗ η
X,D(Y )

) · F (β
X,Y

). The natural isomorphism

α∗ : F∗T ⇒ T
′
F applies any object A ∈ H to the morphism of derivations

(α∗)A
: (FD

A
, F∗βA

) ⇒ (D
F (A)

, β
F (A)

) which, for any X ∈ G, is given by the
commutativity of the following diagram

F (A⊗ XA∗)
((α∗)A

)
X //

can

²²

F (A)⊗ XF (A)∗

can

²²
F (A)⊗ F ( XA∗) 1⊗η

X,A∗
// F (A)⊗ XF (A∗)

For any (D, β) ∈ Der∗(G,H) and A ∈ H, the natural isomorphism ((η)∗)(D,β),A
:

F ( (D,β)A) → (FD,F∗β)F (A) is the composition

F (DT (A)⊗ A)
can' FDT (A)⊗ F (A)

FD(α
A

)⊗1 // FDT ′F (A)⊗ F (A)
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The verification that (F,F∗, η∗, α∗) is in fact a morphism of categorical pre-
crossed modules is straightforward. We only point out that the commutativity
of diagram (2) follows from the compatibility condition between the natural
isomorphisms χ, χ′ (see Section 2).

Finally the 2-cell γ∗ : F∗ ⇒ F′∗ : Der∗(G,H) → Der∗(G,H′) is given, for any
(D, β) ∈ Der∗(G,H) and X ∈ G, by ((γ∗)(D,β

)X = γ
D(X)

: FD(X) → F ′D(X).
|||||

Then, by Proposition 4.3 we have a 2-functor:

H1(G,−) : G− cross −→ CG

which applies a morphism (F, η, α) : 〈H,T, ν, χ〉 −→ 〈H′,T′, ν ′, χ′〉 to the
morphism of categorical groups F̂∗ : H1(G,H) −→ H1(G,H′).

Remark 6.3 The categorical group H0(G,H) is equivalent to the categori-
cal group of G-invariant objects HG constructed in [18,19] as follows: A G-
invariant object of H consists of a pair (A,ϕ

A
), where A ∈ H and ϕ

A
=(

ϕX
A

: XA → A
)

X∈G is a family of natural isomorphisms in H such that

ϕX⊗Y
A

= ϕX
A

XϕY
A
φ

X,Y,A
, for any X,Y ∈ G. An arrow u : (A,ϕ

A
) → (B,ϕ

B
) is

an arrow u : A → B in H such that uϕX
A

= ϕX
B

Xu, for any X ∈ G.

Example 6.4 i) If (H, T, ν, χ) is a discrete categorical G-crossed module, i.e.
it is induced by a crossed module of groups, then π0(Hi(G,H)), i = 0, 1, are
the cohomology groups of G with coefficients in H as defined in [27].

ii) Let A be a G-module and consider the categorical G-crossed module 0 :
A→ G (see Example 2.6 iii)). Then the cohomology categorical groupH0(G,A)
and H1(G,A) coincide with those defined in [18]. Therefore we have, when
G = G[0] and A is symmetric,

π1(H0(G,A)) = π1(A)G = H0
Ulb(G,A)

π0(H1(G,A)) = H2
Ulb(G,A)

and

π0(H0(G,A)) = π1(H1(G,A)) = H1
Ulb(G,A)

where H i
Ulb(G,A), i = 0, 1, 2, are the cohomology groups defined by Ulbrich

in [36].

Definition 6.5 Consider three categorical G-crossed modules 〈H,T : H →
G, ν, χ〉, 〈H′,T′ : H′ → G, ν ′, χ′〉 and 〈H′′,T′′ : H′′ → G, ν ′′, χ′′〉 and two
composable morphisms of categorical G-crossed modules (F′, η′, α′) : 〈H′,T′ :
H′, ν ′, χ′〉 → 〈H,T, ν, χ〉 and (F, η, α) : 〈H,T, ν, χ〉 → 〈H′′,T′′, ν ′′, χ′′〉. Con-
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sider also a 2-cell β from the composite morphism to the zero morphism

β ⇑
H′ F ′ //

T ′
&&MMMMMMMMMMMM

0

%%
H F //

T
²²

H′′

T ′′
xxpppppppppppp

α′⇒

G

α⇒

This sequence is called a short exact sequence of categorical G-crossed modules
if the triple (F′, β,F) is an extension in the sense of Definition 4.4.

Now we obtain the main result of this section.

Proposition 6.6 For a short exact sequence of categorical G-crossed modules,
as defined above, there is a natural induced 2-exact sequence of categorical
groups

H0(G,H′) F̂′ //H0(G,H) F̂ //H0(G,H′′)
∆

wwooooooooooo

H1(G,H′) F̂′∗ //H1(G,H)
F̂∗ //H1(G,H′′)

Moreover the functor F̂ ′ is faithful.

Proof : By lemma 6.2 we have a diagram of arrows and 2-cells in PreCross

β ⇑
H′ F ′ //

T
′
²²

α′∗⇒

0

))H F //

T
²²

α∗⇒

H′′

T
′′

²²
Der∗(G,H′)

F ′∗
//

0

44Der∗(G,H)
F∗

// Der∗(G,H′′)
β∗ ⇓

By Proposition 5.4, the triple (F′∗, β∗,F∗) is 2-exact and F̂ ′ is faithful. The
existence of the six-term 2-exact sequence follows now from Proposition 4.6
and Remark 4.7. |||||

Remark 6.7 We want to end making again the differences between the ap-
proach in this paper and the approaches in other papers on crossed modules
clear. For it, let us point out that we focus our attention in the 2-dimensional
aspects of categorical groups (or crossed modules) instead of their non-strict
(or strict) structure. The point is that most of the existing literature considers
crossed modules as the objects of a category whereas we consider categorical
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groups as the objects of a 2-category. This completely changes the theory: Ho-
mological Algebra is, in some sense, the study of classes of morphisms (monos,
epis) and then of those limits we use to describe them (kernels, cokernels).
Now, kernels and cokernels in the category of crossed modules have definitely
no universal property in the 2-category of crossed modules, and viceversa,
kernels and cokernels (in the sense of bilimits) computed in the 2-category
of crossed modules have no universal property in the underlying category of
crossed modules. For instance, the kernel in the category of crossed modules of
a morphism of crossed modules (f1, f0) : (δ : H → G) → (δ′ : H ′ → G′) is the
induced Ker(f1) → Ker(f0), whereas, in the 2-category of crossed modules,
the objects of the kernel are the elements of the pullback G×G′ H

′. This last
construction could seem quite artificial, but if you consider the associated di-
agram of categorical groups G(δ) → G(δ′), the kernel is simply the homotopy
fibre over the unit object and therefore, the objects are precisely the elements
of the above pullback.
Another example where to see the difference between the categorical and the
2-categorical theory is the classification of split extensions. Thus, split ex-
tensions of a crossed module δ by a crossed module δ′ (using kernels in the
category of crossed modules) are classified by morphisms of crossed modules
from δ to the actor Act(δ′), where the latter is the crossed module defined by
Norrie in [30]. Passing to the associated categorical groups, this means that
split extensions of G(δ) by G(δ′) are classified by morphisms from G(δ) to
the categorical group of monoidal automorphisms of G(δ′). On the contrary if
we define split extensions of crossed modules using kernel in the 2-categorical
sense, then split extensions of G(δ) by G(δ′) correspond to categorical group
morphisms from G(δ) to Eq(G(δ′)), where the last one is the categorical group
of monoidal autoequivalences (see [2,16]).
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