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Introduction

The notion of exact category is one of the most interesting notion stud-
ied in category theory. In fact, several important mathematical situations can
be axiomatized in categorical terms as exact categories satisfying some typical
axioms. Let us clarify this fact with some examples.

The categorical setting for homological algebra is given by abelian categories;
an abelian category is an exact category satisfying moreover the typical axiom
which holds in module categories, i.e. the set of homomorphisms between two
objects is an abelian group and composition is a group homomorphism.

The categorical generalization of a space, or, better, of the category of
sheaves on a space, is given by the notion of Grothendieck topos; a Grothendieck
topos is an exact category with a set of generators satisfying moreover typical
axioms which are true for sheaves: sums are disjoint and universal.

The categorical counterpart of universal algebra is given by monads over
SET ; a monadic category over SET is an exact category satisfying moreover
some extra-assumptions saying that there exist free algebras and each algebra
is a quotient of a free one.

Another important example is given by elementary topo, i.e. the categorical
universes in which to develop mathematics; of course, an elementary topos is
an exact category.

Now, after a little bit of publicity to the notion of exact category, let us
recall the definition:
a category is exact if

i) is left exact

ii) each arrow can be factored as a regular epi followed by a mono and regular
epis are pullback stable

iii) equivalence relations are effective

A category satisfying i) and ii) is also called regular.
(By the way, a category which is exact in the sense of the above definition

is sometimes called “Barr-exact”. This is to avoid confusion with other, not
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6 . INTRODUCTION

equivalent, notions of exact category used, for example, in algebraic K-theory.
The reference to Barr is due to the fact that one of the first, maybe the first, work
in which our definition can be found is Barr’s contribution in [2]. Nevertheless,
this definition is older, at least as Tierney’s theorem characterizing abelian
categories. For a general introduction to regular and exact categories, the reader
can refer to [8]).

Looking at the previous definition, the question naturally arising is: given a
left exact category C, can one “complete C in the best possible way” to obtain
a regular category or an exact category?

Let us start with the problem of the exact completion. More exactly, the
question is: given a left exact category C, do there exist an exact category
Cex and a left exact functor Γ: C -Cex which are universal? Here universal
means that, for each exact category B, composing with Γ induces an equivalence
between the category of exact functors from Cex to B and the category of left
exact functors from C to B. (Recall that a functor between regular or exact
categories is exact when it is left exact and preserves regular epis).

The answer is affirmative: in fact, following a suggestion of A. Joyal, A.
Carboni and R. Celia Magno in [15] have given an explicit construction of the
free exact category Γ: C -Cex over a left exact one.

As usual, one of the points of interest in performing this free construction
is that if one wants to study the exact functors between two exact categories
A and B and A is free over a certain left exact base C (that is A is equivalent
to Cex), then one can equivalently look at the left exact functors from C to B,
which can be considerably easier.

Of course, to make this, one must be able to recognize when an exact category
is free, that is one needs a characterization of free exact categories.

In fact, Carboni and Celia Magno give the following elegant characterization
theorem:
an exact category A is free if and only if the two following conditions are satisfied
(“projective” means “regular projective”):

1) A has enough projectives (that is each object is quotient of a projective
one)

2) the full subcategory P (A) of projective objects is closed in A under finite
limits.

When this is the case, A is free over P (A).
Some interesting applications of those results have been found, for example,

in the study of the so called Effective topos (see [14]) and for the construction of
the free abelian category over an additive one (cf. [1] and [15]). However, there
exist important examples of exact categories which satisfy the first condition of
the characterizing theorem but not the second one.

The two crucial examples are the following:
the category of algebras for a monad over SET is exact and has enough projec-
tives, because free algebras are projective and each algebra is quotient of a free
one;
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each presheaf on a small category is quotient of a sum of representable presheaves
which are projective objects in the exact category of presheaves.

The question naturally arising is then whether an exact category with enough
projectives is free in some sense; this leads to look more carefully at the full
subcategory of projective objects of a category with enough projectives.

We have said that, if the whole category A is left exact, the full subcategory
P (A) is not necessarily so; nevertheless in P (A) remains a trace of the left
exactness of A.

Consider, for example, two projective objects P1 and P2 and their product

P1
π1� P1 × P2

π2-P2

in A: there are no reasons why P1 × P2 is projective but, as the projective are
“enough”, one can consider a projective cover of P1 × P2, that is a projective
object P and a regular epimorphism q:P -P1 × P2; now the diagram

P1
π1� P1 × P2

q� P
q-P1 × P2

π2-P2

is a “weak” product of P1 and P2 in P (A). In fact, given a projective object Q
with two arrows P1

� Q -P2, there exists a factorization Q -P which,
in general, is not unique.

This kind of argument indicates that if A is a left exact category (in partic-
ular an exact one) with enough projectives, then the full subcategory of P (A)
of projective objects is weakly left exact.

The next important step is then to observe that the construction of an exact
category Cex from a left exact one can be carried out even if the base C is only
weakly left exact.

Now the problem is: given a weakly left exact category C and its exact com-
pletion Cex, what kind of functors with domain C classifies the exact functors
with domain Cex and exact codomain? That is, what functors C -B (with
B exact) correspond to exact functors Cex -B? Of course, if we want the
embedding C -Cex to be universal, this functor must be an admissible one
(it must correspond to the identity of Cex).

Now, taking into account that we would like to characterize free exact cat-
egories over weakly left exact categories as exact categories with enough pro-
jectives, it is clear that we have to look at the full inclusion of P (A) in A: the
exact completion Γ: C -Cex will be of the form P (A) ↪→ A.

Keeping in mind the previous discussion on the weak left exactness of P (A),
we can axiomatize the behaviour of P (A) ↪→ A with respect to the weak limits
of P (A) with the following definition: consider a functor F : C -B with C
weakly left exact and B left exact; we say that F is left covering if the unique
factorization between the image by F of a weak finite limit in C and the corre-
sponding limit computed in B is a strong epimorphism.

Once this definition is reached, it becomes only a technical work to obtain the
universal property of the embedding Γ: C -Cex: for each exact category B,
composing with Γ induces an equivalence between the category of exact functors
from Cex to B and the category of left covering functors from C to B.
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Moreover, one can obtain the expected characterization theorem: an exact
category is free on a weakly left exact one if and only if it has enough projectives.
More exactly, if A is an exact category with enough projectives P (A), then the
unique exact extension (P (A))ex -A of the full inclusion P (A) ↪→ A is an
equivalence.

If also the domain is left exact, a left covering functor is exactly a left exact
one, so that we obtain the case discussed in [15]; in this case the exact completion
gives the left biadjoint to the inclusion of the 2-category of exact categories in
the 2-category of left exact categories.

Unfortunately, this is no longer true for the exact completion of weakly left
categories. There is no way to choose morphisms between weakly left exact
categories so that the universal property of Γ: C -Cex becomes part of an
adjunction between exact categories and weakly left exact categories.

Now that we have studied the exact completion of a weakly left exact cat-
egory, we can come back to the definition of an exact category and start again
with the analogous problem of the regular completion of a weakly left exact
category. Once again, the problem can be solved keeping in mind the left exact
case, even if the definition of Creg needs some important modifications. The
interesting functors turn out to be again the left covering functors.

Of course, one can study at first the regular completion of a weakly lex
category and then obtain the exact completion using the fact that the forget-
ful functor from the 2-category of exact categories and exact functors to the
2-category of regular categories and exact functors has a left biadjoint. Never-
theless, for the applications it is crucial to have a simple one-step description of
the exact completion.

Now that the whole story of the regular and exact completion of a weakly
left exact category has been told, we can look at the applications of this theory.

First of all, a full understanding of the characterization of our major exam-
ples.

The category EM(T) of algebras for a monad T over SET is exact and the
free algebras constitute enough projectives, so that, from the characterization
of free exact categories, to characterize EM(T) it suffices to characterize the full
subcategory KL(T) of free algebras. This last problem is only an easy exercise.

Moreover, the theory as far developed allows us to characterize some im-
portant classes of subcategories of monadic categories in terms of generators
(more precisely, we can characterize reflections, epireflections and localizations
of monadic categories over SET ).

Analogously, one can try to characterize the category of presheaves SET Dop

on a small category D; here enough projectives are provided by sums of repre-
sentable functors, so that one has only to characterize the full subcategory of
these objects, that is the sum-completion FamD of D.

Remaining in the context of Grothendieck topo, we use the universal prop-
erty of SET Dop

as exact completion of FamD to give a direct proof of the
equivalence between localizations of presheaf categories and “Giraud” topo.

Another interesting application of our results can be found in the study of



9

geometric morphisms from a cocomplete (pre)topos to a presheaf category; the
crucial point is to observe that a functor F from a small category D to a regular
category with good sums A is filtering exactly when its sum-preserving extension
F ′ from FamD to A is left covering.

Throughout the second, the third and the fourth chapter, we give some other
examples and applications; to do this, we are sometimes obliged to consider fur-
ther developments of the theory. We leave the reader with some open problems
naturally arising from the examples.

The idea of generalizing the exact completion from left exact bases to weakly
lex bases was firstly conjectured by A. Carboni during his conference at the Cat-
egory Theory 1991 in Montreal. The main results contained in this thesis has
been presented by A. Carboni and myself in a talk at the 51st PSSL (Valenci-
ennes, February 1993). Another ancestor of this work can be found in Freyd’s
work [20], where the problem of the reflection of an additive category in the
category of abelian categories is studied.

To end, I must apologize with the reader for my notation: the composition
of two arrows as

A
f-B

g-C

will be written f · g. At least, my work has a common point with the mathe-
matical production of the great mathematician Charles Ehresmann (and this is
an honour for me): to stress the reader with unusual notations.

Acknowledgements:
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Chapter 1

The exact completion

1.1 Weak limits and pseudo equivalence-relations

In this section we look at the existence of weak limits and we state a basic
fact about pseudo equivalence-relations.

Definition 1.1.1 Let L:D -C be a functor with D a small category; a
weak limit of L is a cone (πD:L -LD)D∈D0 in C such that for each other cone
(τD:C -LD)D∈D0 in C there exists a morphism τ :C -L with τ ◦πD = τD
∀ D ∈ D0; we write wlimL for such a weak limit.

So in the definition of a weak limit we require only the existence of a fac-
torization and not its uniqueness (as in the “strong” case). A first consequence
of this fact is that a functor can admit several not isomorphic weak limits; for
example, in the category SET , each not emtpy set is a weak terminal object.

Now we give some conditions for the existence of weak limits.

Proposition 1.1.2

1) the existence of weak binary products and weak equalizers implies the
existence of all weak not empty finite limits

2) the existence of weak pullbacks, of a weak terminal object T and of a weak
product of T with itself implies the existence of weak finite products

3) the existence of small weak products and of weak equalizers of small fam-
ilies of parallel arrows implies the existence of all small weak limits.

Proof:

1) the existence of weak pullbacks follows as in the strong case and in the
same way binary implies finite. Now, if L:D -C is a functor defined
on a finite category D, let us consider a weak product indexed over all the
objects D ∈ D0 with the corresponding projections

πD: (
∏

D∈D0
LD) -LD

11



12 CHAPTER 1. THE EXACT COMPLETION

and, for each arrow d:D -D′, the two parallel arrows in C

∏
D∈D0

LD
πD′

-
-

πD · Ld
LD′

and a weak equalizer of them

Ed
ed-

∏
D∈D0

LD
πD′

-
-

πD · Ld
LD′

Now we can find a weak pullback (E e
′
d-Ed)d∈D1 over the diagram of

convergent arrows (Ed
ed-

∏
D∈D0

LD)d∈D1 . It is easy to check that the
cone

(E
e

′

d-Ed
ed-

∏
D∈D0

LD πD-LD)D∈D0

is a weak limit of L;

2) let tA:A -T and tB :B -T be two arrows into the weak terminal ob-
ject T and let T π1� T×T π2-T be the required weak product. Consider
the following weak pullbacks

T1
-t1 T × T T2

-t2 T × T P -p2
T2

π
′

1

? ?

π1 π
′

2

? ?

π2 p1

? ?

t2

A -
tA

T B -
tB

T T1
-

t1
T × T

It is easy to see that A p1·π
′
1� P

p2·π
′
2-B is a weak product of A and B;

3) analogous to 1).

Let us remark that in the proof of part 1) of the previous proposition it is not
possible to work as in the strong case (cf. vol.1, ch.2 of [8]) because the family
of projections

∏
d∈D1

L(codomain(d)) -L(codomain(d)) is not in general a
monomorphic family.

Definition 1.1.3 We call a category C weakly lex (lex = left exact) if, for every
functor L:D -C defined on a finite category D, there exists a weak limit of
L.

Now some points of terminology: recall that an object P of a category is
called regular projective if, for each arrow f :P -X and for each regular epi
q:Y -X, there exists an arrow f ′:P -Y such that f ′ · q = f . For brevity,
we write projective instead of regular projective.
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Definition 1.1.4 Let C be a category and P a full subcategory of C; we say
that P is a projective cover of C if the two following conditions are satisfied:

• each object of P is projective in C

• for each object X of C there exists a P-cover of X, that is an object P of
P and a regular epi P -X.

Of course, a category C admits a projective cover if and only if it has enough
projectives; we have given the previous definition because we will often have to
distinguish between “all the projectives” and “enough projectives”. Elsewhere
a projective cover is called a resolving set of projectives (see, for example, [20]).
The relation between two projective covers of a same category is stated in the
following proposition. The terminology involved in the statement is explained
all along the proof.

Proposition 1.1.5 Let P1 and P2 be two projective covers of a category C; the
splitting of idempotents of P1 is equivalent to those of P2 (so that, if P1 and P2

are small, they are Cauchy-equivalent); in particular, if the idempotents split in
C, the splitting of idempotents of P is equivalent to the full subcategory of all
the projective objects of C.

Proof: Let us recall that the splitting of idempotents SI(P1) of the category
P1 is the category defined as follows:
objects: arrows p:A -A with A ∈ P1 and p · p = p
arrows: an arrow x: (p:A -A) - (q:B -B) is an arrow x:A -B such
that the following diagram is commutative in each part

A -p A

x
?

@
@

@R
x

?
x

B -
q B

identity: p: (p:A -A) - (p:A -A)
composition: the obvious one.

Given an arrow x: (p:A -A) - (q:B -B) in SI(P1), we can consider
a P2-cover r:A′ -A of A and a P2-cover m:B′ -B of B.

SinceA andB are projectives, there exist sections s:A -A′ and n:B -B′

(that is s · r = 1A and n ·m = 1B). It is easy to verify the commutativity of the
following diagram

A′ -r · p · s
A′

r · x · n

?

HHH
HHH

HHH
HHH

HHj

r · x · n

?

r · x · n

B′ -
m · q · n B′
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This means that

r · x · n: (r · p · s:A′ -A′) - (m · q · n:B′ -B′)

is an arrow in SI(P2).
If we think of choosing a distinguished P2-cover r:A′ -A (together with a

distinguished section s) for each object A of P1, the previous construction gives
us a functor SI(P1) -SI(P2).

Analogously one can build up a functor SI(P2) -SI(P1).
If A is in P1 and we have choosen as P2-cover r:A′ -A and as P1-cover

p:A′′ -A′ (with sections s:A -A′ and σ:A′ -A′′), we obtain a natu-
ral transformation from the composite SI(P1) -SI(P2) -SI(P1) to the
identity functor on SI(P1) taking as component at (p:A -A) the arrow

p · r · p: (p · r · p · s · σ:A′′ -A′′) - (p:A -A).

But this arrow is an isomorphism having as inverse the arrow

p · s · σ: (p ·A -A) - (p · r · p · s · σ:A′′ -A′′).

This shows that SI(P1) is equivalent to SI(P2).
To prove the remamining part of our statement, we need some general facts.

Given an idempotent p:A -A in a category X, we say that p splits if there
exist e:A -E and f :E -A such that e ·f = p and f ·e = 1E . Equivalently,
p splits if there exists the equalizer f :E -A of p and 1A; if such an equalizer
exists, then it is an absolute equalizer. We say that X is Cauchy-complete if in
X all idempotents split. The category SI(X) is then the “Cauchy-completion”
of X, that is

• SI(X) is Cauchy-complete

• there exists a full and faithful functor S: X -SI(X)

• for each functor F : X -A, with A Cauchy-complete, there exists a
unique (up to natural isomorphisms) functor F̂ :SI(X) -A such that
S · F̂ ' F .

In fact, given an idempotent x: (p:A -A) - (p:A -A) in SI(X), it splits
as

(p:A -A) x- (x:A -A) x- (p:A -A).

The functor
X -SI(X)

sends x:A -B on x: (1A:A -A) - (1B :B -B). As far as the univer-
sal property of X -SI(X) is concerned, it suffices to observe that for each
arrow x: (p:A -A) - (q:B -B) in SI(X), the following diagram is com-
mutative and each line is an absolute equalizer
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(p:A→ A) -p (1A:A→ A) -
-
p

1A

(1A:A→ A)

x

? ?

q

?

q

(q:B → B) -
q (1B :B → B) -

-
q

1B

(1B :B → B).

In particular, if in X idempotents split, then SI(X) is (equivalent to) X.
It is a well-known fact that, if X is small, SI(X) is equivalent to the full

subcategory R(X) of SET Xop
spanned by retracts of representable functors;

moreover, two small categories X and Y are Cauchy-equivalent (that is SET Xop

is equivalent to SET Yop
) if and only if R(X) is equivalent to R(Y) (cf. [8] vol.

I chap.6 5, where also the name “Cauchy-completion” is exaplained).
Coming back to our statement, it remains to prove that if idempotents split

in C, then they split in the full subcategory of projective objects: this is the
case because retracts of projective objects are projectives.

The relation between weak limits and projective covers is given in the fol-
lowing proposition.

Proposition 1.1.6 Let L:D -C be a functor defined on a small category
D and suppose that it can be factored as

D -L C
@

@
@R

L′
�

�
��

P

where P is a projective cover of C and P -C is the inclusion; if there exists
wlimL, then there exists also wlimL′. In particular if C is weakly lex, the same
holds for P.

Proof: Let (πD:L -LD)D∈D0 be a weak limit of L and consider a P-
cover p:P -L of L; then (p · πD:P -LD)D∈D0 is a weak limit of L′: in
fact, if (τD:Q -LD)D∈D0 is a cone on L with Q ∈ P, then the factorization
τ :Q -L can be lifted to a factorization τ :Q -P because Q is projective.

Let us recall another definition.

Definition 1.1.7

1) in a category C, a pseudo relation on an object X is a pair of parallel
arrows r1, r2:R -

-
X; the pseudo relation is a relation if r1 and r2 are

jointly monic;
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2) the pseudo relation r1, r2:R -
-
X is

• reflective if there exists an arrow rR:X -R such that rR · r1 =
1X = rR · r2

• symmetric if there exists an arrow sR:R -R such that sR ·r1 = r2
and sR · r2 = r1

3) if

P -l1 R

l2
? ?

r2

R -
r1 X

is a weak pullback, the pseudo relation r1, r2:R -
-
X is transitive if there

exists an arrow tR:P -R such that the following diagram is commuta-
tive in each part

R �l1 P -l2 R

r1
? ?

tR
?
r2

X �
r1 R -

r2 X

Let us remark that the transitivity of a pseudo relation r1, r2:R -
-
X does

not depend on the choice of the weak pullback of r1 and r2; in fact, if

P -l1 R

l2
? ?

r2

R -
r1 X

is another weak pullback, the factorization P -P composed with the transi-
tivity tR:P -R ensures that the pseudo relation is transitive also with respect
to the second weak pullback. In particular, this tells us that, if C has pullbacks
and the pair r1, r2 is jointly monic, our definition coincides with the usual one
given in terms of (strong) pullback and so with the one given in terms of hom-set
(cf. vol. II, ch. 2 of [8]). Of course a pseudo equivalence-relation is a pseudo
relation which is, at the same time, reflective, symmetric and transitive.

Definition 1.1.8 A category A is regular if

1) it is left exact

2) each arrow can be factored as a regular epi followed by a monomorphism
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3) regular epis are pullback stable

Recall that, if conditions 1) and 3) of the previous definition are satisfied, then
condition 2) is equivalent to

2’) each kernel pair has a coequalizer.

Proposition 1.1.9 Let A be a regular category and P a projective cover of A;
if r1, r2:R -

-
X is a pseudo equivalence-relation in P and

R -
-r1

r1
X

@
@

@
@@R

i1
66
i2

R

is its regular epi-jointly monic factorization in A, then i1, i2:R -
-
X is an

equivalence relation in A.

This proposition, together with proposition 1.1.6, constitutes the basic fact
to understand the notion of left covering functor and its properties. Never-
theless, we do not give here a proof for this proposition, because it is a very
particular case of a more general theorem which will be proved in section 1.4.
Let us only remark that in general r1, r2:R -

-
X is not transitive in the whole

category A. In fact, the transitivity of r1, r2:R -
-
X in P means that there

exists a transitivity tR:P -R defined on a P-cover P of the pullback of r1
and r2. Such an object P is a weak pullback of r1 and r2 in P but not necessarily
in A, while the transitivity of r1, r2:R -

-
X in A requires the existence of a

transitivity morphism defined on a weak pullback of r1 and r2 in A.

1.2 The exact completion

This section is completely devoted to the construction of an exact category
from a weakly lex one.

Definition 1.2.1 A category A is exact if

1) it is regular

2) each equivalence relation is effective (that is it is a kernel pair).

Definition 1.2.2 Let C be a weakly lex category; we define a new category
Cex as follows:

• objects: an object of Cex is a pseudo equivalence-relation in C

r1, r2:R -
-
X
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• arrows: an arrow between two objects

r1, r2:R -
-
X and s1, s2:S -

-
Y

of Cex is an equivalence class of pairs of compatible arrows (f, f) as in
the following diagram

R -f S

r1
??
r2 s1

??
s2

X -
f

Y

where the pair (f, f) is said to be compatible if f · s1 = r1 · f and f · s2 =
r2 · f ; such two pairs (f, f) and (g, g) are considered to be equivalent if
there exists an arrow (a “homotopy”) Σ:X -S such that Σ · s1 = f
and Σ · s2 = g.

The previous definition needs some comments. First of all, it is easy to see
that the relation between compatible pairs is effectively an equivalence relation
(to check each condition, use the corresponding condition of the pseudo relation
s1, s2:S -

-
Y ) and that it is compatible with the composition in C; so Cex is

a category with respect to the composition between equivalence classes defined
as the componentwise composition of the corresponding representatives and the
identity of r1, r2:R -

-
X given by the class of the pair of identities (1R, 1X).

Let us also observe that, if (f, f) and (f̃ , f) are two compatible pairs of
arrows between the same objects of Cex, then they are always equivalent (use
f followed by the reflectivity of the codomain as homotopy); so it makes sense
to write [f ] for the equivalence class of (f, f).

(Nevertheless, by abuse of language, we will often say that a double-commutative
diagram

R -f S

r1
??
r2 s1

??
s2

X -
f

Y

is an arrow in Cex, forgetting the passage to the quotient.)
Observe also that no size conditions are requested on C to construct Cex

and that Cex is small if C is small.
Before starting with the verification that the category Cex is exact, let us

look more informally at the definition of an arrow in Cex. Think of the category
C as an exact category in which every object is projective (for example SET )
and think of r1, r2:R -

-
X and s1, s2:S -

-
Y as two equivalence relations.

Then an arrow between r1, r2:R -
-
X and s1, s2:S -

-
Y as in the definition

of Cex is exactly an arrow from the quotient of X by R to the quotient of Y by
S (we leave to the interested reader the easy but instructive verification of this
last assertion).
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Theorem 1.2.3 Let C be a weakly lex category and let Cex be as in definition
1.2.2; then Cex is an exact category.

We give here only the constructions of finite limits and regular epi-mono
factorization in Cex. We refer to chapter 4 (sections 6 and 7) for two detailed
proofs of the theorem.

Proof: Step 1: Cex is a left exact category. Let T be a weak terminal object
in C and consider a weak product T π1� T×T π2-T . Then π1, π2:T×T -

-
T

is the terminal object in Cex.
Let us consider now the following pair of arrows in Cex

R -f
S � g

T

r1

??

r2 s1

??

s2 t1

??

t2

X -
f

Y �
g Z

In order to build up its pullback, consider a weak limit (P ; f, ϕ, g) as in the
following diagram

X �
f

P -
g

Z

f
? ?

ϕ
?
g

Y �
s1 S -

s2 Y

and a weak limit (E; ρ, e1, e2, τ) as in the following diagram

E
��

���
���

���

ρ
�

�
�

��	

e1

@
@

@
@@R

e2

H
HHH

HHH
HHHj

τ

R P P T

r1

?

@
@

@
@@R

r2 �
�

�
��	

f HHH
HHH

HHHHj

g ���
���

�����

f
@

@
@

@@R

g �
�

�
��	

t1

?

t2

X X Z Z

The required pullback in Cex is given by

R �ρ
E -τ T

r1
??
r2 e1

??
e2 t1

??
t2

X �
f

P -
g Z
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We also need an explicit description for equalizers in Cex; for this, consider
two parallel arrows in Cex

R -
-

f

g
S

r1

??

r2 s1

??

s2

X -
-

f

g
Y

In order to build up their equalizer, consider a weak limit (E; e, ϕ) as in the
following diagram

E
�

�
�	

e
@

@
@R

ϕ

X S

f
?

HH
HHH

HHj

g ��
���

���

s1

?
s2

Y Y

Consider again a weak limit (R; e1, e, e2) as in the following diagram

E �e1 R -e2 E

e
? ?

e
?
e

X �
r1 R -

r2 X

Then the equalizer in Cex is given by

R -e
R

e1

??

e2 r1

??

r2

E -
e X

Step 2: Cex has regular epi-mono factorization and regular epis are stable
under pullbacks.

Given an arrow in Cex
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R -f
S

r1

??

r2 s1

??

s2

X -
f

Y

consider a weak limit (I; i1, i, i2) as in the following diagram

X �i1 I -i2 X

f
? ?

i
?
f

Y �
s1 S -

s2 Y

Since

R
�

�
�	

r1
?
f@

@
@R

r2

X S X

is a cone on the diagram defining I, there exists t:R - I such that, in partic-
ular, t · i1 = r1 and t · i2 = r2. The required factorization is given by

R -t I -i S

r1
??
r2 i1

??
i2 s1

??
s2

X -
1X

X -
f

Y

As far as the previous factorization is concerned, one can prove (and it will
be done in section 6 of chapter 4) that in Cex regular epimorphisms are, up to
isomorphisms, exactly the arrows of the form

R -f S

r1
??
r2 s1

??
s2

X -
1X

X

1.3 Projective objects in the exact completion

In this section we study the embedding of a weakly lex category C in its
exact completion Cex defined in the previous section. We deduce from this
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study that the category Cex has enough projectives, which will be the condition
characterizing a free exact category.

Proposition 1.3.1 Let C be a weakly lex category and Cex its exact comple-
tion as defined in 1.2.2; there exists a functor

Γ: C -Cex

defined by

X -f
Y

X -f
Y  1X

??

1X 1Y

??

1Y

X -
f

Y

which is full and faithful and preserves monomorphic families.

Proof: The functoriality of Γ is obvious.
Γ is full: consider an arrow in Cex

X -f
Y

1X

??

1X 1Y

??

1Y

X -
f

Y

The compatibility condition immediately implies that f = f so that [f ] = Γ(f).
Γ is faithful: if Γ(f) = Γ(g) then there exists a homotopy Σ:X -Y such that
Σ · 1Y = f and Σ · 1Y = g so that f = g.
Γ preserves monomorphic families: as for the faithfulness.

Proposition 1.3.2 Let Γ: C -Cex be as in the previous proposition; the
image Γ(C) generates Cex via coequalizers (that is, if

R -f
S

r1

??

r2 s1

??

s2

X -
f

Y
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is an arrow in Cex, then in the following diagram in Cex the two horizontal
lines are coequalizers and the last vertical arrow is the unique extension to the
quotient

ΓR -
-Γr1

Γr2
ΓX -[rR, 1X ]

(R -
-r1

r2
X)

Γf

? ?

Γf

?

[f ]

ΓS -
-Γs1

Γs2
ΓY -

[rS , 1Y ]
(S -

-s1

s2
Y ) ).

Proof: Let us write explicitely the first line

R -
-r1

r2
X -rR

R

1R

??

1R 1X

??

1X r1

??

r2

R -
-r1

r2
X -

1X
X

(rR:X -R is the arrow realizing the reflexivity of r1, r2:R -
-
X); using

as homotopy the identity 1R:R -R, one has that the arrow on the right
coequalizes the two parallel arrows on the left; suppose now that the same is
true for an arrow

X -g
T

1X

??

1X t1

??

t2

X -
g Z

so that there exists a homotopy Σ:R -T such that Σ · t1 = r1 · g and Σ · t2 =
r2 · g; one can choose then as factorization the arrow

R -Σ
T

r1

??

r2 t1

??

t2

X -
g Z

in fact the resulting diagram in Cex is obviously commutative; moreover, the
factorization is necessarily unique because
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X -rR
R

1X

??

1X r1

??

r2

X -
1X

X

is a regular epi (cf. Step 2 of theorem 1.2.3). In order to conclude our proof, it
is enough to observe that the following square in Cex is commutative

ΓX -[rR, 1X ]
(R -

-r1

r2
X)

Γf

? ?

[f ]

ΓY -
[rS , 1Y ]

(S -
-s1

s2
Y )

Proposition 1.3.3 Consider the functor Γ: C -Cex defined in 1.3.1 and an
object Y ∈ C; ΓY is a projective object in Cex.

Proof: Consider an arrow in Cex

R -f
Y

r1

??

r2 1Y

??

1Y

X -
f

Y

and its regular epi-mono factorization as in 1.2.3

R - I - Y

r1

??

r2 s1

??

s2 1Y

??

1Y

X -
1X

X -
f

Y

If the given arrow is a regular epi, then the monic part of its factorization has
a left-inverse, that is there exists an arrow

Y -l
I

1Y

??

1Y s1

??

s2

Y -
l

X
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together with a homotopy Σ:Y -Y such that Σ · 1Y = l · f and Σ · 1Y = 1Y

so that, as a section of the given arrow, one can choose

Y -l · rR
R

1Y

??

1Y r1

??

r2

Y -
l

X

Corollary 1.3.4 The image Γ(C) of the functor Γ: C -Cex is a projective
cover of Cex, so that Cex has enough projectives.

Let us remark that in general the functor Γ: C -Cex does not preserve
weak limits of C (we will give an explicit counterexample in section 1.6); never-
theless, we can observe some useful facts.

Proposition 1.3.5 Consider the functor Γ: C -Cex

1) Γ preserves all the strong finite limits which turn out to exist in C

2) the corestriction of Γ to the full subcategory of projective objects of Cex
preserves the weak finite limits of C.

Proof: Part 1) is a particular case of a more general property which will
be proved in the next section; part 2) is routine using the characterization of
projective objects in Cex given in the following lemma.

Lemma 1.3.6 An object r1, r2:R -
-
X of Cex is projective if and only if it

is contractible, that is if there exists an arrow Σ:X -R such that Σ ·r1 = 1X

and r1 · Σ · r2 = r2 · Σ · r2.

Proof: (if) : use Σ:X -R as a homotopy to show that the two following
arrows

R -r1 · Σ · r2
X -rR

R

r1

??

r2 1X

??

1X r1

??

r2

X -
Σ · r2

X -
1X

X

exhibit r1, r2:R -
-
X as a retract of 1X , 1X :X -

-
X;

(only if) : if r1, r2:R -
-
X is projective, then there exists a section of the

regular epi
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X -rR
R

1X

??

1X r1

??

r2

X -
1X

X

that is an arrow

R -s
X

r1

??

r2 1X

??

1X

X -
s X

together with a homotopy Σ:X -R such that Σ · r1 = 1X and Σ · r2 = s;
from the second equation and the compatibility condition, one has r1 · Σ · r2 =
r1 · s = s = r2 · s = r2 · Σ · r2.

1.4 Left covering functors

Keeping in mind the proof of Proposition 1.1.6, we are ready to give our
basic definition.

Definition 1.4.1 Consider a functor F : C -A with C weakly lex and A left
exact; we say that F is left covering if, for all functors L:D -C defined on a
finite category D and for all weak limits

wlimL = (πD:L -LD)D∈D0 ,

the canonical factorization p:FL - L̃ is a strong epimorphism. Here p is the
unique arrow such that

FL -p
L̃

@
@

@R
FπD

�
�

�	
π̃D

F (LD)

is commutative for all D ∈ D0, where

(π̃D: L̃ -F (LD))D∈D0 = limL · F

As a first remark, observe that in the previous definition the second “for all”
can be equivalently replaced by a “for one”. In fact, if

(πD:L -LD)D∈D0 and (π
′

D:L′ -LD)D∈D0
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are weak limits of L:D -C, then there exists a factorization t:L -L′; now,
if the factorization p:FL - L̃ is a strong epimorphism, even the factorization
p′:FL′ - L̃ must be a strong epimorphism because the following diagram is
commutative

FL -Ft
FL′

@
@

@R
p

�
�

�	
p′

L̃

(to check this commutativity, we can compose with the π̃D’s, because L̃ is the
strong limit).

Proposition 1.4.2 Let F : C -A be a functor with C weakly lex and A a
left exact category with strong epi-mono factorization; the following conditions
are equivalent (notations of 1.4.1)

1) F is left covering with respect to a given finite diagram L:D -C in C

2) the jointly monic part of the strong epi-jointly monic factorization of
(FπD:FL -F (LD))D∈D0 is the limit of L · F

3) there exists a weak limit (πD:L -LD)D∈D0 of L, a weak limit (π̂D: L̂ -F (LD))D∈D0

of L ·F and a strong epi q:F (L) - L̂ such that q · π̂D = F (πD) for each
D in D0.

Proof: The equivalence between 1) and 2) and the implication 1) ⇒ 3) are
obvious.

It remains to prove that 3) implies 1): if (π̃D: L̃ -F (LD))D∈D0 is the limit
of L · F , then weak limits of L · F are exactly coretracts of L̃ (and retraction
and section commute with projections). As factorization p:F (L) - L̃ we can
choose F (L) - L̂ - L̃; by assumption, the first component is a strong epi
and the second one is a strong epi because it has a section.

The interest of the previous proposition lies in the fact that condition 3) can
be formally written when the codomain A is only weakly lex. Unfortunately, this
condition is not stable by composition; an explicit counterexample will be given
at the end of section 1.6. The stability of the notion of left covering functor will
be discussed in propositions 1.4.7 and 1.4.8.

Let us look now at an important particular case; we say that a functor
F : C -A defined on a weakly lex category C is weakly lex if for each func-
tor L:D -C, with D finite, and for each (eqivalently, for one) weak limit
(πD:L -LD)D∈D0 of L, one has that (F (πD):F (L) -F (LD))D∈D0 is a
weak limit of L · F .

Proposition 1.4.3 Consider a functor F : C -A with C weakly lex and A
left exact; consider also the following conditions

1) F is left covering
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2) F is weakly lex

3) F is left exact.

One has that 2) implies 1); moreover, if C is left exact, the three conditions are
equivalent.

Proof: To prove that 2) implies 1) and, if C is left exact, that 3) implies 2), it
suffices to use once again the fact that, if there exists the strong limit, then weak
limits are exactly the coretracts of the strong one. Now, assume C left exact
and F left covering; let us start showing that F preserves the terminal object
T of C: by hypothesis, the unique arrow q:FT - T̃ (where T̃ is the terminal
object of A) is a strong epimorphism; in C, one has that T 1T� T 1T-T is the
product of T with itself, so that the unique factorization FT -FT ×FT is a
(strong) epimorphism and then the two projections FT π1� FT × FT π2-FT
are equal. But the pair π1, π2 is the kernel pair of q, so that q is a mono and
then an iso.

To show that F preserves not empty finite limits, we need a lemma.

Lemma 1.4.4 Let F : C -A be a left covering functor; F preserves finite
monomorphic families.

Proof: (up to some minor modifications, it is the same argument used in
1.829 of [22])
A family of arrows (fi:A -Ai)i∈I is monomorphic if and only if the following
diagram is a limit

A

�
�

�
��	

1A

?

fi

@
@

@
@@R

1A

A -
fi

Ai
�

fi
A

(when the family is reduced to one single arrow f :A -B, one has the familiar
argument that f is a mono if and only if

A -1A
A

1A

? ?

f

A -
f

B

is a pullback); now apply F and consider the factorization q:FA -M (where
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M

�
�

�
��	

x

?

ai

@
@

@
@@R

y

FA -
Ffi

FAi
�
Ffi

FA

is the limit in A); by hypothesis q is a strong epimorphism, but, by the commu-
tativity of

FA -q
M

@
@

@
@@R

1FA

�
�

�
��	

x

FA

q is also a monomorphism and so it is an isomorphism. This means that

FA

�
�

�
��	

1FA

?

Ffi

@
@

@
@@R

1FA

FA -
Ffi

FAi
�
Ffi

FA

is a limit and then the family (Ffi:FA -FAi)i∈I is monomorphic.

Let us come back to the proof of proposition 1.4.3: F : C -A is a left
covering functor between left exact categories and we have to prove that F
preserves not empty finite limits. Consider a functor L:D -C defined on
a not empty finite category D; consider also limL = (πD:L -LD)D∈D0

and limL · F = (π̃D: L̃ -F (LD))D∈D0 : the family (πD:L -LD)D∈D0 is
monomorphic so that also the family (FπD:FL -F (LD))D∈D0 is monomor-
phic by 1.4.4; for all D ∈ D0, the following diagram is commutative

FL -p
L̃

@
@

@
@@R

FπD

�
�

�
��	

π̃D

F (LD)

so that the unique factorization p:FL - L̃ is a monomorphism; but, by hy-
pothesis, it is a strong epimorphism, so it is an isomorphism.
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Let us remark that in the proof of proposition 1.4.3 we have established a
more general fact: a left covering functor from a weakly lex category to a left
exact one preserves all the finite limits which turn out to exist in the domain
(i.e. being left covering is a kind of flatness).

In the next proposition we complete the comparison between left covering
functors and weakly lex functors. We call strong projective an object which is
projective with respect to strong epimorphisms.

Proposition 1.4.5 Consider a functor F : C -A with C weakly lex and A
left exact; suppose that F factors through the full subcategory P (A) of strong
projective objects of A and call F ′: C -P (A) its corestriction;

1) if F is left covering, then F ′ is weakly lex

2) if A has enough strong projectives and F ′ is weakly lex, then F is left
covering.

Proof: 1) Let D be a finite category and consider

D L-C F-A

wlimL = (πD:L -LD)D∈D0 and limL · F = (π̃D: L̃ -F (LD))D∈D0 ; the
factorization p:FL - L̃ is a strong epimorphism in A, so that if P is the
vertex of a cone over L · F and P is in P (A), then the unique factorization
P - L̃ can be lifted to a factorization P -FL.
2) if t:P - L̃ is a strong epimorphism in A with P ∈ P (A), then there exists
a factorization t′:P -FL such that the following diagram is commutative for
all D ∈ D0

FL � t′
P

F (πD)

? ?

t

F (LD)�
π̃D

L̃

but the family (π̃D: L̃ -F (LD))D∈D0 is monomorphic, so that the following
diagram is commutative

FL � t′
P

@
@

@
@@R

p

�
�

�
��	

t

L̃

This implies that p:FL - L̃ is a strong epimorphism in A.
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Corollary 1.4.6 Let F : C -A be a functor with C weakly lex; consider the
three following conditions:

1) F is flat

2) F is weakly lex

3) F is left covering

The two first conditions are equivalent; moreover, if the axiom of choice holds
in A (that is each object is strong projective) and A is left exact, then the three
conditions are equivalent.

Proof: the equivalence between 2) and 3) immediately follows from the pre-
vious proposition. Now let us make clear that in the present situation we
call F flat if, for each functor L:D -C with D finite and for each cone
(π̃D: L̃ -F (LD))D∈D0 over L·F in A, there exist a cone (πD:L -LD)D∈D0

over L in C and a factorization t: L̃ -F (L). (Observe that this condition does
not require the existence of weak limits in C. It means that, for each A ∈ A,
the comma category (A,F ) is filtering (cf. [6]).) To show that 2) implies 1),
we can take as L a weak limit of L so that, by assumption, F (L) is a weak
limit of L · F and then there exists a factorization from L̃ to F (L). Conversely,
by assumption, there exist a cone (π

′

D:L′ -LD)D∈D0 in C and a factoriza-
tion t′: L̃ -F (L′). But, if L is a weak limit of L, there exist a factorization
h:L′ -L. Now t′ · Fh gives us a factorization from L̃ to F (L), that is F (L)
is a weak limit of L · F .

In the two next propositions, we establish the stability of the notion of left
covering functor; we leave the easy proofs to the reader.

Proposition 1.4.7 Let B G-C F-A be two functors with B and C weakly
lex and A left exact; if G is weakly lex and F is left covering, then the compo-
sition G · F : B -A is left covering.

Proposition 1.4.8 Let C F-A G-B be two functors with C weakly lex
and A and B left exact; if F is left covering, G is left exact and moreover
G sends strong epimorphisms into strong epimorphisms, then the composition
F ·G: C -B is left covering.

Let us recall that in a regular category, the strong epimorphisms coincide
with the regular epimorphisms. Now we are ready to state the most important
property of left covering functors.

Theorem 1.4.9 Consider a left covering functor F : C -A with C a weakly
lex category and A a regular one; let r1, r2:R -

-
X be a pseudo equivalence-

relation in C and consider the regular epi-jointly monic factorization of its image
by F
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FR -
-Fr1

Fr2
FX

@
@

@
@@R

p
i1

66
i2

R

Then i1, i2:R -
-
FX is an equivalence relation in A.

Observe that this theorem is the announced generalization of proposition
1.1.9; in fact the full inclusion of a projective cover P in a regular category
A is obviously a left covering functor (cf. the proof of proposition 1.1.6). In
particular, the embedding Γ: C -Cex described in 1.3.1 is a left covering
functor (cf. corollary 1.3.4).

Proof: Let us write the previous diagram in the following form

FR -〈Fr1, F r2〉
FX × FX

@
@

@
@

@
@R

p

�
�

�
�

�
��

〈i1, i2〉

R

The reflexivity and the symmetry of 〈i1, i2〉 are easy to be shown; in fact,
they are equational conditions, so that they are preserved by each functor. If
rR:X -R is the reflexivity of r1, r2:R -

-
X, then FrR:FX -FR is the

reflexivity of Fr1, F r2:FR -
-
FX and so FrR · p:FX -R is the reflexivity

of i1, i2:R -
-
FX. If sR:R -R is the symmetry of r1, r2:R -

-
X, then

FsR:FR -FR makes commutative the following diagram

FR -p
R -〈i1, i2〉

FX × FX

FsR

? ?

τ

FR -
p R -

〈i1, i2〉
FX × FX

where τ is the twisting isomorphism. So, by the naturality of the regular epi-
mono factorization, there exists an arrow R -R making commutative the
right-hand part of the previous diagram.

For the transitivity, consider a weak pullback
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P -l1 R

l2
? ?

r2

R -
r1 X

and the transitivity morphism tR:P -R (that is tR · r1 = l1 · r1 and tR · r2 =
l2 · r2).

Consider now the following diagram in A, in which both squares are pullbacks
and p is a regular epi; by associativity of pullbacks, v is a regular epi.

S -j1
FR

@
@

@
@@R

v
?

p

j2

?

Q -d1 R

d2

? ?

i2

FR -
p R -

i1
FX

Using now the fact that the functor F : C -A is left covering, we have that
the factorization q:FP -S such that q · j1 = Fl1 and q · j2 = Fl2 is a regular
epi.

A diagram chasing show now that the following diagram is commutative

FP -q · v
Q -〈d1 · i1, d2 · i2〉

FX × FX

FtR

? ?

1FX×FX

FR -
p R -

〈i1, i2〉
FX × FX

But q · v is a regular epi and 〈i1, i2〉 is a mono, so that there exists an arrow
Q -R making commutative the right-hand part of the previous diagram.
This shows that i1, i2:R -

-
FX is transitive.

The next step is crucial to make handly the notion of left covering functor.

Proposition 1.4.10 Consider a functor F : C -A with C weakly lex and A
regular; if F is left covering with respect to binary products, equalizers of pairs
of parallel arrows and terminal object, then it is left covering.

We need a lemma
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Lemma 1.4.11 Let A be a regular category;

1) in the following commutative diagram, if f1 and f2 are regular epis, then
the unique factorization f1 × f2 is a regular epi

A1
�πA1 A1 ×A2

-πA2 A2

f1

? ?

f1 × f2

?

f2

B1
�
πB1

B1 ×B2
-

πB2
B2

2) in the following commutative diagram, where the two horizontal lines are
equalizers, if f1 is a regular epi and f2 a mono, then the unique factoriza-
tion f is a regular epi

E -e A1 -
-h

g
A2

f

?

f1

? ?

f2

L -
l

B1 -
-m

n
B2

3) if the following diagram is commutative, f1 and f2 are regular epis and f
is a mono, then the unique factorization from the pullback of a1 and a2

to the pullback of b1 and b2 is a regular epi

A1
-a1

A � a2 A2

f1

?

f

? ?

f2

B1
-

b1
B �

b2
B2

Proof: 1) f1 × f2 can be decomposed in the following way

A1 ×A2
-f1 × 1A2 B1 ×A2

-1B1 × f2
B1 ×B2

but (in every category) the following diagram is a pullback

A1 ×A2
-πA1 A1

f1 × 1A2

? ?

f1

B1 ×A2
-

πB1
B1
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so that f1 × 1A2 is a regular epi if f1 is a regular epi; in the same way 1B1 × f2
is a regular epi and so also f1 × f2 is a regular epi
2) if f2 is a mono and l is the equalizer of m and n, then (in every category)
the pullback of l along f1 is the equalizer of h and g; this means that f is the
pullback of f1 along l and then f is a regular epi
3) using the usual construction of pullbacks via products and equalizers, this
point follows from the two previous ones.

We leave to the reader the straightforward generalization of the previous
lemma from the case of binary products, equalizers and pullbacks to the n-ary
case.

We come back now to proposition 1.4.10; we divide its proof into three steps.
Step 1: consider a functor F : C -A as in proposition 1.4.10; it is left

covering with respect to n-ary products and n-ary equalizers.

Proof: We limit ourselves to the case n = 3;
products: consider three objects A, B and C in C; (A×B)×C is a weak product
ofA,B and C so that the unique factorization F ((A×B)×C) -FA×FB×FC
can be decomposed as follows

p · (q × 1FC) : F ((A×B)× C) -F (A×B)× FC - (FA× FB)× FC

where p and q are the obvious factorizations. By assumption, p and q are regular
epis, so that (cf. Lemma 1.4.11) also q× 1FC and p · (q× 1FC) are regular epis.
equalizers: consider three parallel arrows in C

a:A -B , b:A -B , c:A -B

and two weak equalizers

E e-A
b
-
-

c
B E′ e′-E

e · a
-
-

e · b
B

so that e′ · e:E′ -E is a weak equalizer of a, b and c.
Consider the equalizer in A

L l-FA
Fb
-
-

Fc
FB

by assumption the unique arrow p:FE -L such that p·l = Fe is a regular epi;
considering the following diagram (where the two horizontal lines are equalizers)

S -s
FE -

-
F (e · a)

F (e · b)
FB

q

?

p

? ?

1FB

L′ -
l′

L -
-l · Fa

l · Fb
FB
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by lemma 1.4.11, the unique factorization q:S -L′ is a regular epi; once
again by assumption the unique arrow t:FE′ -S such that t · s = Fe′ is a
regular epi. But l′ · l:L′ -FA is the equalizer of Fa, Fb and Fc; the required
factorization FE′ -L′ is given by t ·q (in fact t ·q · l′ · l = t ·s ·p · l = Fe′ ·Fe =
F (e′ · e) ) and so it is a regular epi.

Step 2: consider a functor F : C -A as in proposition 1.4.10; it is left
covering with respect to n-ary pullbacks.

Proof: once again, we limit ourselves to the case n = 3. Given three conver-
gent arrows in C

a:A -D , b:B -D , c:C -D ,

consider a weak product

A×B × C

�
�

�
��	

πA

?

πB

@
@

@
@@R

πC

A B C

and a weak equalizer e:E -A×B×C of πA ·a, πB ·b, πC ·c. A weak pullback
of a, b and c is then

A

�
�

�
���

e · πA

@
@

@
@@R

a

E -e · πB
B -b

D

@
@

@
@@R

e · πC

�
�

�
���

c

C

Consider now the following diagram in A where s:S -F (A × B × C) is the
equalizer of F (πA · a), F (πB · b), F (πC · c) and l:L -FA× FB × FC is the
equalizer of πFA · Fa, πFB · Fb, πFC · c

S -s F (A×B × C)

q

? ?

p

L -
l

FA× FB × FC
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By step 1 p is a regular epi, so that by Lemma 1.4.11 q is a regular epi; again
by step 1 the unique arrow t:FE -S such that t · s = Fe is a regular epi.
But the bottom equalizer is the pullback in A of Fa, Fb and Fc; so the desired
factorization FE -L is given by the regular epi t · q (in fact t · q · l · πFA =
t · s · p · πFA = Fe · FπA = F (e · πA)).

Step 3: consider a functor F : C -A as in proposition 1.4.10; it is left
covering.

Proof: Consider a functor L:D -C defined on a finite category D. Let us
recall the construction of a weak limit of L proposed in proposition 1.1.2.

Consider a weak product

πD:
∏

D∈D0
LD -LD

Then, for each arrow d:D -D′ in D, consider a weak equalizer

Ed
ed-

∏
D∈D0

LD
πD · Ld

-
-

πD′
LD′

Consider finally a weak pullback (e
′

d:E -Ed)d∈D1 of the finite family (ed:Ed
-∏

D∈D0
LD)d∈D1

of convergent arrows. Then

wlimL = (e
′

d · ed · πD:E -LD)D∈D0 .

Performing at each step the corresponding strong limit in A, one can con-
struct in the same way

limL · F = (l
′

d · ld · π̃D:L -F (LD))D∈D0

Observe that for each d ∈ D1, ld and l
′

d are monomorphisms.
We have to prove that the unique arrow τ :FE -L such that, for all

D ∈ D0, τ · l
′

d · ld · π̃D = F (e
′

d · ed · πD) is a regular epi.
Let us call l

′

d · ld = l:L -∏
D∈D0

F (LD) and observe that this mono is,
by construction, the limit on the diagram∏

D∈D0
F (LD) -

-
π̃D · F (Ld)

π̃D′

F (LD′)

(think of a pair of parallel arrows for each d ∈ D1).
Consider now the following pullback

P -l′ F (
∏

D∈D0
LD)

p′

? ?

p

L -
l

∏
D∈D0

F (LD)
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where p is the unique arrow such that p · π̃D = F (πD) for each D ∈ D0.
An easy diagram chasing shows that l′:P -F (

∏
D∈D0

LD) is the limit on
the diagram

F (
∏

D∈D0
LD) -

-
F (πD) · F (Ld)

F (πD′)
F (LD′)

(think of a pair of parallel arrows for each d ∈ D1). But this limit can be
performed also in two steps, that is first taking, for each d ∈ D1, the equalizer

Sd
-sd F (

∏
D∈D0

LD) -
-

F (πD) · F (Ld)

F (πD′)
F (LD′)

and then taking the pullback (s
′

d:P -Sd)d∈D1 of the family of convergent
arrows (sd:Sd

-F (
∏

D∈D0
LD))d∈D1 (in particular, one has s

′

d · sd = l′).
Observe that, by assumption, the unique arrow qd:FEd

-Sd such that qd ·
sd = Fed is a regular epi; if one consider now the pullback (jd:Q -FEd)d∈D1

of the family of convergent arrows

(Fed:FEd
-F (

∏
D∈D0

LD))d∈D1

by lemma 1.4.11 it follows that the unique arrow q:Q -P such that q · s′

d =
jd · qd for each d ∈ D1 is a regular epi. Moreover, the unique arrow t:FE -Q
such that t · jd = Fe

′

d for each d ∈ D1 is, by step 2, a regular epi.
Now we can consider the composition

FE t-Q
q-P

p′-L

where each factor is a regular epi (p′ is a regular epi because it is the pullback
of p which is a regular epi by step 1). To finish, it remains to prove that the
regular epi t · q · p′ is the required factorization; in fact

t · q · p′ · l
′

d · ld · π̃D = t · q · p′ · l · π̃D

= t · q · l′ · p · π̃D

= t · q · l′ · F (πD),

On the other side

F (e
′

d · ed · πD) = Fe
′

d · Fed · FπD

= t · jd · Fed · FπD

= t · jd · qd · sd · FπD

= t · q · s
′

d · sd · FπD

= t · q · l′ · FπD.
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Let us make a last remark about the notion of left covering functor. Consider
a left exact functor F : C -A and a finite diagram L:D -C in C. The
strong epimorphism p:F (limL) - limL · F (which, of course, in this case is
an isomorphism) can be seen as the quotient in A of an equivalence relation on
F (limL) which is the image by F of an equivalence relation on limL (take, for
example, the diagonal on limL).

This idea can be recovered also for left covering functors (at least when the
canonical factorization F (limL) - limL · F is a regular epi).

For this, consider a pair of arrows x1, x2X -
-

wlimL weakly universal with
respect to the conditions x1·πD = x2·πD for eachD (the πD’s are the projections
of wlimL).

Such a pair is a pseudo equivalence-relation (this will be proved in section
3.2).

Now consider the family of arrows (F (πD:F (wlimL) -F (LD))D∈D0 and
its factorization 〈F (πD)〉:F (wlimL) -πD0F (LD).

Its kernel pair k1, k2:K -
-
F (wlimL) is universal with respect to the condi-

tions k1 ·F (πD) = k2 ·F (πD) for each D ∈ D0. By assumption on F , there exists
a regular epi q:F (X) -K such that q·k1 = F (x1) and q·k2 = F (x2). Consider
now the canonical factorization p:F (wlimL) - limL·F , so that p·π̃D = F (πD)
for each D ∈ D0 (the π̃D’s are the projections of limLF ). Since (k1, k2) is the
kernel pair of 〈F (πD)〉 and the π̃D’s are a monomorphic family, (k1, k2) is also
the kernel pair of p. Since p is, by assumption, a regular epimorphism, it is
the coequalizer of k1 and k2 and then of (F (x1) and F (x2) because q is an
epimorphism

F (X) -
-

F (x1)

F (x2)
F (wlimL) -p

limL · F
@

@
@

@
@

@R

q k1

66

k2

@
@

@
@

@
@R

F (πD)

?

π̃D

K F (LD)

1.5 The universality of the exact completion

We devote this section to show that the embedding Γ: C -Cex of a weakly
lex category in its exact completion is universal. A more economical, but not
self-contained, proof is given in chapter 4 (section 7).

Definition 1.5.1 A functor between two regular categories is exact when it is
left exact and preserves regular epis.

Theorem 1.5.2 Let C be a weakly lex category and A an exact one; consider
the exact category Cex and the functor Γ: C -Cex described in 1.2.2 and
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1.3.1. Composing with Γ induces an equivalence

Γex:Ex(Cex,A) -Lco(C,A)

between the category of exact functors from Cex to A and the category of left
covering functors from C to A.

From the fact that the embedding Γ: C -Cex is itself a left covering func-
tor (and using the stability stated in 1.4.8), one has immediately the following
corollary

Corollary 1.5.3 Let C be a weakly lex category; the exact completion Γ: C -Cex
is uniquely determined (up to equivalences) by the previous universal property.

Proof: Proof of 1.5.2: for the sake of brevity, we write N(f) for the kernel
pair of a morphism f .

The more difficult part consists in proving that, given a left covering functor
F : C -A, there exists a unique (up to natural isomorphisms) exact functor
F̂ : Cex -A making commutative the following diagram

C -Γ Cex
@

@
@R

F

�
�

�	
F̂

A

Let us start with the (essential) uniqueness of F̂ under the hypothesis that
it is exact and makes the previous diagram commutative.

By proposition 1.3.2, we can see an object r1, r2:R -
-
X of Cex as the

object part of a coequalizer

ΓR -
-Γr1

Γr2
ΓX -q

(R -
-r1

r2
X)

@
@

@
@@R

p
i1

66
i2

N(q)

where the triangle is the regular epi-jointly monic factorization of the pair Γr1,
Γr2.

As p is an epimorphism, q is also the coequalizer of i1, i2; but Γ is a left
covering functor, so that, by 1.4.9, (i1, i2) is an equivalence relation in the exact
category Cex and then it is the kernel pair of its coequalizer q.

Now F̂ sends regular epis into regular epis, so that F̂ q must be a coequalizer;
in particular, F̂ q is the coequalizer of its kernel pair which is, by left exactness
of F̂ , (F̂ i1, F̂ i2). Once again, p is regular epi and so is F̂ p; but then F̂ q, which
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is the coequalizer of (F̂ i1, F̂ i2), is also the coequalizer of (F̂ p · F̂ i1, F̂ p · F̂ i2),
that is of (F̂ (Γr1), F̂ (Γr2)). Now, taking into account that Γ · F̂ ' F , one has
that the following is a coequalizer in A

FR
Fr1

-
-

Fr2
FX

F̂q- F̂ (R
r1
-
-

r2
X)

This proves that F̂ is completely determined on the object of Cex; the unique-
ness on the arrows follows in the same way using again proposition 1.3.2.

Consider now an arrow in Cex

R -f
S

r1

??

r2 s1

??

s2

X -
f

Y

The previous discussion says that F̂ must be defined by the following diagram
in A

FR -
-Fr1

Fr2
FX -ρ

F̂ (R -
-r1

r2
X)

Ff

? ?

Ff

?

F̂ [f ]

FS -
-Fs1

Fs2
FY -

σ F̂ (S -
-s1

s2
Y )

where the two horizontal lines are coequalizers and the last vertical arrow is the
unique extension to the quotients.

Once again, it is theorem 1.4.9 which makes possible this definition; in fact
it shows that the jointly monic part of the factorizations of (Fr1, F r2) and
(Fs1, Fs2) are equivalence relations in A exact, so that the coequalizers involved
in the previous diagram exist.

It is obvious to verify the functoriality of F̂ and the commutativity Γ·F̂ ' F .
It remains to show that F̂ is exact. F̂ preserves regular epis: with no loss of
generality (see step 2 in the proof of theorem 1.2.3) we can consider a regular
epi of the form

R - I

?? ??

X -
1X

X
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Its image by F̂ makes commutative the following square

FX -ρ F̂ (R⇒ X)

1FX

? ?

FX -
σ F̂ (I ⇒ X)

and so it is a regular epi.
We divide the proof of the left exactness of F̂ into three steps.
Step 1: F̂ is left covering with respect to the terminal object.
Recall that, if T is a weak terminal object in C, the terminal object of Cex is

π1, π2:T × T -
-
T (cf. step 1 of 1.2.3). Its image by F̂ is then the coequalizer

of Fπ1, Fπ2:F (T × T ) -
-
FT ; F is left covering (with respect to the terminal

object), so that the unique arrow from FT to the terminal object of A is a
regular epi and so also the unique arrow from

F̂ (T × T
π1

-
-

π2
T )

to the terminal object of A must be a regular epi.
Step 2: F̂ is left covering with respect to binary products.
Consider two objects r1, r2:R -

-
X and t1, t2:T -

-
Z in Cex and their

product with the corresponding projections

R � E - T

r1

??

r2

??

t1

??

t2

X �
x P -

z Z

To construct this product one could follow the construction given in step 1 of
1.2.3 (replacing, as usual, s1, s2:S -

-
Y by the terminal object of Cex); but

it suffices to perform the first weak limit to realize that the resulting diagram
X x� P z-Z is a weak product in C. We can apply the functor F̂ and we
obtain the following regular epis in A

q1:FX - F̂ (R⇒ X)

q2:FZ - F̂ (T ⇒ Z)

q3:FP - F̂ ((R⇒ X)× (T ⇒ Z))

Consider now the following commutative diagram, where λ and µ are the canon-
ical factorizations
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FP -λ FX × FZ

q3

? ?

q1 × q2

F̂ ((R⇒ X)× (T ⇒ Z)) -
µ F̂ (R⇒ X)× F̂ (T ⇒ Z))

By lemma 1.4.11, q1 × q2 is a regular epi; λ is a regular epi because F is left
covering (with respect to binary products). Then also µ is a regular epi, as
required.

Step 3: F̂ is left covering with respect to equalizers.
Consider a pair of parallel arrows in Cex and their equalizer as in step 1 of

1.2.3

R -e
R -

-
f

g
S

e1

??

e2 r1

??

r2 s1

??

s2

E -
e X -

-
f

g
Y

Applying F̂ we obtain

FR - FR -
-

Ff

Fg
FS

??

Fr1

??

Fr2 Fs1

??

Fs2

@
@

@
@

@
@R

p1

FE -Fe
FX -

-
Ff

Fg
FY �

� n1

n2

N(q3)

q1

? ?

q2

?

q3

F̂ (R⇒ E) -F̂ [e]
F̂ (R⇒ X) -

-
F̂ [f ]

F̂ [g]
F̂ (S ⇒ Y )

t

?�
�

�
�

�
��

h

L
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where the triangle on the right is the regular epi-jointly monic factorization of
(Fs1, Fs2) and the triangle at the bottom is the equalizer in A of F̂ [f ] and F̂ [g]
with the corresponding factorization t: F̂ (R -

-
E) -L; we need to prove

that t is a regular epi.
Consider the following pullback

A -k N(q3)

i

? ?

〈n1, n2〉

FX -
〈Ff, Fg〉 FY × FY

As, in Cex, [e] equalizes [f ] and [g], there exists a homotopy Σ:E -S
such that Σ · s1 = e · f and Σ · s2 = e · g; this implies that FΣ · p1 ·n1 = Fe ·Ff
and FΣ · p1 ·n2 = Fe ·Fg, so that there exists an arrow σ:FE -A such that
σ · i = Fe and σ · k = FΣ · p1. Let us assume that σ is a regular epi (it will be
proved later).

Consider again the following diagram

FE -σ
A

q1

? ?

i

F̂ (R⇒ E) FX

t

? ?

q2

L -
h

F̂ (R⇒ X)

It is commutative, so there exists τ :A -L making commutative the two re-
sulting triangles.

We want now to show that τ is a regular epi (this immediately implies that
also t is a regular epi, as required). To this end, let us show that the following
diagram is a pullback.

A -i
FX

τ

? ?

q2

L -
h

F̂ (R⇒ X)
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Suppose there exist two arrows L x� M y-FX such that x · h = y · q2; this
implies y · Ff · q3 = y · Fg · q3 (in fact y · Ff · q3 = y · q2 · F̂ [f ] = x · h · F̂ [f ] =
x · h · F̂ [g] = y · q2 · F̂ [g] = y · Fg · q3). Now we use for the first time that A is
exact (and not only regular): this means that (n1, n2) is the kernel pair of q3, so
that the previous equation implies that there exists ϕ:M -N(q3) such that
ϕ·n1 = y·Ff and ϕ·n2 = y·Fg. Now we have two arrows FX y� M ϕ-N(q3)
and the last two equations imply that there exists z:M -A such that z ·k = ϕ
and s · i = y. To prove that z is the required factorization, it remains to observe
that z · τ · h = z · i · q2 = y · q2 = x · h and then z · τ = x because h is a mono.
The factorization z is obviously unique because i is mono.

It remains to prove that σ:FE -A is a regular epi. First of all, consider
the following pullback

A -k
FS

i

? ?

〈Fs1, Fs2〉

FX -
〈Ff, Fg〉 FY × FY

so that the unique arrow m:A -A such that m · i = i and m · k = k · p1 is a
regular epi.

Now observe that the previous pullback is the limit as in the following dia-
gram

A

�
�

�
��	

i
@

@
@

@@R

k

FX FS

Ff

?

H
HHH

HHHH
HHj

Fg �
���

���
����

Fs1

?

Fs2

FY FY

(the verification of this fact is an easy argument of diagram chasing which holds
in every left exact category). Coming back to the construction of equalizers in
Cex, we get a factorization α:FE -A such that α · i = Fe and α · k = Fϕ.
Since F is left covering, this factorization is a regular epimorphism.

It remains to prove that the regular epimorphism

FE α-A m-A
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coincides with σ. Since i is a monomorphism, it suffices to show that σ·i = α·m·i.
This is the case because σ · i = Fe and α ·m · i = α · i = Fe.

The proof of step 3 is now complete; putting together the three steps, we
can deduce by proposition 1.4.10 that the functor F̂ : Cex -A is left covering.
Since Cex is, in particular, left exact, proposition 1.4.3 allows us to conclude
that F̂ is left exact.

To end the proof of the theorem, we need to show that natural transforma-
tions between two left covering functors F and G are in bijection with natural
transformations between F̂ and Ĝ. But this is a corollary of the next proposi-
tion.

Proposition 1.5.4 Let Γ: C -Cex be as in 1.3.1 and consider a left covering
functor F : C -A with A exact; then the unique exact extension F̂ : Cex -A
described in theorem 1.5.2 is the left Kan-extension of F along Γ.

Proof: We show that the set of natural transformations Nat(F,Γ ·H) is in
bijection with Nat(F̂ ,H), where H is an arbitrary functor Cex -A. Consider
a natural transformation β:F -Γ ·H and an object r1, r2:R -

-
X in Cex;

by definition of F̂ , we have that in the following diagram the upper horizontal
line is a coequalizer

FR -
-Fr1

Fr2
FX -F̂ (p)

F̂ (R⇒ X)

βR

? ?

βX

H(ΓR) -
-

H(Γr1)

H(Γr2)
H(ΓX) -

H(p)
H(R⇒ X)

(where p: ΓX - (R⇒ X) is as in proposition 1.3.2).
By naturality of β:F -Γ ·H, the left-hand square is two-time commuta-

tive, so that there exists exactly one arrow F̂ (R⇒ X) -H(R⇒ X) making
commutative the right-hand part.

We take this arrow as component at the point r1, r2:R -
-
X of a natural

transformation F̂ -H. The rest of the proof is straightforward.

Corollary 1.5.5 Let Γ: C -Cex be as in 1.3.1; for each exact category A,
composition with Γ gives us an equivalence between the category of exact func-
tors Ex(Cex,A) and the category of left covering functors Lco(C,A).

Proof: The functor induced by Γ is essentially surjective on the objects by
theorem 1.5.2; as far as natural trasformations are concerned, we need to prove
that, given two left covering functors F ,G from C to A, there is a bijection
Nat(F,G) ' Nat(F̂ , Ĝ). For this, put H = Ĝ (the unique exact extension of G)
in the previous proposition.
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1.6 Characterization of free exact categories

In this section we complete our plan, giving a characterization of free exact
categories over weakly lex ones.

We know from section 1.3 that the exact completion Cex has enough pro-
jectives; conversely, if an exact category has enough projectives, it is the exact
completion of the full subcategory of projective objects.

More exactly, we have the following theorem

Theorem 1.6.1 Let A be an exact category and P a projective cover of A; the
unique exact extension F̂ : Pex -A of the inclusion F : P -A is an equiva-
lence.

Proof: Observe that the statement makes sense because by 1.1.6 P is weakly
lex and, obviously, the inclusion P -A is left covering.

Let us recall that, given an arrow in Pex

R -f
S

r1

??

r2 s1

??

s2

X -
f

Y

its image by F̂ is given by the unique extension in the following diagram (where
the two horizontal lines are coequalizers which exist by 1.1.9)

R -
-r1

r2
X -a

A

f

? ?

f

?

ϕ

S -
-s1

s2
Y -

b
B

First, we show that F̂ is essentially surjective on the objects: let A be an
object of A; we can find an object X ∈ P and a regular epi a:X -A; consider
now its kernel pair in A

N -a2
X

a1

? ?

a

X -
a A
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and take again an object R ∈ P and a regular epi r:R -N ; call r · a1 = r1
and r · a2 = r2. Obviously

R
r1
-
-

r2
X a-A

is a coequalizer diagram in A (because a is a regular epi, so that it is the
coequalizer of its kernel pair) and we omit the straightforward verification that
r1, r2:R -

-
X is a pseudo equivalence-relation in P (not in A).

Second, F̂ is faithful: consider an arrow

[f, f ]: (r1, r2:R⇒ X) - (s1, s2:S ⇒ Y )

in Pex and its image by F̂ as at the beginning of the proof; consider also a
second arrow in Pex and its image by F̂

R -g
S R -

-r1

r2
X -a

A

r1

??

r2 s1

??

s2 g

? ?

g

?

ψ

X -
g Y S -

-s1

s2
Y -

b
B

If ϕ = ψ, then a·ϕ = a·ψ and so f ·b = g ·b; if we consider the regular epi-jointly
monic factorization

S -
-s1

s2
Y

@
@

@
@@R

s
b1

66
b2

M

we know that b1, b2:M -
-
Y is an equivalence relation in A exact, so that it

is the kernel pair of its coequalizer b. The last equation implies then that there
exists σ:X -M such that σ · b1 = f and σ · b2 = g; but X is projective and s
is a regular epi, so that there exists Σ:X -S such that Σ · s = σ; this implies
that Σ · s1 = f and Σ · s2 = g, that is Σ is a homotopy establishing the equality
of [f ] and [g] in Pex.

Third, F̂ is full: suppose there exists an arrow η:A -B in A; X is projec-
tive and b is a regular epi, so that there exists f :X -Y such that a ·η = f · b;
this implies that r1 · f · b = r2 · f · b and then there exists f̃ :R -M such that
r1 · f = f̃ · b1 and r2 · f = f̃ · b2; but also R is projective, so that there exists
f :R -S such that f · s = f̃ . It remains to obverse that f · s1 = r1 · f and
f · s2 = r2 · f and we conclude that
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R -f
S

r1

??

r2 s1

??

s2

X -
f

Y

is an arrow in Pex whose image by F̂ is the given arrow η.

As a left covering functor defined on a left exact category is exactly a left ex-
act functor (proposition 1.4.3), we have the following particular case of theorem
1.5.2:

Given a left exact category C, there exists an exact category Cex and a left
exact functor Γ: C -Cex such that, for each exact category A, composing
with Γ induces an equivalence of categories

Ex(Cex,A) '-Lex(C,A).

This is the main theorem contained in [15]; as it is shown there, this universal
property becomes part of the left biadjoint to the obvious forgetful functor

Ex ↪→ Lex

where Ex is the 2-category of exact categories and exact functors and Lex is the
2-category of left exact categories and left exact functors.

The question naturally arising is then whether, with a good choice of mor-
phisms between weakly lex categories, the universal property stated in theorem
1.5.2 becomes part of the analogous adjunction between exact categories and
weakly lex ones.

The answer is negative. Suppose that we have organized the weakly lex
categories in a 2-category, say WLex, and that the exact completion of a weakly
lex category Γ: C -Cex is the unit of a biadjunction

Ex -
�

WLex

Then, if A ∈ Ex and C ∈ WLex, the morphisms of WLex(C,A) must correspond,
via the composition with Γ: C -Cex, to the exact functors from Cex to A,
that is they are exactly the left covering functors from C to A.

Of course, the unit Γ: C -Cex is in WLex(C,Cex); but now, if we perform
again the exact completion, we get a functor

C Γ-Cex Γ- (Cex)ex

which must be in WLex(C, (Cex)ex) (because it is the composition of two mor-
phisms). Since (Cex)ex is exact, this implies that the functor C Γ-Cex Γ- (Cex)ex
must be a left covering functor. But, in general, this is not the case, as the fol-
lowing example shows.
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Example 1.6.2

Using theorem 1.6.1, as composition C Γ-Cex Γ- (Cex)ex we can choose
P i-A Γ- (A)ex, where A is an exact category, P a projective cover of A and
i: P -A the full inclusion.

Now cover the terminal object τ of A with an object T of P and a regular
epi t:T - τ , so that T is a weak terminal in P. Γ: A -Aex is left exact, so
that the terminal object of Aex is exactly Γτ .

If the composition i · Γ: P -Aex is left covering, then the unique arrow
from Γ(iT ) to Γτ , that is Γt: ΓT -Γτ , is a regular epi. But Γτ is projective
in Aex so that the regular epi Γt has a section, say s: Γτ -ΓT , in Aex. Since
Γ: A -Aex is full and faithful, this implies that t:T - τ has a section in A.

To show that, in general, this is not true, choose A as the category of rings
with unit and P as the full subcategory of projective rings; as t:T - τ , one
can choose the unique morphism Z - (0 = 1) which, obviously, has no section
in A. The inclusion of the projective rings into the category of rings gives us
also an example of functor Γ: C -Cex which does not preserve the finite weak
limits, as announced in the first section.

1.7 More on the exact completion

In this last section of the first chapter, we list some elementary facts on the
exact completion which will be useful for applications.

Proposition 1.7.1 (Functoriality of the (−)ex construction)
Let F : C -D be a weakly lex functor; there exists a unique (up to natural
isomorphisms) exact functor Fex: Cex -Dex such that the following diagram
is commutative

C -Γ Cex

F

? ?

Fex

D -
Γ

Dex

Proof: By 1.4.7 and 1.5.2, putting Fex = F̂ · Γ.

In the following proposition, Ccc is the splitting of idempotents of a category
C (cc stands for “Cauchy-completion”) and P (A) is the full subcategory of
projective objects of A.

Proposition 1.7.2 Let C and D be two weakly lex categories and let A and B
be two exact categories with enough projectives;

1) P (Cex) ' Ccc
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2) the corestriction of Γ: C -Cex to P (Cex) induces an equivalence Cex '
(P (Cex))ex

3) Cex ' Dex if and only if Ccc ' Dcc

4) A ' B if and only if P (A) ' P (B) if and only if there exist a projective
cover PA of A, a projective cover PB of B and an equivalence PA ' PB

Proof: Taking into account that C is (equivalent to) a projective cover of
Cex, the first point follows from proposition 1.1.5; the other points easily follow
from theorem 1.6.1 and proposition 1.7.1. In particular: if PA ' PB, then
(PA)ex ' (PB)ex (by 1.7.1); moreover, by 1.6.1, (PA)ex ' A and (PB)ex ' B so
that A ' B.

It is the last point of the previous proposition which will be crucial to char-
acterize our major examples of free exact categories (see sections 2.1 and 2.2).

From theorem 1.6.1, we are able to recognize free exact categories; the anal-
ogous result for functors is now quite obvious.

Proposition 1.7.3 Let A and B be two exact categories with enough projec-
tives; an exact functor H: A -B is the exact extension (in the sense of 1.7.1)
of a weakly lex functor F : P(A) -P(B) if and only if H sends projectives into
projectives.

Proof: the (only if) is obvious; for the (if), observe that if H is exact and
sends projectives into projectives, then its restriction H ′: P(A) -P(B) pre-
serves weak finite limits, so that H is (H ′)ex (cf. 1.7.1).

Corollary 1.7.4 The exact completion induces a biequivalence between the
2-category of weakly lex categories in which idempotents split and weakly lex
functors and the 2-category of exact categories with enough projectives and
exact functors which preserve projective objects.
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Chapter 2

Examples and applications

2.1 Monadic categories over SET
In this section we show that the characterization of monadic categories over

SET (due, I think, to Duskin, cf. chapter 9 of [3]) easily follows from the
characterization of free exact categories established in section 1.6. Moreover,
we use the theory developed in the first chapter to characterize reflections,
epireflections and localizations of monadic categories over SET . All results can
be easily generalized to monads over powers of SET .

Let us recall the theorem (cf. [8] and [42]).

Theorem 2.1.1 Let A be a category; the following conditions are equivalent:

1) A is equivalent to the category of algebras EM(T) for a monad T over
SET (EM stands for Eilenberg-Moore)

2) A is a locally small, exact category and there exists an object G ∈ A such
that

i) G is projective

ii) ∀ I ∈ SET ∃ I •G (the I-indexed copower of G)

iii) ∀ A ∈ A ∃ I •G -A regular epi.

The implication 1) ⇒ 2) follows from a more general discussion on the ex-
actness of monadic categories which can be found in section 2.5.

Let us concentrate on the implication 2) ⇒ 1).
As the coproduct of projective objects is still a projective, a category A sat-

isfying condition 2) is an exact category with enough projectives. We know,
from theorem 1.6.1, that such a category is completely determined by a projec-
tive cover. Recall now that the category KL(T) of free algebras (KL stands for
Kleisli) is a projective cover of EM(T). This means that what really need to
characterize EM(T) is to characterize KL(T).

But this is an easy problem.

53



54 CHAPTER 2. EXAMPLES AND APPLICATIONS

Proposition 2.1.2 Let C be a category; the following conditions are equiva-
lent:

1) C is equivalent to the category KL(T) for a monad T over SET

2) C is locally small and there exists an object G ∈ C such that

i) ∀ I ∈ SET ∃ I •G
ii) ∀ X ∈ C ∃ I ∈ SET such that X ' I •G

Proof: 1) ⇒ 2) : take as G the free T-algebra over the singleton.
2) ⇒ 1) : consider the pair of functors

SET
C(G,−)

-
�

− •G
C

The first condition says that −•G:SET -C exists, and so it is automatically
the left adjoint to C(G,−). Call now T the monad induced by −•G a C(G,−).
The second condition says that the comparison functor KL(T) -C is essen-
tially surjective on the objects, so that it is an equivalence (recall that it is
always full and faithful).

Proof: Proof of theorem 2.1.1: 2) ⇒ 1) : let C be the full subcategory of
A spanned by I • G for I ∈ Set. By proposition 2.1.2, C is equivalent to
KL(T) for a monad T over SET . But KL(T) is a projective cover of EM(T)
and, by assumption, C is a projective cover of A. So, by proposition 1.7.2, A is
equivalent to EM(T).

Now we can study localizations of EM(T). We use the fact that EM(T) is
the exact completion of KL(T), so that we can work with its formal description
as a free exact category.

Proposition 2.1.3 Consider a category B; the following conditions are equiv-
alent:

1) B is equivalent to a localization of EM(T) for a monad T over SET (that
is a reflective subcategory such that the reflector is lex)

2) B is locally small and exact and has a regular generator which admits all
copowers.

Proof: the implication 1⇒2 is quite obvious, so let us look at the implication
2⇒1. Let G be a regular generator as in condition 2 and let us fix some nota-
tions: if S is a set, S •G is the S-indexed copower of G and is:G -S •G is
the s’th canonical injection (s ∈ S); if α:S -T is in SET , α′:S •G -T •G
is the arrow in B defined by is · α′ = iα(s)

S •G -α′
T •G

@
@

@I
is

�
�

��
iα(s)

G
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Given an object A in B, the canonical cover of A by G is the unique arrow
a: B(G,A) •G -A such that for each f :G -A the following diagram com-
mutes

B(G,A) •G -a
A

@
@

@I
if

�
�

��
f

G

The fact that G is a regular generator means exactly that, for each object A of
B, such cover is a regular epimorphism. Now consider the full subcategory C of
B spanned by copowers of G.

First step: the full inclusion F : C -B is a left covering functor.
For the sake of brevity, we prove that F is left covering with respect to binary
products, but the argument can be easily adapted to any finite limit. Consider
two objects in C together with their product in B

I •G π1� I •G× J •G π2-J •G

We obtain a weak product in C precomposing with the canonical cover by G

γ: B(G, I •G× J •G) •G - I •G× J •G

which, by assumption, is a regular epimorphism. In fact, given an object and
two arrows in C

I •G f� S •G g-J •G

a possible factorization is given by

α′:S •G -B(G, I •G× J •G) •G

where
α:S -B(G, I •G× J •G)

sends s ∈ S into
(is · f, is · g):G - I •G× J ·G

with is:G -S •G. In fact, for each s ∈ S,

is · α′ · γ · π1 = i(is·f,is·g) · γ · π1 = (is · f, is · g) · π1 = is · f

so that α′ · γ · π1 = f ; analogously α′ · γ · π2 = g. In the rest of the proof, we
omit the verification of equations, which can always be done precomposing with
canonical injections in some copowers. The fact that γ is a regular epimorphism
means exactly that F is left covering (with respect to binary products). By
the universal property of the exact completion Γ: C -Cex, this implies that
there exists an exact functor F̂ : Cex -B such that F and Γ · F̂ are naturally
isomorphic. Let us recall that, if
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R •G -f
S •G

r1

??

r2 s1

??

s2

X •G -
f

Y •G

is an arrow in Cex, F̂ [f, f ] is the unique extension to the quotient as in the
following diagram

R •G -
-r1

r2
X •G -q1

A

f

? ?

f

?

F̂ [f, f ]

S •G -
-s1

s2
Y •G -q2

B

Second step: embedding of B in Cex.
Given an object A in B, consider its canonical cover by G

a: B(G,A) •G -A,

the kernel pair of a
a1, a2:N(a) -

-
B(G,A) •G

and again the canonical cover by G

n: B(G,N(a)) •G -N(a)

The pair of arrows

n · a1, n · a2: B(G,N(a)) •G -
-

B(G,A) •G

is an object of Cex. Let us verify its transitivity (reflexivity and symmetry can
be verified in an analogous way). Consider the following diagram

P -p1 B(G,N(a)) •G

?

n

p2

?

N(a) ? N(a) -d1 N(a)

d2

? ?

a2

B(G,N(a)) •G -
n N(a) -

a1
B(G,A) •G
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where both squares are pullbacks, so that there exists a unique factorization
d:P -N(a) ? N(a). We obtain a weak pullback of n · a1 and n · a2 in C
precomposing with the cover

γ: B(G,P ) •G -P

Consider again the transitivity of

a1, a2:N(a) -
-

B(G,A) •G

that is the unique arrow t:N(a) ? N(a) -N(a) such that t · a1 = d1 · a1 and
t · a2 = d2 · a2. The transitivity of

n · a1, n · a2: B(G,N(a)) •G -
-

B(G,A) •G

is given by
α′: B(G,P ) •G -B(G,N(a)) •G

where
α: B(G,P ) -B(G,N(a))

sends h:G -P into h · d · t:G -P -N(a) ? N(a) -N(a).
Consider now an arrow ϕ:A -B in B; we can build up the following

diagram, commutative in each part

B(G,N(a)) •G -n N(a) -
-a1

a2

B(G,A) •G -a
A

α′

?

t

? ?

α′

?

ϕ

B(G,N(b)) •G -m N(b) -
-b1

b2

B(G,B) •G -b
B

The construction of the horizontal lines has just been explained; as far as the
columns are concerned, α′ is induced by

α: B(G,A) -B(G,B)

which sends h:G -A into h · ϕ:G -A -B; the existence of a unique t
such that t · b1 = a1 · α′ and t · b2 = a2 · α′ follows from a · ϕ = α′ · b and the
universal property of N(b); α′ is induced by

α: B(G,N(a)) -B(G,N(b))

which sends h:G -N(a) into h · t:G -N(a) -N(b).
In particular
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B(G,N(a)) •G -α′ B(G,N(b)) •G

n · a1

??

n · a2 m · b1

??

m · b2

B(G,A) •G -
α′

B(G,B) •G

gives us an arrow in Cex which we take as value of a functor

r: B -Cex

The functoriality of r is quite obvious. As far as its faithfulness is concerned,
consider a second arrow ψ:A -B in B and build up an arrow [β

′
, β′] in Cex in

the same way as [α′, α′] has been built up from ϕ:A -B; if [β
′
, β′] = [α′, α′],

there exists Σ: B(G,A) • G -B(G,N(b)) • G such that Σ · m · b1 = α′ and
Σ ·m · b2 = β′. Now we have

a · ϕ = α′ · b = Σ ·m · b1 · b = Σ ·m · b2 · b = β′ · b = a · ψ

and then ϕ = ψ because a is a (regular) epimorphism.
It remains to show that r is full. For this, consider an arrow in Cex as in

the following diagram

B(G,N(a)) •G -f B(G,N(b)) •G

n · a1

??

n · a2 m · b1

??

m · b2

B(G,A) •G -
f

B(G,B) •G

Since
a: B(G,A) •G -A

is a regular epimorphism, it is the coequalizer of a1 and a2 and then of n · a1

and n · a2 because also n is a (regular) epimorphism. The condition on [f, f ] to
be an arrow in Cex implies then that there exists a unique arrow ϕ:A -B
such that a · ϕ = f · b. Now we can build up an arrow r(ϕ) = [α′, α′] in Cex as
explained before and we need to show that [f, f ] = [α′, α′], that is we need an
arrow

Σ: B(G,A) •G -B(G,N(b)) •G
such that Σ ·m · b1 = f and Σ ·m · b2 = α′. Since a · ϕ = f · b and a · ϕ = α′ · b,
there exists a unique arrow

τ : B(G,A) •G -N(b)

such that τ · b1 = f and τ · b2 = α′. Now we can take as Σ the arrow induced by

σ: B(G,A) -B(G,N(b))
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which sends f :G -A into if · τ :G -B(G,A) •G -N(b).
Third step: adjunction F̂ a r.

Let r1, r2:R • G ⇒ X • G be an object in Cex, consider its coequalizer q:X •
G -A in B (that is A = F̂ (r1, r2)) and build up

r(A) = (n · a1, n · a2: B(G,N(a)) •G⇒ B(G,A) •G

The unit of the adjunction F̂ a r must be an arrow in Cex of the following kind

R •G -η′ B(G,N(a)) •G

r1

??

r2 n · a1

??

n · a2

X •G -
η′

B(G,A) •G

As η′ we take the arrow induced by η:X -B(G,A) which sends x ∈ X into
ix · q:G -X • G -A. Now observe that with this definition η′ · a = q
and then r1 · η′ · a = r2 · η′ · a. This implies that there exists a unique arrow
τ :R • G -N(a) such that τ · a1 = r1 · η′ and τ · a2 = r2 · η′. Now as η′

we can take the arrow induced by η:R -B(G,N(a)) which sends r ∈ R into
ir · τ :G -R •G -N(a).

Consider now an object B of B and the following arrow in Cex

R •G -H B(G,N(b)) •G

r1

??

r2 m · b1

??

m · b2

X •G -
H

B(G,B) •G

Since r1 · H · b = r2 · H · b, there exists a unique arrow ϕ:A -B such that
q · ϕ = H · b and we can build up r(ϕ) = [α′, α′]. We need to prove that
[η′, η′] · [α′, α′] = [H,H] and for this we need an arrow

Σ:X •G -B(G,N(b)) •G

such that Σ ·m · b1 = H and Σ ·m · b2 = η′ · α′. Since H · b = η′ · α′ · b, there
exists a unique arrow τ :X •G -N(b) such that τ · b1 = H and τ · b2 = η′ ·α′.
Now we can take as Σ the arrow induced by σ:X -B(G,N(b)) which sends
x ∈ X into ix · τ :G -X •G -N(b).

As far as the uniqueness of the factorization is concerned, consider a second
arrow ψ:A -B and suppose that r(ψ) = [β

′
, β′] is such that [η′, η′] · [α′, α′] =
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[η′, η′]·[β′, β′]. This means that there exists an arrow Σ:X•G -B(G,N(b))•G
such that Σ ·m · b1 = η′ · α′ and Σ ·m · b2 = η′ · β′. Now

q ·ϕ = η′ ·a ·ϕ = η′ ·α′ · b = Σ ·m · b1 · b = Σ ·m · b2 · b = η′ ·β′ · b = η′ ·a ·ψ = q ·ψ

and then ϕ = ψ because q is a (regular) epimorphism.
Conclusion: we have just proved that B is (equivalent to) a localization of

Cex. But, from proposition 2.1.2, we know that the full subcategory C of B is
equivalent to KL(T) for a monad T over SET and then its exact completion
Cex is equivalent to EM(T). The proof of proposition 2.1.3 is now complete.

Let us look more carefully at the proof of proposition 2.1.3. If, instead of
exact, B is assumed to be only left exact but with coequalizers, we can again
define F̂ : Cex -B as at the end of the first step. Since in the second and the
third steps we do not use the exactness of B, we have the following

Proposition 2.1.4 Consider a category B; the following conditions are equiv-
alent:

1) B is equivalent to a reflective subcategory of EM(T) for a monad T over
SET

2) B is a locally small and left exact category with coequalizers and has a
regular generator which admits all copowers.

A warning: in the previous proposition it does not suffice to assume the
existence of coequalizers of pseudo equivalence relations. This is because a
pseudo equivalence relation in C is not necessarily a pseudo equivalence relation
in the whole category B.

Working essentially in the same way (that is working with the formal de-
scription of Cex and forgetting that it is equivalent to EM(T)) we can also prove
the following proposition.

Proposition 2.1.5 Consider a category B; the following conditions are equiv-
alent:

1) B is equivalent to an epireflective subcategory of EM(T) for a monad T
over SET (epireflective = units are regular epimorphisms)

2) B is locally small and regular with coequalizers of equivalence relations
and has a regular projective regular generator which admits all copowers.

Proof: first of all, observe that to define F̂ : C -B as in the first step of
proof of 2.1.3, it suffices to have coequalizers of equivalence relations. This
is because the jointly monic part of the (regular epi, mono) factorization of a
pseudo equivalence relation in C is an equivalence relation in B. It remains only
to prove that units are regular epimorphisms. For this, with the same notations
used in the third step of the proof of 2.1.3, consider a unit [η′, η′] and the monic
part of its (regular epi, mono) factorization. It is given by the following diagram
(cf. step 2 of theorem 1.2.3)
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B(G,L) •G -l · λ B(G,N(a)) •G

l · l1

??

l · l2 n · a1

??

n · a2

X •G -
η′

B(G,A) •G

where

X •G � l1
L -l2

X •G

η′

?

λ

? ?

η′

B(G,A) •G �n · a1 B(G,N(a)) •G -n · a2 B(G,A) •G

is a limit in B and l: B(G,L) • G -L is the canonical cover of L by G. To
prove that [η′, η′] is a regular epimorphism, it suffices to prove that [l ·λ, η′] has a
left inverse [σ′, σ′] (so that it is an isomorphism). Since G is regular projective,
for each arrow f :G -A we can choose an arrow f ′:G -X • G such that
f ′ · q = f (where q:X •G -A is the coequalizer of r1, r2:R •G ⇒ X •G in
B). The following diagram gives us the definition of σ′

B(G,A) •G -σ′
X •G

@
@

@I
if

�
�

��
f ′

G

Observe that σ′ · q = a (which is the canonical cover of A by G). This implies
that n · a1 · σ′ · η′ · a = n · a2 · σ′ · η′ · a, so that there exists a unique arrow
t: B(G,N(a))•G -N(a) such that t ·a1 = n ·a1 ·σ′ ·η′ and t ·a2 = n ·a2 ·σ′ ·η′.
Now we can consider the arrow

τ ′: B(G,N(a)) •G -B(G,N(a)) •G

induced by
τ : B(G,N(a)) -B(G,N(a))

which sends g:G -N(a) into ig · t:G -B(G,N(a))•G -N(a). Observe
now that n ·a1 ·σ′ ·η′ = τ ′ ·n ·a1 and n ·a2 ·σ′ ·η′ = τ ′ ·n ·a2, so that there exists
a unique arrow x: B(G,N(a)) •G -L such that x · λ = τ ′, x · l1 = n · a1 · σ′
and x · l2 = n · a2 · σ′. We take as

σ′: B(G,N(a)) •G -B(G,L) •G

the arrow induced by
σ: B(G,N(a)) -B(G,L)
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which sends g:G -N(a) into ig · x:G -B(G,N(a)) •G -L. It remains
to verify that [σ′, σ′] is a left inverse for [l · λ, η′]. For this we need an arrow

Σ′: B(G,A) •G -B(G,N(a)) •G

such that Σ′ · n · a1 = σ′ · η′ and Σ′ · n · a2 = 1. Since σ′ · η′ · a = a, there exists
a unique arrow s: B(G,A) •G -N(a) such that s · a1 = σ′ · η′ and s · a2 = 1.
We can take as Σ′ the arrow induced by

Σ: B(G,A) -B(G,N(a))

which sends f :G -A into if · s:G -B(G,A) •G -N(a).

Remarks: i) In the characterization of EM(T) as well as in proposition
2.1.5, the regularity of the category is a little bit redundant; in fact the stability
of regular epimorphisms under pullbacks follows from the other assumptions (cf.
lesson 2 in [31]). This is not true in proposition 2.1.3, because there the regular
generator in general is not regular projective.

ii) Observe that, in the case of epireflections, B contains not only C, but
also Creg (the regular completion of C). In fact, F : C -B is full and faithful
and factors through the regular projective objects of B, so that its extension
Creg -B is full and faithful (cf. proposition 3.4.1). This agrees with the fact
that Creg is the epireflective hull of C in Cex (cf. section 4.3).

iii) Proposition 2.1.5 is well-known (see [36], where this kind of characteri-
zations are used to study Malcev conditions in varietal and quasi-varietal cat-
egories, [40] and [30]). I have quoted it here because I think it is remarkable
that the theory of the exact completion gives us a general framework to prove
(in a quite straightforward way) all characterization theorems contained in this
section.

iv) All results can be obviously generalized to monads over a power SET X

of SET . To characterize KL(T), we need an X-indexed family of objects Gx in
C such that: i) for each f :S -X in SET there exists

∐
s∈SGf(s); ii) for each

object C in C there exists f :S -X in SET such that C '
∐

s∈SGf(s). Now
the other results hold replacing the single generator with an X-indexed family
of generators which admit all sums.

2.2 Presheaf categories

Working in the same way as in the previous section, we give here an easy
proof of a well-known characterization of presheaf categories (cf. [12] and [42]).

We need some preliminary facts.
Let D be a small category; the sum-completion FamD of D is defined as

follows:
objects: functors f : I -D with I a discrete category (a set)
arrows: an arrow (f : I -D) - (g: J -D) is a pair (a, α) with a an ap-
plication I -J and α a natural transformation f ⇒ a · g.



2.2. PRESHEAF CATEGORIES 63

It is an easy fact to check that FamD has sums. In particular, the initial
object is the unique functor ∅ -D with ∅ the empty set.

There exists an obvious functor

I:D -FamD

defined by
X  (X: {∗} -D)

where {∗} is the singleton.
The name “sum-completion” comes from the following universal property

which characterizes FamD uniquely up to equivalences:
for each functor F :D -B, with B a category with sums, there exists a unique
sum-preserving functor F ′: FamD -B such that the following diagram is com-
mutative

D -I FamD
@

@
@

@@R

F

�
�

�
��	

F ′

B

In fact, it suffices to define

F ′(f : I -D) =
∐

i∈I
F (f(i))

The uniqueness of F ′ on the objects follows from the fact that in FamD each
object is a sum of objects like ({∗} -D). To define F ′ on the arrow, it suffices
to consider an arrow as (i, α): (X: {∗} -D) - (f : I -D) with i ∈ I, that
is an arrow α:X - f(i) in D; obviously, one puts F ′(i, α) = F (α).

This functor F ′: FamD -B is also the left Kan extension of F along I. In
fact, given a functor T : FamD -B and a natural transformation α:F -I ·
T , we can build up a natural transformation β:F ′ -T . For this, consider an
object f : I -D in FamD; as F ′(f : I -D) =

∐
i∈IF (f(i)), to have an arrow

βf :F ′(f : I -D) -T (f : I -D), it suffices to have an I-indexed family of
arrows F (f(i)) -T (f : I -D). But we can choose αf(i):F (f(i)) -T (I(f(i)))
followed by the image by T of the canonical inclusion of f(i): {∗} -D in the
coproducts

∐
i∈I(f(i) : {∗} -D) = (f : I -D).

The next proposition gives an alternative description of FamD.

Proposition 2.2.1 Let D be a small category and B the full subcategory of

SET Dop
spanned by sums of representable functors; B is equivalent to FamD.

Proof: Consider the unique extension Y ′: FamD -B of the Yoneda em-
bedding Y :D -B; obviously, Y ′ is surjective on the objects. To show that Y ′
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is full and faithful, it suffices to consider the arrow-part of Y ′ between hom-sets
of the following kind

FamD({∗} X-D, I f-D)

and
B(Y ′({∗} X-D), Y ′(I f-D))

But the first home set is exactly
∐

i∈ID(X, f(i)) and the second one is Nat(D(−, X),
∐

i∈ID(−, f(i))).
If α:X - f(i) is in

∐
i∈ID(X, f(i)), then Y ′(α) is the composition

D(−, X)− · α-D(−, f(i)) -
∐

i∈I
D(−, f(i))

that is the (inverse of the) bijection of the Yoneda lemma.

Corollary 2.2.2 Sums in FamD are disjoint and the initial object is strict.

From the previous proposition, one can deduce more: FamD is an extensive
category, so that sums in FamD are also universal. (Recall that a category B
is extensive when it has finite sums and, for each pair of objects B1, B2, the
canonical functor

B/B1 × B/B2
-B/B1

∐
B2

is an equivalence (B/B is the comma category). In an extensive category sums
are disjoint and the initial object is strict. A left exact category with finite sums
is extensive if and only if sums are disjoint and universal. A category B with
finite sums and finite products is distributive if, for each triple of objects A,B
and C, the canonical arrow

(A×B)
∐

(A× C) -A× (B
∐

C)

is an isomorphism. A left exact and extensive category is distributive. All
this can be found in [16]. In this work with “extensive” we always mean the
obvious extension from “finite sums” to “arbitrary (small) sums” of the facts
just quoted.)

Since FamD is equivalent to a projective cover of SET Dop
(proposition

2.2.1), the next step to characterize presheaf categories is to characterize cate-
gories which are the sum-completion of a small category.

Proposition 2.2.3 Consider a category B; the following conditions are equiv-
alent:

1) B is equivalent to the category FamD for a small category D

2) C is locally small with disjoint sums and strict initial object and there
exists a small subcategory D of B such that

i) ∀ B ∈ B ∃ {Xi}I with Xi ∈ D such that B '
∐

i∈IXi
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ii) ∀ f :X -∐
i∈IXi with X,Xi ∈ D there exists i0 ∈ I such that f

can be factored through the injection Xi0
-∐

i∈IXi

iii) the initial object 0 is not in D

Proof: 1) ⇒ 2) : take the full subcategory of FamD constituted by objects
(X: {∗} -D) with X in D.

2) ⇒ 1) : consider the unique extension F ′: FamD -B of the full inclu-
sion F :D -B. The first condition on D means exactly that F ′ is essentially
surjective on the objects.

Consider an arrow (i, α): (X: {∗} -D) - (f : I -D) in FamD, that is
an object i ∈ I and an arrow α:X - f(i) in D; F ′ sends it on the composition
X α- f(i) -∐

i∈If(i). Clearly the second condition means that F ′ is full.
Now suppose that F ′(i, α) = F ′(j, β), with i, j ∈ I and α:X - f(i),

β:X - f(j); this means exactly that the following diagram is commutative

X -α f(i)

β

? ?

f(j) -
∐

i∈If(i)

If i = j, then α = β because f(i) -∐
i∈If(i) is a mono. If i 6= j, then

there exists a unique arrow t:X - 0 such that

X -t 0 X -t 0
@

@
@R

α
�

�
�	

@
@

@R
β

�
�

�	
f(i) f(j)

are commutative; but 0 is strict so that t is an isomorphism. This implies that
0 ∈ D, in contradiction with the last condition.

We are ready now to give the announced characterization of presheaf cate-
gories.

Proposition 2.2.4 Consider a category A; the following conditions are equiv-
alent:

1) A is equivalent to the category of presheaves on a small category

2) A is exact with disjoint sums and strict initial object and has a set {Gj}J

of generators (that is regular generators) such that

i) ∀ j ∈ J , Gj is projective

ii) ∀ f :G -∐
i∈IGi with G,Gi ∈ {Gj}J , ∃ i0 ∈ I such that f can be

factored through the injection Gi0
-∐

i∈IGi
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3) A has a family of absolutely presentable generators.

Proof: 1) ⇒ 3) and 3) ⇒ 2) are obvious (recall that an object G ∈ A is
absolutely presentable if A(G,−): A -SET preserves colimits). 2) ⇒ 1): two
cases.

First, if the initial object 0 ∈ {Gj}J , but {Gj}J \ 0 is not a family of
generators, then {Gj}J = {0} and so A ' SET ∅.

Second, if 0 6∈ {Gj}J , let D be the full subcategory of generators and B the
full subcategory spanned by sums of generators; by proposition 2.2.3, B is equiv-
alent to FamD which is, by proposition 2.2.1, a projective cover of SET Dop

;
but, by assumption, B is a projective cover of A. So, by proposition 1.7.2, A is
equivalent to SET Dop

.

2.3 The Giraud theorem

In this section we want to revisit another celebrated characterization theo-
rem, that is Giraud theorem characterizing Grothendieck topo.

Let us start with a brief and informal discussion. Giraud theorem states
that the following three conditions are equivalent for a given category A:

1) A satifies Giraud axioms for a topos

2) A is a localization of a presheaf category

3) A is equivalent to the category of sheaves on a site.

Usually (cf. [8], [28], [32], [34]) the proof of this theorem runs as follows.
First, one proves that the associated sheaf functor exhibits a category of

sheaves as a localization of the corresponding presheaf category (that is 3) ⇒
2)).

Second, one observes that Giraud axioms are verified by a presheaf category
and that they are stable under localizations (that is 2) ⇒ 1)).

Third, starting from the family of generators involved in Giraud axioms, one
has to construct a site and an equivalence between the given category and the
resulting category of sheaves (that is 1) ⇒ 3)); clearly, this is the most difficult
part.

In my opinion, one can look at condition 1) as the definition of a Grothendieck
topos; at condition 2) as the characterization of Grothendieck topo and at con-
dition 3) as a representation theorem.

For this reason, I think it is of some interest to have a direct proof that 1)
implies 2).

Moreover, as a presheaf category is a free exact one, it must be possible to
express the conditions making the reflector a left exact functor in terms of a left
covering functor.

For this, we look more carefully at the sum-completion FamD of a small
category D.
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We know (proposition 2.2.1) that FamD is (equivalent to) a projective cover
of SET Dop

, so that it is a weakly lex category.
Let us describe explicitely some weak finite limits in FamD, identified with

the full subcategory of SET Dop
spanned by sums of representable functors.

Each time, one can consider the corresponding strong limit in SET Dop
and use

the canonical presentation of a presheaf as colimit (that is quotient of a sum)
of representable presheaves. We give directly the resulting formula.

A weak terminal object in FamD is the coproduct
∐

X∈D0
D(−, X) of all the

representable presheaves.
A weak product of two objects D(−, A) and D(−, B) in FamD is the coprod-

uct
∐
D(−, X) indexed over all the pairs of arrows A u� X v-B in D with

X varying in D0.
A weak equalizer of two parallel arrows u, v:D(−, A) -

-
D(−, B) in FamD

is the coproduct
∐
D(−, X) indexed over all the arrows x:X -A in D such

that x · u = x · v with X varying in D0.
In each case the projections are the obvious ones; for example, the projection

from the weak product
∐
D(−, X) -D(−, B) is the unique arrow induced by

the family of arrows {v:X -B} indexed by all the pairs A u� X v-B in
D.

So, we have described binary products and equalizers of objects and arrows
of FamD coming from D via the (Yoneda) embedding I:D -FamD.

Lemma 2.3.1 Let D be a small category and A a left exact and extensive
category. Consider a sum-preserving functor F :FamD -A left covering with
respect to binary products and equalizers of objects and arrows of FamD coming
from D; F is left covering with respect to binary products and equalizers.

Proof: Taking into account that in FamD each object is a sum of repre-
sentable ones, the proof proceeds by induction.

For the sake of clarity, we consider only binary sums, but all the arguments
are valid for arbitrary sums.
Products: consider three objects X,A,B ∈ FamD and assume, by induction,
that the canonical factorizations ϕ:F (X × A) -FX × FA and ψ:F (X ×
B) -FX × FB are strong epi’s. In FamD there exists a factorization

γ: (X ×A)
∐

(X ×B) -X × (A
∐

B)

(commuting with the appropriate projections); on the other hand, the canonical
factorization in A

(FX × FA)
∐

(FX × FB) -FX × (FA
∐

FB)

is an iso, because A is distributive.
Now we can build up a commutative diagram in A
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F (X × (A
∐
B)) -α FX × F (A

∐
B)

Fγ
6

?

'

F ((X ×A)
∐

(X ×B)) FX × (FA
∐
FB)

'

? ?

'

F (X ×A)
∐
F (X ×B) -

ϕ
∐
ψ

(FX × FA)
∐

(FX × FB)

but ϕ
∐
ψ is a strong epi, so that also the canonical factorization α is a strong

epi, as required.
(Observe that the coproduct of a family of strong epimorphisms is again a

strong epimorphism.)
Equalizers: first case. Consider in FamD a coproduct X iX-X

∐
Y iY� Y and

two arrows f, g:X
∐
Y -

-
A; consider two weak equalizers

EX
eX-X

iX · f
-
-

iX · g
A EY

eY-Y
iY · f

-
-

iY · g
A

and then apply F

FEX FEY

pX

?

@
@

@
@@R

FeX pY

?

@
@

@
@@R

FeY

LX
-

lX
FX -

-
FiX · Ff

FiX · Fg
FA LY

-
lY

FY -
-

FiY · Ff

FiY · Fg
FA

(where lX and lY are the equalizers in A).
Consider again a weak equalizer

E e-X
∐

Y
f
-
-

g
A

and the corresponding equalizer in A

FE

p

?

@
@

@
@@R

Fe

L -
l

FX
∐
FY -

-
Ff

Fg
FA
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(where we have identified for brevity F (X
∐
Y ) with FX

∐
FY ); we want to

show that the canonical factorization p is a strong epi. By definition of E,EX

and EY , there exists a factorization t:EX

∐
EY

-E commuting with the
appropriate projections. On the other hand, the analogous factorization in A
LX

∐
LY

-L is an iso (this easily follows from the universality of sums and
keeping in mind the construction of equalizers via pullbacks and products). Now
we have the following commutative diagram

FEX

∐
FEY

-Ft
FE

pX

∐
pY

? ?

p

LX

∐
LY

-'
L

but by induction pX and pY are strong epimorphisms, so that also p is a strong
epimorphism.
Equalizers: second case. Consider in FamD two arrows f, g:X -

-
A

∐
B with

A,B ∈ D. As usual, consider a weak equalizer e:E -X in FamD, the strong
equalizer in A and the corresponding factorization

FE

p

?

@
@

@
@@R

Fe

L -
l

FX -
-

Ff

Fg
FA

∐
FB

(once again we identify F (A
∐
B) with FA

∐
FB).

Taking into account the first case just discussed, we can suppose also X
in D, so that f and g have to factor through one of the canonical inclusions
A iA-A

∐
B iB� B.

Suppose they factor as f = f · iA, g = g · iB . Then L factors through the
pullback of Ff and Fg, which factors through the pullback of FiA and FiB
which is the initial object (sums are disjoint); but the initial object is strict, so
that all the involved factorizations (included p:FE -L) are isomorphisms.

Suppose now they factor as f = f · iA, g = g · iA. Taking into account that
iA:A -A

∐
B is a mono (sums in FamD are performed in SET Dop

), we have
that e:E -X is also a weak equalizer of f, g:X -

-
A. By assumption, the

factorization on the corresponding equalizer in A
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FE

p

?

@
@

@
@@R

Fe

L -
l

FX -
-

Ff

Fg
FA

is a strong epimorphism.
But l:L -FX is also the equalizer of

FX
Ff · iFA

-
-

Fg · iFA

FA
∐

FB

(because iFA is a mono), that is of Ff, Fg:FX -
-
FA

∐
FB. Therefore p = p

is a strong epimorphism, as required.

Corollary 2.3.2 Under the hypothesis of the previous lemma, if moreover A
is regular and F is left covering with respect to the terminal object, then F is
left covering.

Proof: By lemma 2.3.1 and proposition 1.4.10.

We are ready to see how left covering functors can be used in the proof of
Giraud theorem. To make this more evident, we have chosen a list of axioms
which is by no way minimal (for example, “cocomplete” can be replaced by “with
sums” and “dense” can be omitted) and we only sketch the classical arguments
involved in the proof.

Proposition 2.3.3 Let A be an exact, extensive and cocomplete category. If A
admits a dense family {Gi}I of generators, then A is a localization of a presheaf
category.

Proof: Consider the full subcategory D of A whose objects are the generators
Gi and call F :D -A the inclusion. Since the family {Gi}I is dense, the
functor A(F−,−): A -SET Dop

is full and faithful and, since A is cocomplete,
it is the right adjoint of the left Kan extension F̂ :SET Dop -A of F along
the Yoneda embedding Y :D -SET Dop

. Taking into account the results of
section 2.2, we can factor Y as

D I-FamD Γ- (FamD)ex ' SET Dop

(where I is described at the beginning of section 2.2 and Γ is described in 1.3.1).
Also F̂ can be built up in two steps: first, consider the left Kan extension

F ′: FamD -A of F along I (that is, the sum-preserving extension of F ) and
then take the left Kan extension F̂ of F ′ along Γ. By proposition 1.5.4 and
theorem 1.5.2, to prove that F̂ is left exact, it suffices to prove that F ′ is left
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covering. Keeping in mind the description of weak limits in FamD, we have to
look at the three following canonical factorizations∐

Gi
- 1 ,

∐
Gi

-C ×D ,
∐

Gi
-Eu,v

where: C,D, u, v are objects and arrows in D; the first coproduct is indexed
by all the objects Gi in D; the second coproduct is indexed by all the pairs
of arrows C� Gi

-D in D with Gi varying in D; the third coproduct is
indexed by all the arrows w:Gi

-C such that w · u = w · v with Gi varying

in D; 1 is the terminal in A; C ×D is the product in A; Eu,v
-C

u

-
-
v

D is
the equalizer in A.

But the hypothesis that the family {Gi}I generates 1, C×D and Eu,v means
exactly that these three arrows are regular epis. By corollary 2.3.2, we have that
F ′ is left covering and the proof is complete.

The previous proof is not, in some sense, satisfactory. In fact, we have used
only the universal property of SET Dop

as free exact category, but not its formal
description. As a consequence, we are forced to use some non trivial facts on
dense generators and pointwise Kan extensions. We give now a different proof,
which is less elegant but completely straightforward. What is the “best” proof
of a theorem is, of course, a matter of personal taste. Nevertheless, I think it
is interesting to point out that, once some basic facts on exact categories are
achieved, the characterization of localizations of presheaf categories becomes an
easy exercise.

We work as in the proof of proposition 2.1.3. The major difference is that
C must be the sum-completion of the full subcategory D of generators, so that
Cex is equivalent to SET Dop

. For this, we take as arrows from a generator to
a sum of generators only the arrows which factor through a canonical injection
(generators are indecomposable in SET Dop

). Now the inclusion of C in B is
not full, but it remains left covering in virtue of the extensivity assumption on
B.

Proposition 2.3.4 Consider a category B; the following conditions are equiv-
alent:

1) B is equivalent to a localization of a presheaf category

2) B is exact, extensive and has a set of regular generators which admit all
sums.

Proof: let {Gx}x∈X be the set of generators. Consider the following category
C: objects are sums of generators, so that a generic object of C is of the form∐

s∈SGf(s) for a map f :S -X; an arrow∐
s∈S

Gf(s)
-

∐
r∈R

Gg(r)

in C is an arrow in B such that, for each s ∈ S, there exist rs ∈ R and
Gf(s)

-Gg(rs) in B making commutative the following diagram
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∐
s∈SGf(s)

-
∐

r∈RGg(r)

is 6 6irs

Gf(s) - Gg(r)

We write
a:

∐
x,B(Gx,A)

Gx
-A

for the canonical cover of an object A of B by generators. Now observe that
C is equivalent to the sum-completion of the full subcategory of B spanned by
generators. For this, it suffices to observe that, if∐

s∈S
Gf(s)

-
∐

t∈T
Gh(t)

�
∐

r∈R
Gg(r)

are arrows in C, then the unique factorization in B

(
∐

s∈S
Gf(s))

∐
(
∐

r∈R
Gg(r)) -

∐
t∈T

Gh(t)

is again an arrow in C.
First step: the inclusion F : C -B is a left covering functor.

Consider a finite diagram L:D -C and its limit in B

limL · F = (πD:L -L(D))D∈D0

If we precompose each πD with the canonical cover

l:
∐

x,B(Gx,L)
Gx

-L

we do not know if the resulting projections l ·πD are arrows in C. What we can
do is to take a ”subcover”

l′:
∐

x,C(Gx,L)
Gx

-L

where C(Gx, L) = {f :Gx
-L | ∀ D ∈ D0 f · πD ∈ C}. One can prove that

(l′ · πD:
∐

x,C(Gx,L)
Gx

-L(D))D∈D0

is a weak limit of L in C working as in 2.1.3. But now we have a new problem:
by assumption, the canonical cover l is a regular epimorphism; how can we prove
that also the subcover l′ is a regular epimorphism? If, for each D ∈ D0, L(D)
is reduced to a single generator, the difference between B(Gx, L) and C(Gx, L)
vanishes, so that l′ = l is a regular epimorphism. The general case follows from
this particular case using lemma 2.3.1.

Second and third steps: here the only difference with respect to the algebraic
case (proposition 2.1.3) is in the definition of r: B -Cex on the objects of B.
Given an object A in B, we start with the canonical cover

a:
∐

x,B(Gx,A)
Gx

-A
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and we take its kernel pair in B

a1, a2:N(a) -
-∐

x,B(Gx,A)
Gx

But now, to construct a pseudo equivalence relation in C, we take the subcover

n′:
∐

x,C(Gx,N(a))
Gx

-N(a)

where C(Gx, N(a)) = {f :Gx
-N(a) | f · a1, f · a2 ∈ C}. It remains

only to prove that n′ is a (regular) epimorphism, which is essential to show
that r: B -Cex is full (we can not use here lemm 2.3.1 as in the first step,
because A is not necessarily in C). Since the rest of the proof runs exactly as
in the algebraic case, we can conclude our proof showing that n′ is a regular
epimorphism in a separated lemma.

Lemma: Consider a pullback in B

P -k
′ ∐

s∈SGf(s)

h′

? ?
h∐

r∈RGg(r)
-k A

and the subcover
p′:

∐
x,C(Gx,P )

Gx
-P

where C(Gx, P ) = {f :Gx
-P | f · h′, f · k′ ∈ C}; the arrow p′ is a regular

epimorphism.

Proof: such as the one of lemma 2.3.1, the proof is by induction. If R =
S = {?}, the difference between C(Gx, P ) and B(Gx, P ) vanishes, so that p′ = p
which is a regular epimorphism by assumption on generators. If R = {?} but S
is arbitrary, consider the pullback

Ps
-ks Gf(s)

js
? ?

is

P -
k′

∐
s∈SGf(s)

By associativity of pullbacks, we can apply the induction, so that the subcover

p′s:
∐

x,C(Gx,Ps)
Gx

-Ps

is a regular epimorphism, where C(Gx, Ps) = {f :Gx
-Ps | f ·js·h′, f ·ks ∈ C}.

Let us write As for
∐

x,C(Gx,Ps)Gx; we are in the following situation
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As
-as

∐
s∈SAs

p′s
?
Ps

-
js

P

so that there exists a unique arrow σ:
∐

s∈SAs
-P such that as · σ = p′s · js

for each s in S. By universality of sums, (js:Ps
-P ) =

∐
s∈SPs. Since, for

each s, p′s is a regular epimorphism, by commutativity of colimits also σ is a
regular epimorphism. Consider now

α′s:As
-

∐
x,C(Gx,P )

Gx

induced by

αs:
∐

x∈X
C(Gx, Ps) -

∐
x∈X

C(Gx, P )

which sends f :Gx
-Ps into f · js:Gx

-Ps
-P . We obtain a unique

arrow

α:
∐

s∈S
As

-
∐

x,C(Gx,P )
Gx

such that as · α = α′s for each s. We have built up the diagram

∐
s∈SAs -σ

P

@
@

@@I

α
�

�
���
p′∐

x,C(Gx,P )Gx

and its commutativity shows that p′ is a regular epimorphism. In the same way
the case R and S arbitrary follows inductively from the case R = {?} and S
arbitrary.

Remarks: i) Recall that, in the previous proposition, the assumption of
regularity on generators is redundant. In fact, in an exact and extensive category
each monomorphism is regular and then each epimorphism is regular.

ii) One can be tempted to adapt also propositions 2.1.4 and 2.1.5 to presheaf
categories. Unfortunately, if the reflector is not lex, the disjointness of sums is
not preserved, so that C is no more equivalent to the sum-completion of the
full subcategory of generators. Moreover, if one tries to transpose the argument
used to prove the regularity of units from the algebraic case to the presheaves
case, one realizes immediately that, in the second case, it runs if and only if
generators are indecomposable in B. This is true in some particular cases (for
example when the right adjoint preserves regular projective objects), but not
for any epireflection.
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2.4 Geometric morphisms

We want to develop here some facts arising from the two previous sections.
More exactly, we want to revisit the study of geometric morphisms from an (ele-
mentary) topos E to a topos of presheaves SET Dop

. We follow the terminology
of [32].

Definition 2.4.1 Consider a small category D, the covariant Yoneda embed-

ding Y :D -SET Dop
and a cocomplete left exact category A; a functor

F :D -A is flat if its left Kan extension F̃ :SET Dop -A along Y is left
exact.

Observe that in the previous definition one can equivalently require that F̃
is exact; in fact F̃ is computed pointwise, so that it has always right adjoint
given by A(F−,−): A -SET Dop

.

Proposition 2.4.2 With the notations of the previous definition and supposing
A exact, we have that F is flat if and only if its sum-preserving extension
F ′:FamD -A is left covering.

Proof: Consider the following diagram

D -I FamD
@

@
@

@@R

F
?

F ′
@

@
@

@@R

Γ

A �
�F̃

F̂
SET Dop

where I · Γ = Yoneda embedding, I is as in section 2.2 and Γ is (up to the
equivalence of proposition 2.2.1) as in proposition 1.3.1.
(if): if F ′ is left covering, then (by 1.5.4 and 1.5.2) its left Kan extension F̂
along Γ is exact. But F ′ is the left Kan extension of F along I, so that F̂ is the
left Kan extension of F along Y and then F̂ coincides with F̃ .
(only if): if F is flat, then by definition F̃ is exact and then (by 1.4.8) Γ · F̃ is
left covering. But Γ · F̃ coincides with F ′ because I · Γ · F̃ = F and Γ · F̃ is
sum-preserving.

Definition 2.4.3 Let D be a small category and A a left exact category. A
functor F :D -A is filtering if the following three coditions hold:

1) the family of all maps F (X) - 1 (with X varying in D0) is epimorphic

2) for each pair of objects A,B in D, the family of all maps

〈F (u), F (v)〉:FX -FA× FB

(with A u� X v-B in D with X varying in D0) is epimorphic
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3) for each pair of arrows u, v:A -
-
B inD, the family of all maps F (X) -Eu,v

(induced via the equalizer Eu,v
-FA

Fu

-
-

Fv
FB by maps w:X -A in

D such that w · u = w · v with X varying in D0) is epimorphic.

(Recall that if A = SET , this definition means exactly that the category of
elements of F is filtering (cf. [32]) or, equivalently, that F is a filtered colimit
of representable functors (cf. [8])).

Proposition 2.4.4 Consider a functor F :D -A with D small and A an
exact and extensive category. Let F ′:FamD -A be the sum-preserving ex-
tension of F ; F is filtering if and only if F ′ is left covering.

Proof: Recall that in such a category A every epimorphism is regular (cf.
[17]). Keeping in mind the description of weak limits in FamD given at the
beginning of section 2.3, the three conditions of the previous definition are
equivalent respectively to the fact that F ′ is left covering with respect to the
terminal object, products of objects coming from D and equalizers of arrows
coming from D. One immediately concludes by lemma 2.3.1 and corollary 2.3.2.

Putting together propositions 2.4.2 and 2.4.4, we obtain an easy proof of the
characterization of geometric morphisms A -SET Dop

in terms of filtering
functors D -A; our proof holds if A is a cocomplete pretopos.

Moreover, proposition 2.4.4 explains in some sense the (a little bit mysteri-
ous) definition of filtering functor.

2.5 Sup-lattices as free exact categories

In section 2.1, we have characterized the category of algebras for a monad
over SET as an exact category with enough projectives such that the full sub-
category of projectives is equivalent to the category of free algebras. The fact
that free algebras are projective depends on the axiom of choice in SET .

In this section we give an example of a monadic category which is exact and
whose free algebras are projective without using the axiom of choice. For this,
we need some elementary facts about the regularity and exactness of monadic
categories.

In the following, T = (T, µ:T 2 -T, ε: 1 -T ) is a monad over a cate-
gory A, EM(T) and KL(T) are respectively the Eilenberg-Moore and the Kleisli
category of T.

Proposition 2.5.1 Let A be regular;

1) T preserves regular epis if and only if the forgetful functor

U :EM(T) -A

preserves regular epis
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2) if T preserves regular epis, then EM(T) is regular and U preserves and
reflects the regular epi-mono factorization

Proof: 1) (if): obvious, because T = F · U with F the left adjoint of U .
(only if): it follows from the construction of the regular epi-mono factorization
in EM(T) contained in the proof of part 2).
2): EM(T) is left exact because A is left exact and U creates limits; let us
consider now a morphism f : (C, c) - (D, d) in EM(T) that is, C is an object
of A and c:TC -C is the structural map, f :C -D is a morphism in A
such that the following diagram commutes

TC -Tf
TD

c

? ?

d

C -
f

D

Since A is regular, we can factor f :C -D as a regular epi followed by a mono

C -f
D

@
@

@
@@R

e

�
�

�
���

m

I

We have to prove that this is also the regular epi-mono factorization in EM(T).
By assumption, Te is a regular epi, so that there exists i:TI - I making
commutative the following diagram in each part

TC -Te
TI -Tm

TM

c

? ?

i

?

d

C -
e I -

m D

Since m: I -D is a mono in A, (I, i) is a T-algebra (cf. section 3.2 of [3]) and
clearly e: (C, c) - (I, i) and m: (I, i) - (D, d) are morphisms of T-algebras.
m is a mono in EM(T) because it is a mono in T and U : EM(T) -A reflects
monomorphisms.

Consider the kernel pair e1, e2: (N,n) -
-

(C, c) of e: (C, c) - (I, i) in EM(T),
so that e1, e2:N -

-
C is the kernel pair of e:C - I in A; but e is a regular

epi, so that it is the coequalizer of e1 and e2 in A. It is the coequalizer of e1 and
e2 also in EM(T): in fact, if h: (C, c) - (A, a) is a T-algebra morphism such
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that e1 ·h = e2 ·h, then there exists a unique g: I -A in A such that e ·g = h.
But g is in EM(T); in fact Te·Tg ·a = T (e·g)·a = Th·a = c·h = c·e·g = Te·i·g
and then Tg · a = i · g because Te is an epimorphism.

From the above discussion, it follows that U : EM(T) -A preserves and
reflects regular epis (and then the regular epi-mono factorization) so that regular
epis are pullback stable in EM(T) because they are pullback stable in T.

Proposition 2.5.2 Let A be regular;

1) T sends regular epis into split epis (that is, epis with a section) if and only
if U sends regular epis into split epis

2) if T sends regular epis into split epis, then the free algebras are projective.

Proof: 1) (if): obvious. (only if): let f : (X,x) - (Y, y) be a regular epi
in EM(T); by proposition 2.5.1, f :X -Y is a regular epi in A and then
Tf : TX -TY has a section s:TY -TX. A section of f in A is given by
the following composition Y εY-TY s-TX x-X; in fact,

εY · s · x · f = εY · s · Tf · y = εY · y = 1Y .

2): by 2.5.1, EM(T) is regular, so that to prove that a free algebra is projective
it suffices to show that in EM(T) a regular epi f : (D, d) - (TC, µC) splits.
Once again Tf :TD -T (TC) has a section s:T (TC) -TD in A. Consider
now g:C -D in A given by the following composition

C
εC-TC

εTC-T (TC) s-TD d-D;

TC Tg-TD d-D is a morphism (TC, µC) - (D, d) in EM(T) and the ver-
ification that it gives the required section of f : (D, d) - (TC, µC) is straight-
forward.

Lemma 2.5.3 Let A be an exact category; consider an equivalence relation
e1, e2: (E, e) -

-
(X,x) in EM(T) and its coequalizer q:X -Q in A; if

TE
Te1

-
-

Te2
TX

Tq-TQ

is a coequalizer diagram in A, then e1, e2: (E, e) -
-

(X,x) is effective.

Proof: Since U is left exact, e1, e2:E -
-
X is an equivalence relation in A

and then we can complete it in an exact sequence

E
e1
-
-

e2
X

q-Q

By assumption, there exists a unique arrow λ:TQ -Q making commutative
the right-hand square in the following diagram
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TE -
-Te1

Te2
TX -Tq

TQ

c

? ?

x

?

λ

E -
-e1

e2
X -

q Q

Using the fact that q and Tq are epimorphisms, one can easily show that (Q,λ)
is a T-algebra. Moreover (e1, e2) is the kernel pair of q in A and then it is the
kernel pair of q also in EM(T) because U reflects limits.

Proposition 2.5.4 Let A be exact; if

• T preserves regular epis and

• T preserves the coequalizers in A of the equivalence relation in EM(T)

then EM(T) is exact.

Proof: By proposition 2.5.1, the first assumption implies that EM(T) is
regular; by lemma 2.5.3, the second assumption implies that in EM(T) each
equivalence relation is effective.

Corollary 2.5.5 Let A be exact,

1) if T is left exact and preserves regular epis, then EM(T) is exact;

2) if the coequalizer in A of an equivalence relation in EM(T) is a split epi
in A, then EM(T) is exact and the free algebras are projective;

3) the axiom of choice holds in A if and only if, for every monad T over A,
EM(T) is exact and the free algebras are projective.

Proof: With the notation of lemma 2.5.3, 1) Tq is a regular epi, so that

TQ = coeq(ker(Tq)) = coeq(T (kerq)) = coeq(Te1, T e2)

and we can apply proposition 2.5.4;
2)

E
e1
-
-

e2
X

q-Q

is a split exact sequence, then it is an absolute coequalizer and by lemma
2.5.3 in EM(T) equivalence relations are effective. Let us prove now that U
sends regular epis into split epis (so that by proposition 2.5.1 EM(T) is regular
and by proposition 2.5.2 free algebras are projective). Consider a regular epi
f : (X,x) - (Y, y) in EM(T) and the corresponding exact sequence

(N,n)
f1
-
-

f2
(X,x) f- (Y, y).
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Since U is left exact, we can complete f1, f2:N -
-
X in an exact sequence

N
f1
-
-

f2
X

q-Q

in A; by assumption, this is a splitting exact sequence and then an absolute co-
equalizer. Now working as in lemma 2.5.3, one can give to Q a T-algebra struc-
ture making q:X -Q a morphism of T-algebras. Moreover, using the fact
that Tq:TX -TQ is an epimorphism, one has immediately that q:X -Q
is the coequalizer of f1, f2: (N,n) -

-
(X,x) in EM(T), so that it is isomorphic

to f : (X,x) - (Y, y) and then f splits in A;
3) here the axiom of choice means that each regular epi splits; using the

previous point, one has one implication. For the opposite implication, just
consider the identity functor of A.

As each algebra is a quotient of a free algebra, if free algebras are projective,
then EM(T) has enough projectives; if, moreover, EM(T) is exact, one has that
EM(T) is the free exact category over its full subcategory KL(T) of free algebras.

In section 2.1 we have discussed the case A = SET using the axiom of
choice; it can be easily generalized to a power of SET . Now we can give a
topos-theoretic example of a free exact category.

Proposition 2.5.6 Let E be an elementary topos; the category of sup-lattices
in E is the free exact category over the category of relations in E .

Proof: Let us consider the covariant monad “power-set” P: E -E . It is
well-known that EM(P) ' SL(E), the category of suplattices in E . Moreover,
KL(P) ' Rel(E), the category of relations in E : in fact, sup-preserving arrows
PX -PY are in bijection with arrows X -PY which are in bijection with
relations R ↪→ X × Y . Let us prove now that the second point of the previous
corollary holds. We sketch the proof using the internal language of E .

Consider an equivalence relation e1, e2:E -
-
X in SL(E) and its coequalizer

q:X -Q in E ; we obtain a section s:Q -X of q defining

∀ y ∈ Q s(y) = Sup{x ∈ X | q(x) = y}.

Let us show that q · s · q = q (then s · q = 1Q because q is an epimorphism).
Consider x ∈ X, then q(s(q(x))) = q(α) where α = Sup{x ∈ X | q(x) = q(x)},
but q(x) = q(x) if and only if xEx, so that α = Sup{x ∈ X | xEx}. Since E is
a congruence, this implies that αEx and then q(α) = q(x) as required.

To complete our analysis, let us observe that the conditions stated in 2.5.2
and in 2.5.5.2 are also necessary. More precisely, we have the following lemma.

Lemma 2.5.7 Let T be a monad over a category A;

1) if EM(T) is regular and free algebras are projective, then U sends regular
epis into split epis
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2) if U sends regular epis into (split) regular epis, then the coequalizer in A
of an exact sequence in EM(T) is a (split) regular epi in A.

Proof: 1) Let us consider the following situation in EM(T)

(TA, µA) -a (A, a)

?

f

(TB, µB) -
b

(B, b)

a is a regular epi in EM(T) and b has a section εB :B -TB in A; if (TB, µB) is
projective and f is a regular epi in EM(T), then there exists y: (TB, µB) - (TA, µA)
such that y · a · f = b; clearly εB · y · a is a section of f in A.
2) consider an exact sequence in EM(T)

(E, e)
e1
-
-

e2
(X,x) q- (Q,λ).

Obviously

E
e1
-
-

e2
X

q-Q

is a kernel pair in A; but, by assumption, q is a regular epi in A, so that it is an
exact sequence also in A.

Now we can summarize the previous discussion as follows:

Proposition 2.5.8 Let A be an exact category and T a monad over A; the
following conditions are equivalent:

1) EM(T) is exact and the free algebras are projective

2) the coequalizer in A of an equivalence relation in EM(T) is a split epi in
A.

Example 2.5.9

Let us recall that a further example of an exact category with enough pro-
jective objects is given by the dual Eop of a topos E . One can prove this fact
using our previous proposition. For this, consider the contravariant “power-set”
functor P: Eop -E . The proof that it is monadic runs as follows (cf. [8] or
[32]): consider a reflexive pair in Eop, that is a pair of arrows f, g:X -

-
Y in

E with a common retraction r:Y -X (that is f · r = 1X = g · r).
Consider now the equalizer in E

E e-X
f
-
-

g
Y

and apply the functor P: Eop -E .
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Using Beck condition, one can easily prove that

PX
Pf

-
-

Pg
PY Pe-PE

is a split coequalizer.
If the given pair of arrows in Eop is, in particular, an equivalence relation,

the previous argument shows that condition 2) of proposition 2.5.8 is satisfied.



Chapter 3

The regular completion

3.1 A glance at the left exact case

In this chapter, we want to build up the regular completion of a weakly lex
category and to establish its universal property. In the first chapter, we have
seen that the exact completion of a weakly lex category is defined formally in
the same way as the exact completion of a left exact category. On the contrary,
the regular completion of a weakly lex category needs some modifications with
respect to the left exact case. For this reason, we prefer to start by briefly
recalling the construction of the regular completion of a left exact category,
which has been introduced in [19] (see also [14]).

Definition 3.1.1 Let C be a left exact category; we define a new category Creg
as follows:

• objects: an object of Creg is an arrow f :X -X ′ in C

• arrows: an arrow between two objects f :X -X ′ and g:Y -Y ′ of
Creg is an equivalence class of arrows α:X -Y of C such that f0 ·α·g =
f1 · α · g

N(f)

f0
??
f1

X -α Y

f
? ?

g

X ′ Y ′

(where f0, f1:N(f) -
-
X is the kernel pair of f); two arrows of this kind

α:X -Y and β:X -Y are said to be equivalent if α · g = β · g.

83
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• composition and identities are the obvious ones.

Once again, the previous definition needs some comments: think of C as a
left exact category with coequalizer of kernel pairs and in which each object is
projective; an arrow [α]: (f :X -X ′) - (g:Y -Y ′) as in definition 3.1.1
is then exactly an arrow between the image of f (that is, the coequalizer of
f0, f1:N(f) -

-
X)and the image of g making commutative the following dia-

gram

X -α
Y

? ?

Imf - Img

Now let us make an obvious remark which will be helpful in next sections.
Consider two arrows in C f1:X -X1 and f2:X -X2; since C is left exact,
this is equivalent to giving a unique arrow x:X -X1 ×X2, that is an object
of Creg. Consider its kernel pair x0, x1:N(x) -

-
X; it is universal with the

property that x0 · f1 = x1 · f1 and x0 · f2 = x1 · f2.
We are ready now to discuss the regular completion of a weakly lex category

following the same steps as in the first chapter.

3.2 The regular completion

In this section we construct a regular category from a weakly lex one.

Definition 3.2.1 Let C be a weakly lex category; we define a new category
Creg as follows:

• objects: an object of Creg is a finite (possibly empty) family of arrows
(fi:X -Xi)I in C (all the arrows fi of the family have the same domain)

• arrows: an arrow between two objects

(fi:X -Xi)I and (gj :Y -Yj)J

of Creg is an equivalence class of arrows α:X -Y of C such that ∀ j ∈ J ,
x0 · α · gj = x1 · α · gj
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X

x0

??

x1

X -α
Y

fi

? ?

gj

Xi Yj

(where x0, x1:X -
-
X is a pair which is weak universal with respect

to the property that ∀ i ∈ I, x0 · fi = x1 · fi). Two arrows of this
kind α:X -Y and β:X -Y are said to be equivalent if ∀j ∈ J ,
α · gj = β · gj

• compositions and identities are the obvious ones.

When it will not be ambiguous, we will use the notation [α]: (fi) - (gj)
for the equivalence class of

α: (fi:X -Xi)I
- (gj :Y -Yj)J .

Observe that a pair of arrows x0, x1:X -
-
X with the required weak uni-

versal property certainly exists in C. In fact this property means exactly that
(X;x0, x1) is a weak limit in the following diagram

X
�

�
�	

x0
@

@
@R

x1

X X

fi

?

HH
HHH

HHj

fj ��
���

���

fi

?
fj

Xi Xj

(think of two distinct copies of fi for each i in I). If the family (fi) is indexed
over the empty set, then the pair x0, x1:X -

-
X in the previous description is

nothing but the two projections from a weak product X ×X -
-
X.

Observe also that the conditions on α:X -Y for being an arrow do not
depend on the choice of X -

-
X (which is, by no way, uniquely determined).

In fact, if t0, t1:T -
-
X is another pair with the same weak universal property,

then there exists m:T -X such that m · x0 = t0 and m · x1 = t1 and there
exists n:X -T such that n · t0 = x0 and n · t1 = x1; now x0 ·α ·gj = x1 ·α ·gj

if and only if t0 · α · gj = t1 · α · gj .
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Now observe that if α:X -Y is such that ∀ j ∈ J , x0 · α · gj = x1 · α · gj ,
then there exists α:X -Y such that α · y0 = x0 · α and α · y1 = x1 · α;
moreover, if α′:X -Y is such that ∀ j ∈ J , α · gj = α′ · gj , then there exists
Σ:X -Y such that Σ · y0 = α and Σ · y1 = α′; the situation is illustrated in
the following two diagrams

X -α
Y X Y

x0

??

x1 y0

??

y1 x0

??

x1

�
�

�
���

Σ y0

??

y1

X -
α Y X -

-α

α′
Y

fi

? ?

gj fi

? ?

gj

Xi Yj Xi Yj

From these two last observations, one can immediately deduce that the rela-
tion between arrows is really an equivalence relation stable under composition
and the composite of two arrows in Creg is again an arrow. We can conclude
that the previous definition is well posed.

Now an easy observation; it will be crucial in section 3.5 to compare the
regular and the exact completion (cf. also the last remark at the end of section
1.4).

Proposition 3.2.2 Let (fi:X -Xi)I be a finite family of arrows in a weakly
lex category C and consider a pair x0, x1:X -

-
X weakly universal with respect

to the condition x0 · fi = x1 · fi for each i in I. Such a pair x0, x1 is a pseudo
equivalence-relation.

Proof: (Think of the pair x0, x1:X -
-
X as the kernel pair of the arrow

〈fi〉:X -
∐

IXi.) Transitivity: consider a weak pullback

X ∗X -l0 X

l1
? ?

x1

X -
x0

X

As l0 · x0 · fi = l0 · x1 · fi = l1 · x0 · fi = l1 · x1 · fi for each i, there exists
tX :X∗X -X such that tX ·x0 = l0·x0 and tX ·x1 = l1·x1. This means exactly
that tX is the transitivity of x0, x1:X -

-
X. Analogously for the reflexivity

and symmetry.
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Theorem 3.2.3 Let C be a weakly lex category and let Creg be as in definition
3.2.1; Creg is a regular category.

Step 1: Creg is a left exact category. Consider two objects (fi) and (gj) in
Creg; their product is given in the following diagram

X � πX X × Y -πY
Y

fi

?

�
�

�
��	

πX · fi

@
@

@
@@R

πY · gj

?

gj

Xi Xi Yj Yj

where X πX� X × Y πY-Y is a weak product in C.
If T is a weak terminal object in C, then the empty family (T - )∅ of

arrows with domain T is the terminal object of Creg.
Consider now two parallel arrows in Creg [α], [β]: (fi) -

-
(gj); their equal-

izer is given in the following diagram

E -e
X -

-α

β
Y

e · fi

? ?

fi

?

gj

Xi Xi Yj

where e:E -X is a weak limit over the diagram

X

α · gj

-
-

β · gj

Yj

(think of a pair of parallel arrows for each j in J).
Let us verify that [e]: (e · fi) - (fi) is the equalizer of [α] and [β] in Creg.

Observe that [e] is a mono: given two arrows [a] and [b], the equations [a] · [e] =
[b] · [e] and [a] = [b] both means a · e · fi = b · e · fi for each i.

Now if [γ]: (hK :Z -ZK)K
- (fi:X -Xi)I is such that [γ] · [α] =

[γ] · [β], one has γ · α · gj = γ · β · gj for eachj and then there exists γ̃:Z -E
such that γ̃ · e = γ.

It remains only to prove that [γ̃]: (hK) - (e · fi) is an arrow in Creg. By
assumption z0 ·γ ·fi = zj ·γ ·fi, so that z0 ·γ̃ ·e·fi = z0 ·γ ·fi = zi ·γ ·fi = zj ·γ̃ ·e·fi.

As far as the terminal object and products are concerned, the verifications
run in a similar way and we omit the details.

Step 2: Creg has regular epi-mono factorization and regular epis are stable
under pullbacks.

Consider an arrow [α]: (fi) - (gj) in Creg; its factorization is given in the
following diagram
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X -α
Y

fi

?

@
@

@
@@R

1X

�
�

�
���

α

?

gj

Xi X Yj

?

α · gj

Yj

Obviously the second part is a monomorphism in Creg. Let us show that in
Creg an arrow like

[1X ]: (fi:X -Xi)I
- (gj :X -Yj)J

is always the coequalizer of its kernel pair: the kernel pair is given in the fol-
lowing diagram

E -
-e · π1

e · π2

X -1X
X

�
�

�
��	

e · π1 · fi

?

e · π2 · fi

?

fi

?

gj

Xi Xi Xi Yj

where X π1� X×X π2-X and E e-X×X
π1·gj

-
-

π2·gj
Yj are weak limits computed

in C to obtain a pullback in Creg via the description of products and equalizers
given in step 1.

Obviously the arrow [1X ]: (fi) - (gj) coequalizes the previous diagram in
Creg. Suppose now that [α]: (fi) - (hk) is a second arrow in Creg such that
e ·π1 ·α is equivalent to e ·π2 ·α. We can take [α]: (gj) - (hk) as factorization;
the only problem is to show that it is really an arrow in Creg.

For this, consider a pair of arrows y0, y1:Y -
-
X such that ∀ j ∈ J , y0 ·gj =

y1 · gj ; those relations imply the existence of an arrow y:Y -E such that
y · e · π1 = y0 and y · e · π2 = y1; but now y0 · α · hk = y · e · π1 · α · hk =
y · e · π2 · α · hk = y1 · α · hk ∀ k ∈ K because α coequalizes e · π1 and e · π2

in Creg. The factorization is unique because [1X ]: (fi) - (gj) is obviously an
epimorphism in Creg.

The previous argument shows that in Creg a regular epi is always, up to
isomorphisms, of the form

[1X ]: (fi:X -Xi)I
- (gj :X -Yj)J .
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Using this fact, the verification of the stability conditions becomes easy. For
this, consider the pullback of [1X ]: (fi:X -Xi)I

- (gj :X -Yj)J along
an arrow [β]: (hk:Z -Zk)K

- (gj :X -Yj)J .
It is given by

E -e · πz
Z

�
�

�
��	

e · πX · fi

?

e · πz · hK

?

hK

Xi ZK ZK

where X πX� X×Z πZ-Z and E e-X×Z
πX ·gj

-
-

πZ ·β·gj

Yj are weak limits computed
in C to obtain a pullback in Creg following the descriptions given in step 1.

Now we can consider the regular epi-mono factorization of [e ·πZ ]. It is given
by the following diagram

E -1E
E -e · πz

Z

�
�

�
��	

e · πX · fi

?

e · πz · hK

?

e · πZ · hK

?

hK

Xi ZK ZK ZK

We look for an inverse to the monic part. Consider b:Z -X × Z such that
b · πX = β and b · πZ = 1Z .

Since b · πX · gj = β · gj = b · πZ · β · gj for each j, there exists a:Z -E
such that a · e = b.

Now observe that z0 · a · e ·πZ ·hK = z0 ·hK = z1 ·hK = z1 · a · e ·πZ ·hK , so
that [a]: (hk) - (e · πZ · hk) is an arrow in Creg. Since a · e · πZ = 1Z , [e · πZ ]
is a split epi in Creg and then it is an isomorphism.

The rest of this section is devoted to point out two properties of Creg which
will be the characterizing properties for free regular categories over weakly lex
ones. More precisely, we will show that Creg has enough projectives and that
each object of Creg can be embedded in a product of projective objects.

Proposition 3.2.4 Let C be a weakly lex category and Creg its regular com-
pletion as in definition 3.2.1; there exists a functor

Γ: C -Creg

defined by

f :X -Y  [f ]: (1X :X -X) - (1Y :Y -Y )

which is full and faithful and preserves monomorphic families.
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Proposition 3.2.5 Let
Γ: C -Creg

be as in the previous proposition and consider an object Y ∈ C; ΓY is a pro-
jective object in Creg.

Proof: Let [α]: (fi:X -Xi)I
- (1Y :Y -Y ) be an arrow in Creg and

its factorization

X -1X
X -α

Y

fi

? ?

α

?

1Y

Xi Y Y

Suppose that the monic part is an iso; there exists β:Y -X such that β ·α =
1Y ; the arrow [β]: (1Y ) - (fi) gives us the required section.

Proposition 3.2.6 Let
Γ: C -Creg

be as in proposition 3.2.4 and consider an arrow in Creg

[α]: (fi) - (gj);

we have the following commutative diagram in Creg

Γ(Xi)

�
�

�
�

�
��

Γfi

@
@

@
@

@
@I

πi

ΓX -regepi
(fi) -mono ∏

IΓ(Xi)

Γα

? ?

[α]

ΓY -regepi
(gj) -mono ∏

JΓ(Yj)

@
@

@
@

@
@R

Γgj

�
�

�
�

�
�	

πj

Γ(Yi)
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Before starting with the proof, let us read some consequences from the above
diagram; keep in mind proposition 3.2.5.

Corollary 3.2.7

1) each object of Creg is a quotient of a projective object coming from C and
can be embedded in a product of projective objects coming from C

2) each arrow of Creg is the unique extension to the images of an arrow
coming from C

3) Creg has enough projectives and Γ(C) is a projective cover of Creg.

Proof: Proof of 3.2.6: from the diagram in step 2 of theorem 3.2.3, we know
that

X -1X
X

1X

? ?

fi

X Xi

is a regular epi in Creg; let us show that the family of arrows

X -fi
Xi

fi

? ?

1Xi

Xi Xi

is monomorphic: given [a], [b]: (hk) - (fi), a ·fi = b ·fi ∀ i ∈ I in Creg if and
only if a ·fi = b ·fi in C which means exactly a = b in Creg. The commutativity
of

ΓX - (fi)

Γα

? ?

[α]

ΓY - (gj)

is obvious.
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3.3 The universality of the regular completion

In this section we show that the embedding Γ: C -Creg is universal.

Theorem 3.3.1 let C be a weakly lex category and A a regular one; consider
the regular completion Γ: C -Creg described in 3.2.3 and in 3.2.4; composing
with Γ induces an equivalence

Γreg:Ex(Creg,A) -Lco(C,A)

between the category of exact functors from Creg to A and the category of left
covering functors from C to A.

Corollary 3.3.2 With the notation of 3.3.1, the left covering functor Γ: C -Creg
is uniquely determined (up to equivalences) by the previous universal property

Proof: Proof of 3.3.1:The more difficult part consists in proving that, given
a left covering functor F : C -A, there exists a unique (up to natural iso-
morphisms) exact functor F̂ : Creg -A making commutative the following
diagram

C -Γ Creg
@

@
@R

F

�
�

�	
F̂

A

Keeping in mind the diagram in proposition 3.2.6 (and using the same nota-
tions), if F̂ : Creg -A preserves regular epis, mono’s and finite products and
if Γ · F̂ ' F , then F̂ (fi) must be the image in A of

〈Ffi〉:FX -
∏

I
F (Xi)

and F̂ [α] must be the unique extension to the images as in the following diagram
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F (Xi)

�
�

�
���

Ffi

@
@

@
@@I

πi

FX -
p F̂ (fi) -

m
∏

IF (Xi)

Fα

? ?

F̂ [α]

FY -q
F̂ (gj) -n

∏
JF (Yj)

@
@

@
@@R

Fgj

�
�

�
��	

πj

F (Yj)

This gives us the uniqueness of F̂ .
The existence of F̂ on the objects depends only on the regularity of A; if the

extension F̂ [α]: F̂ (fi) - F̂ (gj) exists, then the functoriality of F̂ and the fact
that Γ · F̂ ' F are obvious.

Step 1: existence of F̂ on the arrows. Consider an arrow in Creg

[α]: (fi) - (gj)

By definition of an arrow in Creg, we have that x0 ·α ·gj = x1 ·α ·gj ∀ j ∈ J (cf.
3.2.1). Now take the kernel pair p0, p1:N(p) -

-
FX of 〈Ffi〉:FX -∏

IF (Xi)
(that is of p).

Observe that
FX

p0� N(p) p1-FX

is nothing but the limit on the diagram

FX FX

Ffi

?

HHH
HHH

HHH
HHH

HHj

Ffj
���

���
���

���
���

Ffi

?

Ffj

FXi FXj

This implies that there exists a factorization x:FX -N(p) such that x ·p0 =
Fx0 and x · p1 = Fx1. Moreover, since F is left covering, this factorization is a
regular epimorphism.
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Analogously, Fy0, Fy1:FY -
-
FY can be factored through the kernel pair

q0, q1:N(q) -
-
FY of the arrow 〈Fgj〉:FY -∏

JF (Yj). Recall also that
there exists α:X -Y such that α · y0 = x0 · α and α · y1 = x1 · α.

We are now in the following situation

FX -x N(p) -
-

p0

p1

FX -p
F̂ (fi)

Fα

? ?

Fα

FY -
y N(q) -

-
q0

q1
FY -

q F̂ (gj)

Since

N(p)
p0

-
-

p1
FX

p- F̂ (fi)

is a coequalizer diagram, to obtain the arrow F̂ [α]: F̂ (fi) - F̂ (gj) it suffices
to show that p0 · Fα · q = p1 · Fα · q. It suffices to show that this is the case
when we compose with x on the left and with n on the right (because x is an
epimorphism and n is a mono). This is equivalent to show that

Fx0 · Fα · Fgj = Fx1 · Fα · Fgj ∀ j ∈ J

, but this comes from the condition on α to be an arrow in Creg.
(By the way, observe that also

FX
Fx0

-
-

Fx1

FX
p- F̂ (fi)

is a coequalizer diagram because x is an epimorphism.)
Step 2: F̂ : Creg -A is exact. To show that F̂ preserves regular epis, we

use the fact that in Creg a regular epi is, up to isomorphisms, of the form

X -1X
X

fi

? ?

gj

Xi Yj

Its image by F̂ is given in the following diagram

FX -p
F̂ (fi)

F1X

? ?

FX -
q F̂ (gj)
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and then it is a regular epi.
To prove that F̂ is left exact, we show that it is left covering with respect

to binary products, equalizers and terminal objects (cf. proposition 1.4.3 and
proposition 1.4.10).

Consider two objects (fi) and (gj) in Creg and their product

X � πX X × Y -πY
Y

fi

?

�
�

�
��	

πX · fi

@
@

@
@@R

πY · gj

?

gj

Xi Xi Yj Yj

By definition of F̂ , we obtain the following commutative diagram in A

FX �F (πX)
F (X × Y ) -F (πY )

FY

p

? ?

r

?

q

F̂ (fi) �
F̂ [πX ]

F̂ ((fi)× (gj)) -
F̂ [πY ]

F̂ (gj)

Consider again the canonical factorization s:F (X × Y ) -FX × FY which
is a regular epi (because F is left covering). Now the canonical factorization
t: F̂ ((fi)× (gj)) - F̂ (fi)× F̂ (gj) makes commutative the following diagram

F (X × Y ) -r F̂ ((fi)× (gj))

s

? ?

t

FX × FY -
p× q F̂ (fi)× F̂ (gj)

and then it is a regular epi because s, p and q are regular epis.
Consider now two parallel arrows [α], [β]: (fi) -

-
(gj) in Creg and take its

equalizer

E -e
X -

-α

β
Y

e · fi

? ?

fi

?

gj

Xi Xi Yj
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(with the notations of theorem 3.2.3, step 1). By definition of F̂ , we obtain the
following commutative diagram in A

FE -Fe
FX -

-Fα

Fβ
FY

r

?

p

? ?

q

F̂ (e · fi) -
F̂ [e]

F̂ (fi) -
-

F̂ [α]

F̂ [β]
F̂ (gj)

Consider the following limit in A

H h-FX

F (α · gj)
-
-

F (β · gj)
FYj

(think of a pair of parallel arrows for each j in J).
Since F is left covering, the unique arrow t:FE -H such that t ·h = Fe is

a regular epimorphism. Observe that t · h is the regular epi-mono factorization
of Fe.

Since
FY

q0� N(q) q1-FY

is the limit over the diagram

FY FY

Fgj

?

HH
HHH

HHH
HHH

HHHj

Fgj′
��

���
���

���
����

Fgj

?

Fgj′

FYj FYj′

there exists u:H -N(q) such that u · q0 = h · Fα and u · q1 = h · Fβ.
Moreover, we can factor F̂ [e] through the equalizer of F̂ [α] and F̂ [β] as

F̂ (e · fi) -F̂ [e]
F̂ (fi)

@
@

@
@@R

v

�
�

�
���

l

L

So we have the following commutative diagram
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FE -t
H -h

FX

r

? ?

p

F̂ (e · fi) -
v L -

l
F̂ (fi)

and then there exists τ :H -L such that the two resulting squares are com-
mutative.

Recall that we want to prove that v: F̂ (e · fi) -L is a regular epi; clearly
for this it suffices to show that τ :H -L is a regular epi. But this is true
because the following diagram is a pullback

H -h
FX

τ

? ?

p

L -
l

F̂ (fi)

This easily follows from the fact that

H -h
FX

u

? ?

(Fα, Fβ)

N(q) -
(q0, q1)

FY × FY

is a pullback, which can be proved with a straightforward argument of diagram
chasing.
In fact, it is commutative by construction of u. Now if N(q) y� A x-FX are
such that x · (Fα, Fβ) = y · (q0, q1), one has x · Fα · q = y · q0 · q = y · q1 · q =
x · Fβ · q and then, for each j, x · Fα · q · q · u · πj = x · Fβ · q · u · πj , that
is x · Fα · Fgj = x · Fβ · Fg − J . This implies that there exists a:A -H
such that a · h = x. This is the required factorization; in fact a · u · (q0, q1) =
a · h · (Fα, Fβ) = x · (Fα, Fβ) = y · (q0, q1) and then a · u = y because (q0, q1)
is a mono.

The factorization is unique because h is a monomorphism.
Finally we can prove that τ is the pullback of p along l. Suppose L b� B c-FX

are such that b · l = c · p. Since c ·Fα · q = c · p · F̂ [α] = b · l · F̂ [α] = b · l · F̂ [β] =
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c · p · F̂ [β] = c · Fβ · q, there exists d:B -N(q) such that d · q0 = c · Fα and
d · q1 = c · Fβ.

This implies that there exists a:B -H such that a · u = d and a · h = c.
It remains to prove that a · τ = b. Since l is a monomorphism, it suffices to
observe that a · τ · l = a · h · p = c · p = b · l. Once again, this factorization
a:B -H is unique because h is a monomorphism.

It remains to prove that F̂ is left covering with respect to the terminal object
(T - )∅ of Creg. It is clear, because F̂ (T - )∅ is the image of the unique
arrow t:FT - τ , where τ is the terminal object of A

FT -t τ

@
@

@
@@R

p

�
�

�
���

m

F̂ (T →)∅

But, by assumption on F , t is a regular epi and so also m is a regular epi.
To end the proof, we need to show that the natural transformations between

two left covering functors F and G are in bijection with the natural transfor-
mations between F̂ and Ĝ. But this is a corollary of the next proposition.

Proposition 3.3.3 Let Γ: C -Creg be as in 3.2.4 and consider a left covering

functor F : C -A with A regular; the unique exact extension F̂ : Creg -A
described in theorem 3.3.1 is the left Kan-extension of F along Γ.

Proof: given a functorH: Creg -A and a natural transformation β:F -Γ·
H, consider the following diagram

FX -
-Fx0

Fx1

FX -p
F̂ (fi)

βX

? ?

βX

H(ΓX) -
-

H(Γx0)

H(Γx1)
H(ΓX) -

H(t)
H(fi)

(where t: ΓX - (fi:X -Xi)I is given by 1X :X -X as in 3.2.6, so that
Γx0 · t = Γx1 · t).

In the proof of theorem 3.3.1, first step, we have shown that the upper line
is a coequalizer diagram; moreover, by naturality of β, the left-hand square
is two-time commutative. This implies that there exists exactly one arrow
F̂ (fi) -H(fi) making commutative the right-hand part. We take this ar-
row as a component at the point (fi) of a natural transformation F̂ -H.
The rest of the proof is straightforward.
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Corollary 3.3.4 Let Γ: C -Creg be as in 3.2.4; for each regular category
A, composition with Γ gives us an equivalence between the category of exact
functors Ex(Creg,A) and the category of left covering functors Lco(C,A).

Proof: From theorem 3.3.1 and the previous proposition.

Proposition 3.3.5 (Functoriality of the (−)reg construction)
Let F : C -D be a weakly lex functor; there exists a unique (up to natu-
ral isomorphisms) exact functor Freg: Creg -Dreg making commutative the
following diagram

C -Γ Creg

F

? ?

Freg

D -
Γ

Dreg

Proof: By 1.4.7 and 3.3.1, putting Freg = F̂ · Γ.

3.4 Characterization of free regular categories

As announced in section 3.2, we characterize a free regular category over a
weakly lex one in terms of the properties of Creg pointed out in corollary 3.2.7.

Let us start with a general remark on the regular completion; an analogous
one can be done for the exact completion.

Proposition 3.4.1 Consider a left covering functor F : C -A with A regular
and its exact extension F̂ : Creg -A as in theorem 3.3.1;

1) if F is faithful, then F̂ is faithful

2) if F if full, faithful and factors in the full subcategory of projective objects
of A, then F̂ is full.

Proof: Recall that, given an arrow [α]: (fi) - (gj) in Creg, F̂ (α) is defined
as the unique arrow such that p · F̂ [α] = Fα · q, where p and q are regular
epimorphisms and m and n are monomorphisms
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F (Xi)

�
�

�
�

�
��

Ffi

@
@

@
@

@
@I

πi

FX -
p F̂ (fi) -

m
∏

IF (Xi)

Fα

? ?

F̂ [α]

FY -q
F̂ (gj) -n ∏

JF (Yj)

@
@

@
@

@
@R

Fgj

�
�

�
�

�
�	

πj

F (Yj)

1) given [β]: (fi) - (gj) in Creg such that F̂ [α] = F̂ [β], we have Fα ·Fgj =
Fα · q · n · πj = p · F̂ [α] · n · πj = p · F̂ [β] · n · πj = Fβ · q · n · πj = Fβ · Fgj

for each j. Since F is faithful, this implies α · gj = β · gj for each j and then
[α] = [β] in Creg;

2) recall, from the proof of theorem 3.3.1, that

FX
Fx0

-
-

Fx1

FX
p- F̂ (fi)

is a coequalizer diagram. Consider an arrow a: F̂ (fi) - F̂ (gj); since FX is
projective and q is a regular epi, there exists b:FX -FY such that b·q = p·a.
Since F is full, there exists α:X -Y such that Fα = b. It remains to show
that α induces an arrow [α]: (fi) - (gj) in Creg, that is x0 ·α ·gj = x1 ·α ·gj for
each j. Since F is faithful, it suffices to show that Fx0 ·Fα·Fgj = Fx1 ·Fα·Fgj .
This is true because Fx0 · Fα · Fgj = Fx0 · Fα · q · n · πj = Fx0 · p · a · n · πj =
Fx1 · p · a · n · πj = Fx1 · Fα · q · n · πj = Fx1 · Fα · Fgj .

Theorem 3.4.2 Let A be a regular category and P a projective cover of A. Sup-
pose that, for each object A of A, there exists a finite family (Xi)I of objects of P
and a monomorphism A -∏

IXi; the unique exact extension F̂ : Preg -A
of the full inclusion F : P -A is an equivalence.

Proof: Consider an object (fi:X -Xi)I in Preg and the factorization
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X -f ∏
IXi

@
@

@R
fi

�
�

�	
πi

Xi

F̂ (fi) is the image of f in its regular epi-mono factorization

X - F̂ (fi) -
∏

I
Xi

F̂ is essentially surjective on the object: given an object A in A, by assump-
tion, there exist objects X, (Xi)I in P together with a regular epi p:X -A
and a mono m:A -∏

IXi. Consider the object (p·m·πi:X -Xi)I in Preg;
clearly its image under F̂ is (isomorphic to) A.

Fullness and faithfulness of F̂ immediately follow from the previous propo-
sition.

3.5 Comparing regular and exact completion

The aim of this section is to show that, under some additional hypotheses,
the regular completion of a weakly lex category is an epireflective subcategory of
the corresponding exact completion (epireflective means regular epireflective).

In this section, to avoid confusion, the regular completion of a weakly lex
category C will be indicated with Γreg: C -Creg and its exact completion
with Γex: C -Cex.

Proposition 3.5.1 Given a weakly lex category C, the unique exact extension
Creg -Cex as in the following commutative diagram

C -
Γreg Creg

@
@

@
@@R

Γex

�
�

�
��	

Cex

is full and faithful, i.e. Creg is equivalent to a full subcategory of Cex.

Proof: By 1.3.1, 1.3.3 and 3.4.1.

Let us call
Ker: Creg -Cex

this full and faithful functor; the reason for this name becomes evident consid-
ering an explicit description of the functor.
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Given an object (fi) in Creg, Ker(fi) is “the” weak universal pair x0, x1:X -
-
X

involved in definition 3.2.1 (i.e., the kernel pair of the arrow 〈fi〉:X -∏
IXi if

C was left exact); in this case we can speak of “the” weak universal pair because
two pairs of this kind are isomorphic in Cex. If [α]: (fi) - (gj) is an arrow in
Creg, then Ker[α] is given by

X -α
Y

x0

??

x1 y0

??

y1

X -
α Y

where α:X -Y exists because x0 · α · gj = x1 · α · gj ∀ j ∈ J (and the class
of α in Cex does not depend on the component α).

In order to construct a left adjoint to the functor Ker, let us point out
what remains true of the universal property of the exact completion when the
codomain is only regular.

Proposition 3.5.2 Let C be a weakly lex category and Γex: C -Cex its ex-
act completion. Consider a regular category A with coequalizers of equivalence
relations.

1) if G,H: Cex -A are two exact functors such that Γex · G ' Γex · H,
then G ' H

2) if F : C -A is a left covering functor, then there exists a functor F̂ : Cex -A
making commutative the following diagram

C -Γex Cex

@
@

@
@@R

F

�
�

�
��	

F̂

A

F̂ is the left Kan extension of F along Γex and preserves regular epis; moreover,
F̂ is left covering with respect to the terminal object and finite products.

Proof: If we look at the proofs of theorem 1.5.2 and proposition 1.5.4, we
can observe that we have used the exactness of A (and not only its regularity)
in two points.

The first point is the definition of F̂ : for this, let us consider a pseudo
equivalence-relation r1, r2:R -

-
Y in C and the regular epi-jointly monic fac-

torization
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FR -
-Fr1

Fr2
FX

@
@

@
@@R

p
i1

66
i2

R

By 1.4.9, i1, i2:R -
-
FX is an equivalence relation. Since we have assumed

that in A there exists the coequalizer of an equivalence relation, we can define
once again F̂ (R -

-
X) as the coequalizer ofR -

-
FX and then of FR -

-
FX.

The second point is the verification that F̂ is left covering with respect to
equalizers. But we do not require this fact in the present statement.

Using propositions 1.4.3 and 1.4.10, one has that, under the condition of the
previous proposition, the functor F̂ : Cex -A is left exact exactly when it is
left covering with respect to equalizers.

Proposition 3.5.3 Let C be a weakly lex category; its regular completion Creg
is an epireflective subcategory of the exact completion Cex if and only if in Creg
there exist coequalizers of equivalence relations.

Proof: the (only if) part is an obvious fact which is true for a reflective
subcategory of a left exact category with coequalizers of equivalence relations.

Now the (if) part: the previous proposition gives us a functor

Coker: Cex -Creg

making commutative the following diagram

C -Γex Cex
@

@
@

@@R

Γreg

�
�

�
��	

Coker

Creg

To show that Coker is left adjoint to Ker, let us explicit the definition of
Coker.

Given an object r0, r1:R -
-
X in Cex, we know that the monic part of the

regular epi-jointly monic factorization of Γreg(r0, r1:R -
-
X) is an equivalence

relation in Creg (because Γreg is left covering and by theorem 1.4.9). Then the
extra assumption on Creg tells us that there exists its coequalizer which is, up
to isomorphisms, of the following kind

R -
-r0

r1
X -1X

X

1R

? ?

1X

?

qi

R X Qi
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and one has

Coker(R
r0
-
-

r1
X) = (qi:X -Qi)I .

Given an arrow

R -f
S

r0

??

r1 s0

??

s1

X -
f

Y

it induces an arrow

[f ]: Γreg(X) -Coker(S
s0
-
-

s1
Y )

such that Γreg(r0) · [f ] = Γreg(r1) · [f ] so that there exists a canonical extension
of [f ] to an arrow

Coker[f ]: Coker(R
r0
-
-

r1
X) -Coker(S

s0
-
-

s1
Y ).

Clearly the composition

Creg -Ker Cex -Coker Creg

is isomorphic to the identity functor on Creg (as it must be, because the “right-
adjoint” Ker is full and faithful) simply because

X -
-x0

x1

X -1X
X

1X

? ?

1X

?

fi

X X Xi

is a coequalizer diagram in Creg.
Let us look at the unit of the adjunction: given r0, r1:R -

-
X in Cex,

consider the coequalizer in Creg

R -
-r0

r1
X -1X

X

1R

? ?

1X

?

qi

R X Qi
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and a pair q0, q1:X -
-
X weak universal with respect to the property that

q0 · qi = q1 · qi ∀ i ∈ I. If 1X coequalizes r0 and r1 in Creg, then, ∀ i ∈ I,
r0 · qi = r1 · qi and then there exists η:R -X such that η · q0 = r0 and
η · q1 = r1.

The arrow in Cex

R -η
X

r0

??

r1 q0

??

q1

X -
1X

X

gives us the component at the point (r0, r1:R -
-
X) of the unit in the adjunc-

tion Coker a Ker; since such an arrow is a regular epi in Cex, the adjunction is
in fact an epireflection. (In other words, we have a coequalizer in Creg

Γreg(R
r0
-
-

r1
X) -Coker(R

r0
-
-

r1
X)

and we apply the exact functor Ker

Γex(R
r0
-
-

r1
X) -Ker(Coker(R

r0
-
-

r1
X))

but in Cex the coequalizer is given by

Γex(R
r0
-
-

r1
X) - (R

r0
-
-

r1
X)

so that there exists a canonical factorization

(R
r0
-
-

r1
X) -Ker(Coker(R

r0
-
-

r1
X))

which is a regular epi because Ker preserves regular epis.).
As far as the universal property is concerned, let (gj :Y -Yj)J be an object

in Creg and consider an arrow

R -a
Y

r0

??

r1 y0

??

y1

X -
a Y

in Cex. As [a]: Γreg(X) - (gj) coequalizes Γreg(r0) and Γreg(r1), there exists
[α]: (qi) - (gj) such that
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Γreg(X) -[a]
(gj)

@
@

@
@@R

[1X ]
�

�
�

���

[α]

(qi)

commutes in Creg. But then ∀ j ∈ J , a · gj = α · gj so that there exists
Σ:X -Y such that Σ · y0 = α and Σ · y1 = a. This Σ is the homotopy
allowing the composition in Cex

R -η
X -α

Y

r0

??

r1 x0

??

x1 y0

??

y1

X -
1X

X -
α Y

to be equal to

R -a
Y

r0

??

r1 y0

??

y1

X -
a Y

Since the second part of the previous composition is exactly Ker[α], we have
obtained the required factorization. Its uniqueness follows from the fact that
the first part is a regular epi and the functor Ker is faithful.

Let us conclude this section translating in terms of C the condition that
Creg has coequalizers of equivalence relations.

Proposition 3.5.4 Let C be a weakly lex category; its regular completion Creg
has coequalizers of equivalence relations if and only if the following condition
holds: given a pseudo equivalence relation r0, r1:R -

-
X in C, there exists a

finite family (qi:X -Qi)I of arrows in C such that

1) r0 · qi = ri · q1 ∀ i ∈ I

2) if f :X -Y is such that r0 · f = r1 · f , then q0 · f = q1 · f (where
q0, q1:X -

-
X is weak universal such that q0 · qi = q1 · qi ∀ i ∈ I).

Proof: (only if): recall that the coequalizer of Γreg(r0, r1:R -
-
X) exists

because Γreg: C -Creg is left covering (cf. 1.4.9); moreover, it must be of
the form
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X -1X
X

1X

? ?

qi

X Qi

because in Creg all the regular epis have, up to isomorphisms, this form. Now
observe that the conditions mean exactly that

R -
-r0

r1
X -1X

X

1R

? ?

1X

?

qi

R X Qi

is a coequalizer diagram in Creg with respect to the arrows of Creg coming from
C.

For the (if) part, suppose that [f ]: Γreg(X) - (gj) is an arrow in Creg
such that [r0] · [f ] = [r1] · [f ], that is ∀ j ∈ J , r0 · f · gj = r1 · f · gj . Then for
each j in J , we can apply our hypothesis so that q0 · f · gj = q1 · f · gj . This
implies that [f ]: (qi) - (gj) is the unique required factorization and then the
previous diagram is a coequalizer in all Creg.

To conclude, observe that, in the previous proposition, to give the explicit
description of Coker: Cex -Creg, we only need the existence of this kind of
coequalizers.

3.6 Two examples

This section is devoted to two examples of the situation studied in the pre-
vious section.

Example 3.6.1

The Effective topos. There exists a large literature on this topos (originally
introduced in [27]) and on the way it can be described via some free construc-
tions. We follow here the description given in [14], which is essentially the same
given in [38].

The category S∗R is defined as follows: an object is a surjective map p:X - I
with X, I ∈ SET and I ⊆ N; an arrow is a commutative square



108 CHAPTER 3. THE REGULAR COMPLETION

X -f
Y

p

? ?

q

I -
ϕ J

where ϕ: I -J is induced by a partial recursive function Φ: N -N (that is,
Φ(n) is defined and is in J for all n in I). It is not difficult to show that S∗R is
a left exact category. Then, using the axiom of choice in SET , one can prove
that (S∗R)ex is a topos; in fact, it is (equivalent to) the effective topos.

Consider now the regular completion (S∗R)reg; to show that it is reflective
in (S∗R)ex, we can use proposition 3.5.4. Given a pseudo equivalence-relation in
S∗R

R -
-r0

r1
X

? ?

I -
-

ρ0

ρ1

J

its coequalizer in (S∗R)reg is given by the arrow of S∗R

X -q
Q

? ?

J - ∗

where q:X -Q is the coequalizer of r0 and r1 in SET .
One can also prove that the epireflector Coker: (S∗R)ex - (S∗R)reg preserves

finite products and monomorphisms, so that it exhibits (S∗R)reg as the category
of separated objects for a topology on (S∗R)ex (cf. [17]). This topology turns out
to be the topology of double negation. In other words, (S∗R)reg is a quasi-topos
(cf. [9]).

Example 3.6.2

Stone spaces. This second example needs a quite obvious modification of
the regular completion of a weakly lex category. This generalization consists
of taking as object of Creg a family of arrows (fi:X -Xi)I of C where I is
a small but not necessarily finite set. It is clear that one has to start with a
category C with all small weak limits. This generalization will be discussed in
section 4.1; now the example.
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We know, from section 2.1, that a monadic category over SET is the free
exact category over the category of free algebras. By a theorem by Manes, this
is the case for the category CH of compact Hausdorff spaces (cf. chapter 4, vol.
II of [8]).

The problem is: what is the regular completion for the category of free
compact Hausdorff spaces?

Equivalently, what is the regular completion of the full subcategory of pro-
jective objects in CH? (Such a full subcategory has clearly all the small weak
limits, because CH is complete).

A theorem by Gleason (see [29]) shows that projectives in CH are exactly
the extremally disconnected spaces. So they are contained in the category of
Stone spaces, which is a regular and epireflective subcategory of CH (see [29]
and [10] chapter II, 4, n.4, prop. 7).

Moreover, a standard argument shows that each Stone space can be embed-
ded in a product of projective objects (the product of as many copies of the
two-point discrete space as the points of the Stone space).

This means exactly that the category of Stone spaces is the regular comple-
tion (in the infinitary sense) of the category of extremally disconnected spaces.

Remark: in both examples, the reflector Cex -Creg preserves products
(cf. [14] and [18]).

It is not clear to me how general is this fact: for example, one can prove
that if C is left exact and Creg is cartesian closed, then the reflector preserves
products. These conditions are verified in the first example but not in the second
one.

Remark: let me point out another open problem. We already know two
examples of free exact categories which are topo, a presheaf topos SET Dop

and
the Effective topos. Two other examples of this kind are studies in [41]: they
are two “. . . toposes generalizing notions of extensional realizability in the same
way as Hyland’s Effective topos generalizes Kleene’s realizability.”; both of them
have enough projectives, so that they are free exact categories.

The open problem is to find conditions on a weakly lex category C such that
Cex is a topos.

When C is left exact, some partial answers to this problem are given in [14],
but much remains to be done in this direction.
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Chapter 4

Appendix

4.1 Completely regular categories

In order to put example 3.6.2 in our theory, we need a minor modification
that we discuss briefly in this section.

Definition 4.1.1 A completely regular category C is a category which is com-
plete and regular and such that the following condition holds: if (pi:Xi

-Yi)I

is a family of regular epis, then the unique factorization∏
I
pi:

∏
I
Xi

-
∏

I
Yi

is again a regular epi.

If the family is finite, the condition is redundant, as shown in lemma 1.4.11;
but if the family is infinite, the condition can not be deduced from the com-
pleteness and the regularity of the category. For example, one can show that
the condition does not hold in a topos of sheaves on a topological space.

Let us consider now a category C with all small weak limits; we can construct
C∞

reg as in definition 3.2.1, but an object is now a small (but not necessarily
finite) family of arrows (fi:X -Xi)I .

Clearly, C∞
reg is a complete and regular category. Moreover, using once again

the fact that a regular epi is, up to isomorphisms, of the form

[1X ]: (fi:X -Xi)I
- (gj :X -Yj)J ,

it is quite obvious to prove that C∞
regis a completely regular category. As in

proposition 3.2.6, each object of C∞
reg can be embedded in a product of projective

objects, but this product can be now infinite.
Also the universal property of the embedding

Γ: C -C∞
reg

needs a modification; it runs as follows:

111
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for each completely regular category A and for each functor F : C -A
which covers each small limit, there exists a unique (up to natural isomorphisms)
exact and continuous functor F̂ : C∞

reg -A making commutative the following
diagram

C -Γ C∞
reg

@
@

@
@@R

F

�
�

�
��	

F̂

A

In this statement, we need the stability of regular epis under arbitrary prod-
ucts in A only to show that F̂ is left covering with respect to arbitrary products,
but not to define F̂ .

As a consequence, the characterization of free regular categories remains
unchanged. This means that A is equivalent to C∞

reg if and only if A is complete,
regular, has enough projectives and each object can be embedded in a product
of projectives. In fact in the proof of proposition 3.4.1 and theorem 3.4.2, we
only use the definition of F̂ and not its exactness.

The previous discussion allows us to say that the category of Stone spaces
is C∞

reg, where C is the category of extremally disconnected spaces, as stated in
section 3.6.

We want now to point out some elementary properties of the notion of com-
pletely regular category.

First of all, an example: clearly, the category SET is completely regular,
because in SET regular epi means surjective. Working at each point, also a
presheaf category is completely regular.

Now a first stability of the notion of completeley regular.

Proposition 4.1.2 Let T be a monad on a completely regular category A; if
T sends regular epis into regular epis, then EM(T) is completely regular.

Proof: Clearly EM(T) is complete because so is A; moreover, from 2.5.1.2,
we know that EM(T) is regular.

Consider a family {fi: (Ai, ai) - (Bi, bi)}I of regular epis in EM(T); the
limit ∏

I
fi:

∏
I
(Ai, ai) -

∏
I
(Bi, bi)

is built up in A as
∏

Ifi:
∏

IAi
-∏

IBi. By 2.5.1.1, the fi’s are regular epis
in A and then

∏
Ifi is a regular epi in A because A is completely regular; once

again by 2.5.1.2 we have that
∏

Ifi is a regular epi in EM(T).

Corollary 4.1.3 Let T be a monad over SET ; EM(T) is completely regular.

The second stability of the notion of completely regular follows from the first
point of next proposition.
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Proposition 4.1.4 Let i: A ↪→ B be a reflective subcategory, with reflector
r: B -A:

1) if B is regular and r is an epireflector, that is ∀B ∈ B the unit ηB :B - i(rB)
is a regular epi, then i: A -B preserves regular epis and A is regular;

2) if i: A ↪→ B preserves regular epis, then r: B -A preserves projective
objects;

3) if r: B -A preserves projective objects and B has enough projectives,
then A has enough projectives.

Proof: 1): consider a regular epi f :X -Y in A together with its kernel
pair f0, f1:N(f) -

-
X; consider now the coequalizer in B

i(N(f))
i(f0)

-
-

i(f1)
i(X) g-Z

so that X f-Y is isomorphic to r(i(X) g-Z). From this and using the fact
that counits are isomorphisms, one can easily show that the following diagram
is commutative

i(X) -g
Z

i(f)

? ?

ηZ

i(Y ) -' i(rZ)

so that i(f) is a regular epi. The fact that A is regular is now obvious.
2): let X be a projective object in B and consider the two following diagrams

rX X -ηX i(rX)

?

f

?

i(f)

Z -
p Y i(Z) -

i(p)
i(Y )

where p is a regular epi in A and then, by assumption, i(p) is a regular epi in B.
Since X is projective, there exists g:X - i(Z) making commutative the right-
hand diagram. By adjunction, there exists g′: r(X) -Z making commutative
the left-hand diagram (here we do not need the fullness and faithfulness of i).

3): consider an object X in A and a projective cover in B p:P - i(X);
r(p): r(P ) - r(i(X)) ' X is a projective cover in A.
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Corollary 4.1.5 Let i: A ↪→ B be an epireflective subcategory of a completely
regular category B (with enough projectives); A is completely regular (with
enough projectives).

In particular, this proves directly that the category of Stone spaces is com-
pleteley regular with enough projectives: in fact, it is an epireflective subcate-
gory of the category of compact Hausdorff spaces, which is monadic over SET .

4.2 Colimits in the exact completion

In our two major examples of free exact categories, that is the category
of algebras for a monad over SET and the category of presheaves on a small
category, we have the following situation: the weakly lex base C has small sums
which are computed in Cex and Cex is cocomplete. This section is devoted to
the study of this situation.

Lemma 4.2.1 Let A be a category with weak kernel pairs and P a projective
cover of A; the full inclusion P -A preserves the sums which turn out to exist
in P.

Proof: We write the proof for a binary sum, but the argument is general.
Consider a sum in P

P1
s1-P

s2� P2

and two arrows in A
P1

x1-X
x2� P2

with P-cover q:Q -X; we obtain two extensions y1:P1
-Q and y2 : P2

-Q
such that y1 ·q = x1 and y2 ·q = x2. Since Q is in P, there exists y:P -Q such
that s1 ·y = y1 and s2 ·y = y2. Then y ·q:P -X is the required factorization.

As far as uniqueness is concerned, suppose that f, g:P -
-
X are two arrows

such that s1 · f = s1 · g and s2 · f = s2 · g.
Consider two extensions f :P -Q and g:P -Q such that f · q = f and

g·q = g. Now s1·f ·q = s1·f = s1·g = s1·g·q, so that there exists t1:P1
-N(q)

such that t1 · q0 = s1 · f and t1 · q1 = s1 · g, where q0, q1:N(q) -
-
Q is a weak

kernel pair of q:Q -X. Analogously, there exists t2:P2
-N(q) such that

t2 · q0 = s2 · f and t2 · q1 = s2 · g.
Now, from the first part of the proof, we obtain t:P -N(q) such that

s1 · t = t1 and s2 · t = t2. Moreover, s1 · f = t1 · q0 = s1 · t · q0 and s2 · f =
t2 · q0 = s2 · t · q0 so that f = t · q0 because Q is in P; analogously g = t · q1,
because s1 · g = t1 · q1 = s1 · t · q1 and s2 · g = t2 · q1 = s2 · t · q1.

Finally f = f · q = t · q0 · q = t · q1 · q = g · q = g.

Corollary 4.2.2 Let C be a weakly lex category; the functor Γ: C -Cex
preserves the sums which turn out to exist in C.
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Let us fix some notations for the next lemma.
If A is a category, θ(A) is the ordered reflection of A: if A and B are objects

of A, A ≤ B if and only if A(A,B) is not empty. Clearly ≤ is reflective and
transitive in the class of objects A0 of A. θ(A) is the quotient of A0 by the
following equivalence relation: A ∼ B if and only if A ≤ B and B ≤ A; clearly
θ(A) is an ordered class.

If A is an object of A, Sub(A) is the ordered class of subobjects of A and
A/A is the usual comma category.

Lemma 4.2.3 Let A be a category with strong epi-mono factorization and P
a strong-projective cover of A; for each object A of A, Sub(A) and θ(P/A) are
isomorphic ordered classes.

Proof: First, Sub(A) - θ(P/A): given a monomorphism X -A we can
consider a P-cover P -X of X and we obtain an element of θ(P/A) taking
the composit P -X -A; the order is preserved because the objects of P
are strong projective.

Second, θ(P/A) -Sub(A): given an object P -A of P/A, we can take
the monic part of its factorization; the order is preserved because, by definition,
strong epimorphisms are orthogonal to monomorphisms.

Clearly, Sub(A) - θ(P/A) and θ(P/A) -Sub(A) are one the inverse of
the other.

Proposition 4.2.4 Let C be a weakly lex category; if C has sums and Cex is
well-powered, then Cex is cocomplete.

Proof: First, the coequalizers: consider two arrows in Cex with their regular
epi-jointly monic factorization

B -
-a

b
A

@
@

@
@@R

r
i0

66
i1

R

Now we can consider the equivalence relation j0, j1:E -
-
A generated by the

relation i0, i1:R -
-
A, that is the intersection of all the equivalence relations

in A which contain i0, i1:R -
-
A.

This intersection exists: by the previous lemma, Sub(A) is isomorphic to
θ(P/A) which is cocomplete because P has sums; so Sub(A) is also complete.

Since Cex is exact, j0, j1:E -
-
A has a coequalizer which is clearly also the

coequalizer of i0, i1:R -
-
A and then of a, b:B -

-
A.

Second, the sums: once again we sketch the proof for a binary sum, but it
is general.

The sum of two objects r1, r2:R -
-
X and s1, s2:S -

-
Y of Cex is built

up in the following diagram
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ΓR -
-Γr1

Γr2
ΓX - (R⇒ X)

? ? ?

Γ(R
∐
S) -

-
Γ(r1

∐
s1)

Γ(r2
∐
s2)

Γ(X
∐
Y ) - Q

6 6 6

ΓS -
-Γs1

Γs2
ΓY - (S ⇒ Y )

By corollary 4.2.2, the first two columns are sums. The first and the third
lines are coequalizers (cf. proposition 1.3.2). By the first part of the proof, we
know that Cex has coequalizers, so that we can complete the second line with
a coequalizer. An interchange argument shows now that also the third column
is a sum.

Clearly, the previous proposition applies to the case of a presheaf category
as well as the case of the category of algebras for a monad over SET .

Coming back to lemma 4.2.3, let us observe that, given an object A of A
and a P-cover p:P -A, the composition with p gives a surjection from the
object of P/P to the object of P/A. Using the axiom of choice, we can therefore
inject the object of P/A in P/P . Moreover, if two objects of P/A are identified
in θ(P/P ), then they are identified also in θ(P/A).

So, in virtue of lemma 4.2.3, we have proved the following lemma.

Lemma 4.2.5 Let A be a category with strong epi-mono factorization and P
a strong-projective cover of A; A is well-powered if and only if for each P in P,
θ(P/P ) is a small set.

Corollary 4.2.6 Let C be a weakly lex category; Cex is well-powered if and
only if, for each X in C, θ(C/X) is a small set.

4.3 The epireflective hull

In this section we come back to the problem, discussed in section 3.5, of the
reflectivity of Creg as subcategory of Cex. Our aim is to show that, under some
assumptions on the size of C, Creg is the epireflective hull of C in Cex.
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Let us start with a warning: we know that Creg is equivalent, via the full
and faithful functor Ker: Creg -Cex, to a full subcategory of Cex; but in
general this full subcategory is not replete. In order to use some general facts
about reflective subcategories which work when the given subcategory is replete,
in this section we suppose to add to Creg all the objects of Cex isomorphic to
some objects of Creg. We adopt the same convention when we look at C as a
full subcategory of Cex.

Lemma 4.3.1 Let C be a weakly lex category; Creg is closed in Cex with
respect to the formation of subobjects.

Proof: Let (fi:X -Xi)I be an object of Creg and x0, x1:X -
-
X its

embedding in Cex (that is x0, x1 is a weak universal pair such that x0 ·fi = x1 ·fi

∀ i ∈ I); consider now a monomorphism in Cex

R -f
X

r0

??

r1 x0

??

x1

Y -
f

X

and the object (f · fi:Y -Xi)I of Creg together with its embedding in Cex
y0, y1:Y -

-
Y (that is y0, y1 is a weak universal pair such that y0·f ·fi = y1·f ·fi

∀ i ∈ I).
Let us show that r0, r1:R -

-
Y is isomorphic to y0, y1:Y -

-
Y . As r0 · f ·

fi = f · x0 · fi = f · x1 · fi = r1 · f · fi, we have an arrow r:R -Y such that
r · y0 = r0 and r · y1 = r1, that is an arrow in Cex

R -r
Y

r0

??

r1 y0

??

y1

Y -
1Y

Y

which is a regular epi. As y0 · f · fi = y1 · f · fi, we have an arrow y:Y -X
such that y0 · f = y · x0 and y1 · f = y · x1, that is an arrow in Cex

Y -y
X

y0

??

y1 x0

??

x1

Y -
f

X
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Clearly, the composition of the two arrows just constructed is the given monomor-
phism, so that also the first arrow is a monomorphism. But it is also a regular
epi, so that it is an isomorphism.

Let us recall now a general fact whose proof can be found, for example, in
section 37 of [25].

Proposition 4.3.2 Let A be a complete, well-powered and regular category
and B a full and replete subcategory of A; B can be embedded in a smallest
epireflective subcategory of A called the epireflective hull of B in A. The objects
of the hull are precisely the subobjects of products of B-objects in A.

Proposition 4.3.3 Let C be a weak complete category and suppose that Cex
is well-powered; C∞

reg is the epireflective hull of C in Cex.

Proof: Since C is weak complete, Cex is complete and moreover it is com-
pletely regular (for this, use once again the characterization of regular epis in
Cex). C∞

reg is then closed in Cex under the formation of products (because the
embedding Ker: C∞

reg -Cex is continuous).
An object of C∞

reg is a subobject (in C∞
reg and then in Cex) of a product (in

C∞
reg and then in Cex) of objects of C and then it is contained in the epireflective

hull.
Conversely, an object of the hull is a subobject of a product of C-objects in

Cex; then it is a subobject in Cex of an object of C∞
reg (because the objects of

C are in C∞
reg which is closed in Cex under products). By lemma 4.3.1, it is

then an object of C∞
reg.

Corollary 4.3.4

1) let T be a monad over SET ; KL(T)∞reg is the epireflective hull of KL(T)
in EM(T)

2) let D be a small category; Fam(D)∞reg is the epireflective hull of Fam(D)

in SET Dop
.

4.4 Further applications

The aim of this section is to point out that the theory developed in chapters
1 and 3 can be used to simplify a little bit the proof of two well-known theorems.

Milnor’s theorem:
Let us fix some notations:

• ∆ is the simplicial category;

• Ke is the category of Kelley spaces (also called “compactly generated
spaces”);
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• ∆?:∆ -Ke is the “standard simplex” functor;

• |? |:SET ∆op -Ke is the “geometric realization” functor, that is the left
Kan extension of ∆? along the covariant Yoneda embedding Y :∆ -SET ∆op

;

• Haus is the category of Hausdorff spaces.

Theorem 4.4.1 (Milnor) the geometric realization |? |:SET ∆op -Ke is an
exact functor.

This theorem is discussed in detail for example in [23]. In order to apply
our results, let us recall two basic facts about the category of Kelley spaces; for
their proof we refer once again to [23].

Proposition 4.4.2 Ke is cartesian closed and coreflective in Haus; the coreflec-
tion K:Haus -Ke sends a Hausdorff spaceX into the space KX which has the
same underlying set and whose closed subsets are the subsets C whose intersec-
tion with each compact subspace of X is closed in X; the counit εX : KX -X
is the identity on the underlying sets.

Proposition 4.4.3 Let g:A -Y be in Ke and i:Ke -Top the full inclu-
sion; consider a functor δ: T -Ke/Y (where T is a small category and Ke/Y
the comma category) which associates to an object t of T the object d(t) -Y
of Ke/Y (so that d is a functor T -Ke). Suppose that colimd·i is a Hausdorff
space. Then the canonical morphism between Kelley spaces

colimt∈T K(d(t)×Y A) -K((colimt∈T d(t))×Y A)

is a homeomorphism.

(In the previous formula: the colimit on the left is taken in Ke, the colimit
on the right is at the same time in Top and in Haus, the pullbacks are in Haus
so that their Kelleyfications are the pullbacks in Ke).

Now we can prove that the category of Kelley spaces is regular.

Lemma 4.4.4 Given a regular epi f :X -Y in Ke, there exists a Kelley
space K and two continuous maps α, β:K -

-
X such that

K
α
-
-

β
X

f-Y

is a coequalizer diagram in Ke but also in Top.

Proof: Let us recall that in Top each arrow can be factored as a regular epi
followed by a monomorphism, so that an arrow is a regular epi if and only if it is
an extremal epimorphism. Moreover, an extremal epimorphism in Haus is also
an extremal epimorphism in Top (this follows from the fact that if b:Z -Y is
a monomorphism in Top and Y is a Hausdorff space, then also Z is Hausdorff).
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Now let us consider a regular epi f :X -Y in Ke. Since Ke is coreflective
in Haus, f is a regular epi in Haus and then, by the above observation, in Top.

Now consider its kernel pair a, b:N -
-
X in Top, so that

N
a
-
-

b
X

f-Y

is a coequalizer diagram in Top and also in Haus (because N is Hausdorff). The
two compositions

KN 1-N
a
-
-

b
X

give us the required diagram α, β:K -
-
X in Ke.

Proposition 4.4.5 The category of Kelley spaces is regular.

Proof: Since Ke is complete and cocomplete (because it is coreflective in
Haus), it suffices to show that regular epis are pullback stable. Consider a regu-
lar epi f :X -Y in Ke; by lemma 4.4.4, there exist two arrows α, β:K -

-
X

between Kelley spaces such that

K
α
-
-

β
X

f-Y

is a coequalizer in Top. Now we can apply proposition 4.4.3: consider the
diagram δ: T -Ke/Y given by

K -
-α

β
X

@
@

@
@@R

γ

�
�

�
��	

f

Y

(where γ = α · f = β · f); pullback

K -
-α

β
X -f

Y

@
@

@
@@R

γ

?

f
�

�
�

��	

1

Y

along g:A -Y to obtain

K ′ -
-α′

β′
X ′ -f ′

A

@
@

@
@@R

γ′
f ′

?

�
�

�
��	

1

A
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As the colimit of α, β:K -
-
X in Top is Y which is a Hausdorff space, we

have that f ′:X ′ -A is isomorphic to the colimit in Ke of α′, β′:K ′ -
-
X ′,

that is f ′ is a regular epi in Ke.1

Unfortunately, Ke is not exact (cf. [13]). Any way, one can use proposition
3.5.2 to give an alternative proof of Milnor theorem. Showing that the sum-
extension ∆′: Fam(∆) -Ke of ∆?:∆ -Ke is left covering is not too much
difficult, because the simplicial category ∆ has terminal object and equalizers
and, moreover, Ke is an extensive category.

Clearly, a more important simplification can be apported to the proof of
the topos-theoretic analogous of Milnor theorem, which is a basic ingredient to
show that the topos of simplicial sets classifies linear orders (see [32]).

Herrlich - Strecker theorem:
We know, from a well-known theorem by Manes, that the category CH of

compact Hausdorff spaces is monadic over SET . In [24] this theorem is, in some
sense, inverted.

Theorem 4.4.6 (Herrlich - Strecker) Let A be a not trivial epireflective sub-
category of Haus; if A is monadic over SET then A is the category CH.

The inclusion of A in CH is proved using an argument on normal spaces and
I am not able to simplify this part.

For the opposite inclusion, one can work as follows. Since A is epireflective
in Haus, it is closed under the formation of products and subobjects (cf. 37.1
in [25]). But, since A is not trivial (that is it contains a space with at least
two points), this implies that it contains all the powers of the two-point discrete
spaces and then all the free compact Hausdorff spaces. But, since A is contained
in CH, this implies that the free CH-space on a set I is also the free A-space on
I. By proposition 1.7.2, we have finished the proof.

4.5 Accessible categories

In this section we recall a quite different description of the exact completion
Γ: C -Cex. It can be found in [33] if C is left exact and in [26] for the more
general case.

Lemma 4.5.1 Consider a functor F : C -SET defined on a weakly lex cat-
egory C; the two following conditions are equivalent:

1) F is left covering

2) F is a filtered colimit of representable functors

Proof: 1) ⇒ 2): by 1.4.6, we know that, for each A ∈ SET , the comma
category (A,F ) is filtering; this means that the category of elements of the

1F. Cagliari has simplified and generalized this argument showing that if A is a coreflective
subcategory of Haus which is closed for closed-subspaces and cartesian closed, then A is regular
(cf. [13]).
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functor SET (A,F−) is filtering. If we choose as A the singleton, we have that
the category of elements of F is filtering and then F is a filtered colimit of
representable functors.
2) ⇒ 1): a representable functor is left covering simply because in SET strong
epimorphism means surjective. If F is a filtered colimit of representable functors,
say F = colimXC(X,−), and L:D -C is defined on a finite category D,
we have that F (wlimL) = colimXC(X,wlimL) and also limL · F = lim(L ·
colimXC(X,−)) = colimX lim(L · C(X,−) (because in SET filtered colimits
commute with finite limits). This implies that the canonical factorization from
F (wlimL) to limL · F is a colimit of regular epis and then it is a regular epi by
interchange of colimits.

Let C be a small weakly lex category and let us write Lco(C) for the category
of left covering functors from C to SET . The proof of the two following theorems
can be found in [26].

Theorem 4.5.2 A category is ℵ0-accessible with products if and only if it is
equivalent to Lco(C) for a small weakly lex category C.

Let us write
∏

filt(Lco(C)) for the category of functors from Lco(C) to SET
which preserve products and filtered colimits.

Theorem 4.5.3 Let C be a small weakly lex category;

1) the evaluation functor e: C - ∏
filt(Lco(C)) is full and faithful

2) e(C) is a projective cover of the exact category
∏

filt(Lco(C)).

4.6 An unpleasant proof

In this section we give a detailed and direct proof of theorem 1.2.3. A shorter,
but not self-contained, proof of this theorem and of theorem 1.5.2 will be given
in the next section.

Theorem 4.6.1 Let C be a weakly lex category and let Cex be as in definition
1.2.2; then Cex is an exact category.

We divide the proof into three steps.
Step 1: Cex is a left exact category. Let T be a weak terminal object in C

and consider a weak product T π1� T × T π2-T . Then π1, π2:T × T -
-
T

is the terminal object in Cex. For this, consider an object r1, r2:R -
-
X in

Cex. Since T is a weak terminal, there exists x:X -T ; since T ×T is a weak
product, there exists x:R -T × T such that x · π1 = r1 · x and x · π2 = r2 · x.
This means that

[x, x]: (r1, r2:R⇒ X) - (π1, π2:T × T ⇒ T )

is an arrow in Cex. The verification that π1, π2:T ×T -
-
T is an object in Cex

is straightforward and does not depend on the fact that T is weak terminal. As
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far as the uniqueness is concerned, observe that if y:X -T is another arrow
in C, then there exists Σ:X -T × T such that Σ · π1 = x and Σ · π2 = y.

Let us consider now the following pair of arrows in Cex

R -f
S � g

T

r1

??

r2 s1

??

s2 t1

??

t2

X -
f

Y �
g Z

In order to build up its pullback, consider a weak limit (P ; f, ϕ, g) as in the
following diagram

X �
f

P -
g

Z

f
? ?

ϕ
?
g

Y �
s1 S -

s2 Y

and a weak limit (E; ρ, e1, e2, τ) as in the following diagram

E
�

���
���

����

ρ
�

�
�

��	

e1

@
@

@
@@R

e2

H
HHH

HHH
HHHj

τ

R P P T

r1

?

@
@

@
@@R

r2 �
�

�
��	

f HH
HHH

HHH
HHj

g ��
���

���
���

f
@

@
@

@@R

g �
�

�
��	

t1

?

t2

X X Z Z

The required pullback in Cex is given by

R �ρ
E -τ T

r1
??
r2 e1

??
e2 t1

??
t2

X �
f

P -
g Z

Let us show that e1, e2:E -
-
P is an object of Cex.

Reflexivity: consider the reflexivity rR:X -R and rT :Z -T (that is rR ·
r1 = 1X = rR · r2 and rT · t1 = 1Z = rT · t2). We obtain a cone
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P���
�����

f · rR �
�

�	
1P

@
@

@R
1P

HHH
HHHHj

g · rT

R P P T

on the diagram defining E, so that there exists rE :P -E such that, in par-
ticular, rE · e1 = 1P = rE · e2.
Symmetry: consider the symmetries sR:R -R and sT :T -T (that is
sR · r1 = r2, sR · r2 = r1, sT · t1 = t2 and sT · t2 = t1).

We obtain a cone

E��
���

���

ρ · sR �
�

�	
e2

@
@

@R
e1

HH
HHH

HHj

τ · sT

R P P T

on the diagram defining E, so that there exists sE :E -E such that, in par-
ticular, sE · e1 = e2 and sE · e2 = e1.
Transitivity: consider the following weak pullbacks

R ∗R -a2
R T ∗ T -b2 T E ∗ E -c2 E

a1

? ?
r1 b1

? ?
t1 c1

? ?
e1

R -
r2 X T -

t2
Z E -

e2 P

Since ρ · r1 = e1 · f and ρ · r2 = e2 · f , there exists ρ ∗ ρ:E ∗ E -P ∗ P
such that ρ ∗ ρ · a1 = c1 · ρ and ρ ∗ ρ · a2 = c2 · ρ. Analogously there exists
τ ∗ τ :E ∗ E -T ∗ T such that τ ∗ τ · b1 = c1 · τ and τ ∗ τ · b2 = c2 · τ .

Consider now the transitivities tR:R ∗R -R and tT :T ∗T -T (that is
tR · r1 = a1 · r1, tR · r2 = a2 · rR, tT · t1 = b1 · t1 and tT · t2 = b2 · t2).

We obtain a cone

E ∗ E
�

���
���

������

ρ ∗ ρ · tR
�

�
�

�
��	

c1 · e1

@
@

@
@

@@R

c2 · e2

H
HHH

HHH
HHH

HHj

τ ∗ τ · tT

R P P T

on the diagram defining E, so that there exists tE :E ∗ E -E such that, in
particular, tE · e1 = c1 · e1 and tE · e2 = c2 · e2.

Clearly, [f ] and [g] are arrows in Cex (look at the definition of E) and
[f ] · [f ] = [g] · [g] (use ϕ:P -S in the definition of P as homotopy).

Now suppose that
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R �x
U -z T

r1
??
r2 u1

??
u2 t1

??
t2

X �
x W -

z Z

are two arrows in Cex such that [x] · [f ] = [z] · [g]. This means that there exists
a homotopy Σ:W -S such that Σ · s1 = x · f and Σ · s2 = z · g. But this
means that

W
�

�
�	

x
?
Σ@

@
@R

z

X S Z

is a cone on the diagram defining P , so that there exists p:W -P such that,
in particular, p · f = x and p · g = z.

These two equations say that

U
���

���
����

���

x

�
�

�
�

��	

u1 · p

@
@

@
@

@@R

u2 · p

HHH
HHHH

HHH
HHj

z

R P P T

is a cone on the diagram defining E, so that there exists p:U -E such that,
in particular, p · e1 = u1 · p and p · e2 = u2 · p.

The last four equations mean that

U -p E

u1

??
u2 e1

??
e2

W -
p P

is the required factorization in Cex.
It remains to show that [f ] and [g] are a monomorphic pair.
Suppose that

U -p E U -q E

u1

??
u2 e1

??
e2 u1

??
u2 e1

??
e2

W -
p P W -

q P
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are two arrows in Cex such that [p] · [f ] = [q] · [f ] and [p] · [g] = [q] · [g].
This means that there exist two homotopies α:W -R and β:W -T such
that α · r1 = p · f , α · r2 = q · f , β · t1 = p · g and β · t2 = q · g. But this means
that

W�
���

����

α �
�

�	
p

@
@

@R
q

H
HHH

HHHj

β

R P P T

is a cone on the diagram defining E, so that there exists Σ:W -E such that,
in particular, Σ · e1 = p and Σ · e2 = q and then [p] = [q].

The argument about pullbacks in Cex is now complete.
We also need an explicit description for equalizers in Cex; for this, consider

two parallel arrows in Cex

R -
-

f

g
S

r1

??

r2 s1

??

s2

X -
-

f

g
Y

In order to build up their equalizer, consider a weak limit (E; e, ϕ) as in the
following diagram

E
�

�
�	

e
@

@
@R

ϕ

X S

f
?

HHH
HHHHj

g ���
�����

s1

?
s2

Y Y

Consider again a weak limit (R; e1, e, e2) as in the following diagram

E �e1 R -e2 E

e
? ?

e
?
e

X �
r1 R -

r2 X

Then the equalizer in Cex is given by
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R -e
R

e1

??

e2 r1

??

r2

E -
e X

Here we omit details because they are similar (and easier) to those concerning
the pullback.

Step 2: Cex has regular epi-mono factorization and regular epis are stable
under pullbacks.

Given an arrow in Cex

R -f
S

r1

??

r2 s1

??

s2

X -
f

Y

consider a weak limit (I; i1, i, i2) as in the following diagram

X �i1 I -i2 X

f
? ?

i
?
f

Y �
s1 S -

s2 Y

Since

R
�

�
�	

r1
?
f@

@
@R

r2

X S X

is a cone on the diagram defining I, there exists t:R - I such that, in partic-
ular, t · i1 = r1 and t · i2 = r2.

The required factorization is given by

R -t I -i S

r1
??
r2 i1

??
i2 s1

??
s2

X -
1X

X -
f

Y
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Let us prove that i1, i2: I -
-
X is an object of Cex.

Reflexivity: consider the reflexivity rS :Y -S (that is rS · s1 = 1Y = rS · s2).
We obtain a cone

X

�
�

�
�

�	

1X

?

f · rS
@

@
@

@
@R

1X

X S X

on the diagram defining I, so that there exists rI :X - I such that rI · i1 =
1X = rI · i2.
Symmetry: consider the symmetry sS :S -S (that is sS ·s1 = s2 and sS ·s2 =
s1). We obtain a cone

I

�
�

�
�

�	

i2

?

i · sS

@
@

@
@

@R

i1

X S X

on the diagram defining I, so that there exists sI : I - I such that sI · i1 = i2
and sI · i2 = i1.
Transitivity: consider the following weak pullbacks

S ∗ S -c2 S I ∗ I -b2 I

a1

? ?
s1 b1

? ?
i1

S -
s2 Y I -

i2
X

and the transitivity tS :S ∗S -S (that is tS · s1 = a1 · s1 and tS · s2 = a2 · s2).
Since i · s1 = i1 · f and i · s2 = i2 · f , there exists i ∗ i: I ∗ I -S ∗ S such

that i ∗ i · a2 = b2 · i.
We obtain a cone

I ∗ I

�
�

�
�

�
�	

b1 · i1

?

i ∗ i · tS

@
@

@
@

@
@R

b2 · i2

X S X
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on the diagram defining I, so that there exists tI : I ∗ I - I such that tI · i1 =
b1 · i1 and tI · i2 = b2 · i2.

Coming back to the factorization of [f, f ], let us show that the righy-hand
square is a monomorphism in Cex.

Suppose

T -
-x

y
I

t1
??
t2 i1

??
i2

Z -
-x

y
X

are two arrows in Cex such that [x] · [i, f ] = [y] · [i, f ], so that there exists
Σ:Z -S such that Σ · s1 = x · f and Σ · s2 = y · f . But this means that

Z
�

�
�	

x
?
z@

@
@R

y

X S X

is a cone on the diagram defining I, so that there exists Σ′:Z - I such that
Σ′ · i1 = x and Σ′ · i2 = y and then [x] = [y].

Now we have to prove that the right-hand square is a regular epi in Cex.
For this, we build up its kernel pair and we show that it is the coequalizer of its
kernel pair. Following the description of pullbacks given in the previous step,
we have that the kernel pair of

R -t I

r1
??
r2 i1

??
i2

X -
1X

X

is given by

E -
-

R

??
r1

??
r2

I -
-i1

i2
X

Suppose that

R -z T

r1
??
r2 t1

??
t2

X -
z Z
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is an arrow in Cex such that [i1] · [z] = [i2] · [z].
This means that there exists Σ: I -T such that Σ · t1 = i1 · z and Σ · t2 =

i2 · Z.
Then

I -Σ
T

i1
??
i2 t1

??
t2

X -
z Z

is the required factorization, that is [t, 1X ] · [Σ, z] = [z]. The factorization is
unique because [t, 1X ]is clearly an epimorphism in Cex.

Observe that to show that [t, 1X ] is a regular epi, we do not use the ex-
plicit description of i1, i2: I -

-
X. So, we have proved that in Cex regular

epimorphisms are, up to isomorphisms, exactly the arrows of the form

R -f S

r1
??
r2 s1

??
s2

X -
1X

X

We use this fact to simplify a little bit the verification that in Cex regular
epis are pullback stable. For this, consider an arrow

[g, g]: (t1, t2:T -
-
Z) - (s1, s2:S -

-
X)

in Cex and construct the pullback of [f, 1X ] along [g, g] following the description
given in the previous step.

Using the same notations, this pullback turn out to be

E -τ T

e1
??
e2 t1

??
t2

S2
-

s
′

2

Z

where

S2
-s

′

2
Z

g′

? ?
g

S -
s2 X

is a weak pullback.
Now we construct the regular epi-mono factorization of [τ, s

′

2]. It is given by
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E -t I -i T

e1
??
e2 i1

??
i2 t1

??
t2

S2
-

1S2

S2
-

s
′

2

Z

where

S2
�i1 I -i2 S2

s
′

2

? ?
i

?
s

′

2

Z �
t1

T -
t2

Z

is a weak limit. We have to prove that in the previous factorization, the left-hand
square is an isomorphism. Since it is a monomorphism, it suffices to build up a
left inverse. Consider the reflexivity rT :Z -T . Since rT ·g ·s2 = rT ·t2 ·g = g,
there exists l:Z -S2 such that l · g′ = rT · g and l · s′

2 = 1Z .
This implies that

T
�

�
�	

t1 · l
?
1T
@

@
@R

t2 · l

S2 T S2

is a cone on the diagram defining I, so that there exists l:T - I such that
l · i1 = t1 · l and l · i2 = t2 · l.

Now we have constructed an arrow in Cex

T -l I

t1
??
t2 i1

??
i2

Z -
l

S2

which is left inverse to [i, s
′

2] because l · s′

2 = 1Z .
Step 3: in Cex an equivalence relation has a coequalizer and it is the kernel

pair of its coequalizer.
Let

R -
-h1

h2

S

r1

??

r2 s1

??

s2

X -
-h1

h2

Y
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be an equivalence relation in Cex; in order to construct its coequalizer, consider
a weak limit (V ; p1, ν, p2) as in the following diagram

S �p1
V -p2

S

s2
? ?

ν
?
s2

Y �
h1

X -
h2

Y

and call v1 = p1 · s1, v2 = p2 · s1.
Now we need an arrow q:S -V making the diagram

S -q V

s1
??
s2 v1

??
v2

Y -
1Y

Y

an arrow in Cex.
For this, let us point out that the reflexivity of 〈[h1], [h2]〉 means that there

exists an arrow [p]: (s1, s2:S ⇒ Y ) - (r1, r2:R ⇒ X) in Cex such that [p] ·
[h1] = [1Y ] and [p] · [h2] = [1Y ]. This implies the existence of Σ1:Y -S such
that Σ1 · s1 = p ·h1 and Σ1 · s2 = 1Y and the existence of Σ2:Y -S such that
Σ2 · s1 = p · h2 and Σ2 · s2 = 1Y .

Consider now a weak pullback

S ∗ S -d1
S

d2

? ?
s2

S -
s1 Y

and the transitivity tS :S ∗ S -S of s1, s2:S -
-
Y .

Since s1 · Σ2 · s2 = s1, there exists c:S -S ∗ S such that c · d1 = s1 · Σ2

and c · d2 = 1S .
We obtain a cone

S

�
�

�
�

�
�	

s1 · Σ1 · sS

?

s1 · p

@
@

@
@

@
@R

c · tS · sS

S X S
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on the diagram defining V
(where sS :S -S is the symmetry of s1, s2:S -

-
Y ), so that there exists a

factorization q:S -V .
It remains to verify the double commutativity of

S -q V

s1
??
s2 v1

??
v2

Y -
1Y

Y

q · v1 = q · p1 · s1 = s1 · Σ1 · sS · s1 = s1 · Σ1 · s2 = s1

q · v2 = q · p2 · s1 = c · tS · sS · s1 = c · tS · s2 = c · d2 · s2 = s2.

To check that the given equivalence relation is the kernel pair of this regular
epi is more subtle, so as it is subtle to show that v1, v2:V -

-
Y is indeed an

object of Cex. Let us look at the symmetry of v1, v2:V -
-
Y .

First, the symmetry of the relation (in Cex) 〈[h1], [h2]〉 means that there
exists an arrow

R -σ R

r1
??
r2 r1

??
r2

X -
σ X

and two homotopies ϕ1:X -S, ϕ2:X -S such that ϕ1 · s1 = σ · h1 and
ϕ1 ·s2 = h2 (that is [σ] · [h1] = [h2]) and such that ϕ2 ·s1 = σ ·h2 and ϕ2 ·s2 = h1

(that is [σ] · [h2] = [h1]).
If r1, r2:R -

-
X and s1, s2:S -

-
Y are honest equivalence relations and

if we build up V in the category SET , we obtain

V = {(x, y, y ∈ X × Y × Y | (y, h(x)) ∈ S and (y, h2(x)) ∈ S}

But, informally, we can think

V = {(y, y) ∈ Y × Y | ∃ x ∈ X such that (y, h, (x)) ∈ S and (y, h2(x)) ∈ S}

This is possible because if there exist x, x′ ∈ X such that (y, h1(x)) ∈ S and
(y, h2(x)) ∈ S but also (y, h1(x′)) ∈ S and (y, h2(x′)) ∈ S, then (h1(x), h1(x′)) ∈
S and (h2(x), h2(x′)) ∈ S (by symmetry and transitivity of S). This implies
that x = x′ in the quotient of X by R because they are equal in the quotient of
Y by S and h1, h2 are jointly monic.

The symmetry of 〈[h1], [h2]〉 means that ∀ x ∈ X(h1(σ(x)), h2(x)) ∈ S and
(h2(σ(x)), h1(x)) ∈ S; now by symmetry and transitivity of S we have that if
(y, y) ∈ V by means of a certain x ∈ X, then

(y, h1(x)) ∈ S and (h2(σ(x)), h1(x)) ∈ S so that (y, h2(σ(x)) ∈ S
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(y, h2(x)) ∈ S and (h1(σ(x)), h2(x)) ∈ S so that (y, h1(σ(x))) ∈ S
and so (y, y) ∈ V by means of σ(x) ∈ X.

Now we translate the previous argument through the construction of v1, v2:V -
-
Y :

since ν·ϕ2·sS ·s1 = ν·ϕ2·s2 = ν·h1 = p1·s2, there exists α1:V -S∗S such that
α1 ·d1 = p1 and α1 ·d2 = ν ·ϕ2 ·sS . This implies that α1 ·tS ·s1 = α1 ·d1 ·s1 = p1 ·s1
and d1 · tS · s2 = α1 · d2 · s2 = ν · ϕ2 · sS · s2 = ν · ϕ2 · s1 = ν · σ · h2.

Since ν ·ϕ1 · sS · s1 = ν ·ϕ1 · s2 = ν ·h2 = p2 · s2, there exists α2:V -S ∗S
such that α2 · d1 = p2 and α2 · d2 = ν · ϕ1 · sS . This implies that α2 · tS · s1 =
α2 ·d1 ·s1 = p2 ·s1 and α2 ·tS ·s2 = α2 ·d2 ·s2 = ν ·ϕ1 ·sS ·s2 = ν ·ϕ1 ·s1 = ν ·σ ·h1.

In this way, we obtain a cone

V

�
�

�
��	

α2 · tS
?

ν · σ
@

@
@

@@R

α1 · tS

S X S

on the diagram defining V , so that there exists sV :V -V such that sV ·p1 =
α2 · tS and sV · p2 = α1 · tS . This arrow sV is the symmetry of v1, v2:V -

-
Y ;

in fact sV · v1 = sV · p1 · s1 = α2 · tS · s1 = p2 · s1 = v2 and sV · v2 = sV · p2 · s1 =
α1 · tS · s1 = p1 · s1 = v1.

Now we look at the transitivity of v1, v2:V -
-
Y . For this, let us observe

that the transitivity of 〈[h1], [h2]〉 means that there exists an arrow

E -τ R

e1
??
e2 r1

??
r2

P -
τ X

in Cex and two homotopies ψ1:P -S and ψ2:P -S such that ψ1 · s1 =
τ ·h1, ψ1 · s2 = h2 ·h1, ψ2 · s1 = τ ·h2 and ψ2 · s2 = h1 ·h2 (here e1, e2:E -

-
P

is the pullback in Cex of [h1] and [h2], so that the following is a weak limit

X �h1
P -h2

X

h1

? ?
y

?
h2

Y �
s1 S -

s2 Y

Consider a weak pullback

V ∗ V -u1
V

u2

? ?
v2

V -
v1 Y
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We need an arrow tV :V ∗V -V such that tV ·v1 = u1 ·v1 and tV ·v2 = u2 ·v2.
Once again, let us start with an informal argument.

Transitivity of 〈[h1], [h2]〉means that there exists τ :P -X such that ∀ (x, x) ∈
P (h2(τ(x, x)), h2(x)) ∈ S and (h1(τ(x, x)), h1(x)) ∈ S. If we suppose
(y, y) ∈ V (that is there exists x ∈ X such that (y, h1(x)) ∈ S) and (y, y) ∈ V
(that is there exists x ∈ X such that (y, h1(x)) ∈ S and (y, h2(x)) ∈ S), by
transitivity and symmetry of S we have (h1(x), h2(x)) ∈ S, which means ex-
actly (x, x) ∈ P . Using again transitivity and symmetry of S, we can deduce
now (y, h1(τ(x, x))) ∈ S and (y, h2(τ(x, x))) ∈ S, that is (y, y) ∈ V by means of
τ(x, x).

Now we translate the previous argument through the construction of v1, v2:V -
-
Y .

Since u2 · p1 · sS · s2 = u2 · p1 · s1 = u2 · v1 = u1 · v2 = u1 · p2 · s1, there exists
a:V ∗ V -S ∗ S such that a · d1 = u2 · p1 · sS and a · d2 = u1 · p2.

We obtain a cone

V ∗ V
�

�
�

��	

u2 · ν

?

a · tS
@

@
@

@@R

u1 · ν

X S X

on the diagram defining P (in fact u2 · ν · h1 = u2 · p1 · s2 = u2 · p1 · sS · s1 =
a · d1 · s1 = a · tS · s1 and u1 · ν · h2 = u1 · p2 · s2 = a · d2 · s2 = a · tS · s2), so that
there exists β:V ∗ V -P such that β · h1 = u2 · ν and β · h2 = u1 · ν. Since
β · ψ1 · sS · s1 = β · ψ1 · s2 = β · h2 · h1 = u1 · ν · h1 = u1 · p1 · s2, there exists
b:V ∗ V -S ∗ S such that b · d1 = u1 · p1 and b · d2 = β · ψ1 · sS .

Since β · ψ2 · sS · s1 = β · ψ2 · s2 = β · h1 · h2 = u2 · ν · h2 = u2 · p2 · s2, there
exists d:V ∗ V -S ∗ S such that d · d1 = u2 · p2 and d · d2 = β · ψ2 · sS .

We obtain a cone

V ∗ V
�

�
�

��	

b · tS
?

β · τ
@

@
@

@@R

d · tS

S X S

on the diagram defining V (in fact b · tS · s2 = b · d2 · s2 = β · ψ1 · sS · s2 =
β ·ψ1 ·s1 = β ·τ ·h1 and d ·tS ·s2 = d ·d2 ·s2 = β ·ψ2 ·sS ·s2 = β ·ψ2 ·s1 = β ·τ ·h2),
so that there exists tV :V ∗V -V such that tV · p1 = b · tS and tV · p2 = b · tS
and tV · p2 = d · tS . Let us prove that tV is the transitivity of v1, v2:V -

-
Y :

tV · v1 = tV · p1 · s1 = b · tS · s1 = b · d1 · s1 = u1 · p1 · s1 = u1 · v1

tV · v2 = tV · p2 · s1 = d · tS · s1 = d · d1 · s1 = u2 · p2 · s1 = u2 · v2



136 CHAPTER 4. APPENDIX

The reflexivity of v1, v2:V -
-
Y is easy to found: choose rV = rS · q (where

rS :Y -S is the reflexivity of s1, s2:S -
-
Y ). One has rV · v1 = rS · q · v1 =

rS · s1 = 1Y and analogously rV · v2 = 1Y .
It remains only to prove that

[h1], [h2]: (r1, r2:R -
-
X) -

-
(s1, s2:S -

-
Y )

is the kernel pair of [q, 1Y ]: (s1, s2:S -
-
Y ) - (v1, v2:V -

-
Y ) (which im-

plies that [q, 1Y ] is the coequalizer of [h1] and [h2], because [q, 1Y ] is a regular
epi).

First, we need a homotopy ε:X -V to show that [h1]·[q, 1Y ] = [h2]·[q, 1Y ].
It can be build up in the following way:

X

�
�

�
��	

h1 · rS
?

1X

@
@

@
@@R

h2 · rS

S X S

is a cone on the diagram defining V , so that there exists a factorization ε:X -V
which is the required homotopy. In fact ε · v1 = ε · p1 · s1 = h1 · rS · s1 = h1 and
ε · v2 = ε · p2 · s1 = h2 · rS · s1 = h2.

Suppose now there exist in Cex two arrows

S �z1
T -z2

S

s1
??
s2 t1

??
t2 s1

??
s2

Y �
z1 Z -

z2 Y

such that [z1] · [q, 1Y ] = [z2] · [q, 1Y ].
We look for an arrow

T -z R

t1
??
t2 r1

??
r2

Z -
z X

such that [z] · [h1] = [z1] and [z] · [h2] = [z2] (if such a factorization exists, it is
certainly unique because [h1] and [h2] are jointly monic).

By assumption, there exists χ:Z -V such that χ ·v1 = z1 and χ ·v2 = z2.
As z we can choose z = χ ·ν. To show that [z] · [h1] = [z1] we can use χ ·p1:Z ·S;
in fact χ · p1 · s1 = χ · v1 = z1 and χ · p1 · s2 = χ · ν · h1 = z · h1. Analogously,
to show that [z] · [h2] = [z2] we can use χ · p2:Z -S.

It remains to find that z:T -R such that z · r1 = t1 · z and z · r2 = t2 · z.



4.6. AN UNPLEASANT PROOF 137

Once again, let us start with an informal argument. Let z, z′ be in Z and
suppose (z1(z), z2(z)) ∈ V and (z1(z′), z2(z′)) ∈ V ; this means that there exist
x, x′ ∈ X such that (z1(z), h1(x)) ∈ S, (z2(z), h2(x)) ∈ S and (z1(z′), h1(x′)) ∈
S, (z2(z′), h2(x′)) ∈ S.

If moreover (z, z′) ∈ T , since z1 and z2 are compatible with the relations T
and S, we have that (z1(z), z1(z′)) ∈ S and (z2(z), z2(z′)) ∈ S. Now using transi-
tivity and symmetry of S, we obtain (h1(x), h1(x′)) ∈ S and (h2(x), h2(x′)) ∈ S.
As h1 and h2 are jointly monic, we can deduce now that (x, x′) ∈ R, as required.

As a last effort to make readable this proof, let me translate the previous
argument step by step by commutative diagrams.

T -z1
S

t1
??
t2 s1

??
s2

Z -
z1 Y

means: (z, z′) ∈ T then (z1(z), z1(z′)) ∈ S

T -z2
S

t1
??
t2 s1

??
s2

Z -
z2 Y

means: (z, z′) ∈ T then (z2(z), z2(z′)) ∈ S

Z -x V

z1
??
z2 v1

??
v2

Y -
1Y

Y

means: (z1(z), z2(z)) ∈ V

S S

�
�

�
���

χ · p1 s1

??

s2

�
�

�
���

χ · p2 s1

??

s2

Z -
-z1

χ · ν · h1

Y Z -
-z2

χ · ν · h2

Y

means: ∃ x ∈ X such that (z1(z), h1(x)) ∈ S and (z2(z), h2(x)) ∈ S
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S S

�
�

�
���

t1 · χ · p1 s1

??

s2

�
�

�
���

t1 · χ · p2 s1

??

s2

T -
-t1 · z1

t1 · χ · ν · h1

Y T -
-t1 · z2

t1 · χ · ν · h2

Y

S S

�
�

�
���

t2 · χ · p1 s1

??

s2

�
�

�
���

t2 · χ · p2 s1

??

s2

T -
-t2 · z1

t2 · χ · ν · h1

Y T -
-t2 · z2

t2 · χ · ν · h2

Y

mean respectively: (z1(z), h1(x)) ∈ S, (z2(z), h2(x)) ∈ S, (z1(z′), h1(x′)) ∈ S
and (z2(z′), h2(x′)) ∈ S

S

�
�

�
�

�
��

t1 · χ · p1 · sS s1

??

s2

T -
-

t1 · χ · ν · h1

t1 · z1
Y

means: (h1(x), z1(z)) ∈ S
Now, since t1 · χ · p1 · sS · s2 = z1 · s1, there exists a:T -S ∗ S such that

a · d1 = t1 · χ · p1 · sS and a · d2 = z1. This implies

S

�
�

�
�

�
��

a · tS s1

??

s2

T -
-

t1 · χ · ν · h1

t2 · z1
Y

which means: (h1(x), z1(z′)) ∈ S
Now, since a · tS · s2 = t2 · χ · p1 · s1, there exists b:T -S ∗ S such that

b · d1 = a · tS and b · d2 = t2 · χ · p1. This implies
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S

�
�

�
�

�
��

b · tS s1

??

s2

T -
-

t1 · χ · ν · h1

t2 · χ · ν · h1

Y

which means: (h1(x), h1(x′)) ∈ S.
But the previous diagram means that

[t1 · χ · ν] · [h1] = [t2 · χ · ν] · [h1]

in Cex, where the arrows are

T -
-

t1 · χ · ν · rR

t2 · χ · ν · rR
R -h1

S

1T

??

1T r1

??

r2 s1

??

s2

T -
-

t1 · χ · ν

t2 · χ · ν
X -

h1
Y

and the homotopy T -S is given by b · tS .
Exactly in the same way, one can prove that [t1 ·χ · ν] · [h2] = [t2 ·χ · ν] · [h2]

in Cex. Since [h1], [h2] is a jointly monic pair, the two previous equations in
Cex imply [t1 · χ · ν] = [t2 · χ · ν].

But this means that there exists a homotopy z:T -R such that z · r1 =
t1 · χ · ν = t1 · z and z · r2 = t2 · χ · ν = t2 · z, as required.

The proof of the theorem is now complete.

4.7 An economical proof

In this section we obtain a different and more economical proof for the
exactness of Cex and for the universal property of Γ: C -Cex. Nevertheless,
I have chosen to maintain also the old proofs (theorem 4.6.1 and theorem 1.5.2)
for two reasons. The first reason is affective: when I started to study the exact
completion of a weakly lex category, I was not aware of the exact completion of
a regular category, so I was forced to look for a direct proof of 1.2.3 and 1.5.2
which cost some efforts to me. The second reason is to have a self-contained
work: the proof of the universal property of the exact completion of a regular
category is largely based on the calculus of relations, a topic that I do not
introduce in this work.
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Let us start recalling some known facts. The existence of the free exact
category on a regular one has been claimed by A. Joyal in a conference at
Oberwolfach in 1972 and its description has been suggested by W. Lawvere in
[31], where it is presented as a motivation for an axiomatic study of categories
of relations.

Definition 4.7.1 Let B be a regular category; we can define a new category
Rel(B) in the following way:

• objects of Rel(B) are objects of B

• an arrow α:X 7→ Y in Rel(B) is a relation in B

α

�
�

�	

α1
@

@
@R

α2

X Y

• composition: given a pair of arrows α:X 7→ Y and β:Y 7→ Z in B, its
composite is the jointly monic part of the (regular epi, mono) factorization
of

P
�

�
�	

β1
′ · α1

@
@

@R

α2
′ · β2

X Z

where

P -α2
′
β

β1
′

? ?
β1

α -
α2

Y

is a pullback

• identities are diagonal relations

Of course, to prove that the previous definition works requires some verifi-
cations, which has been accomplished in [31].

Definition 4.7.2 Let B be a regular category; we can define a new category
BEX in the following way:

• objects: an object of BEX is an equivalence relation r1, r2:R⇒ X in B
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• arrows: an arrow α: (R⇒ X) - (S ⇒ Y ) in BEX is an arrow α:X 7→ Y
in Rel(B) such that

i) R · α · S = α

ii) αo · α < S

iii) α · αo > R

(in the previous equations composition is that of Rel(B) and αo is the
relation Y 7→ X defined by

α

�
�

�	

α2
@

@
@R

α1

Y X

• composition is that of Rel(B)

• the identity on (R⇒ X) is R:X 7→ X

We can define a functor γ: B -BEX which sends an object X of B on
the identity relation 1X , 1X :X ⇒ X and an arrow f :X -Y on its graph
f :X 7→ Y . This functor is full and faithful. As far as the fullness is concerned,
observe that, if R is the identity relation on X and S is the identity relation on
Y , then conditions ii) and iii) in definition 4.7.2 mean that α1 is, respectively,
a mono and a regular epi, so that α:X 7→ Y is the graph of α−1

1 · α2:X -Y .
A complete proof of the exactness of BEX and γ: B -BEX can be found

in [38] and [22]. Let us only point out some useful facts to understand the
universal property of γ: B -BEX. First, observe that, if r1, r2:R ⇒ X is an
object in BEX, the following is an exact sequence in BEX

γ(R) -
-

γ(r1)

γ(r2)
γ(X) -R (R⇒ X)

Moreover, if α: (R⇒ X) - (S ⇒ Y ) is an arrow in BEX, we can consider the
(regular epi, jointly monic) factorization of the pair (γ(α1) · R, γ(α2) · S) as in
the following diagram

γ(X)�
γ(α1)

γ(α) -γ(α2)
γ(Y )

R

? ? ?

S

(R⇒ X)�m1
• -

m2
(S ⇒ Y )
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One can show that m1 is an isomorphism and α = m−1
1 ·m2. In particular, this

implies that γ(α1) ·R · α = γ(α2) · S.
If B is an exact category, the functor γ: B -BEX is an equivalence. In

fact an object r1, r2:R ⇒ X is isomorphic to γ(X/R), where ρ:X -X/R is
the coequalizer of r1 and r2 and the isomorphism is given by γ(ρ) and γ(ρ)o.

Proposition 4.7.3 For each exact category A and for each exact functor
F : B -A, there exists an essentially unique exact functor F̂ : BEX

-A mak-
ing commutative the following diagram

B -γ BEX
@

@
@R

F

�
�

�	
F̂

A

Proof: let us only indicate how to define F̂ . If r1, r2:R⇒ X is an object in
BEX, we put F̂ (R⇒ X) = Q, where

F (R) -
-

F (r1)

F (r2)
F (X) -q

Q

is a coequalizer. If α: (R ⇒ X) - (S ⇒ Y ) is an arrow in BEX, we can
consider also the coequalizer p:FY -P of Fs1,Fs2. Consider now the (reg-
ular epi, jointly monic) factorization of the pair (F (α1) · q, F (α2) · p) as in the
following diagram

F (X)�
F (α1)

F (α) -F (α2)
F (Y )

q

? ? ?

p

Q �
µ1

• -
µ2

P

But 〈µ1, µ2〉:Q 7→ P is an arrow in AEX between 1Q, 1Q:Q⇒ Q and 1P , 1P :P ⇒
P , so that µ1 is an isomorphism. It is now straightforward to define F̂ (α) =
µ−1

1 · µ2:Q -P . Once again, a complete proof based on the calculus of rela-
tions can be found in [38] or [22].

Lemma 4.7.4 With the notations of the previous proposition, F̂ is the left
Kan extension of F along γ.

Proof: let λ:F -γ ·H be a natural trasformation with H: BEX -A an
arbitrary functor. We can define a natural trasformation λ̂: F̂ -H as in the
following diagram
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F (R) -
-

F (r1)

F (r2)
F (X) -F̂ (R)

F̂ (R⇒ X)

λR

? ?

λX

?

λ̂

H(γ(R)) -
-

H(γ(r1))

H(γ(r2))
H(γ(X)) -

H(R)
H(R⇒ X)

The naturality of λ̂ follows from that of λ and from the equation γ(α1) ·R ·α =
γ(α2) · S. The rest of the proof is straightforward.

Corollary 4.7.5 Consider the functor γ: B -BEX;

1) for each exact category A, composing with γ induces an equivalence

γ · −:Ex(BEX,A) -Ex(B,A)

between the category of exact functors from BEX to A and the category
of exact functors from B to A

2) γ: B -BEX is the unit of the left biadjoint to the forgetful

Ex -Reg

where Ex is the 2-category of exact categories and exact functors and Reg
is the 2-category of regular categories and exact functors.

Putting together theorem 3.3.1 and the first point of the previous corollary,
we obtain the following theorem

Theorem 4.7.6 Let C be a weakly lex category; consider Γreg: C -Creg as
in proposition 3.2.4 and γ: Creg - (Creg)EX as at the beginning of this sec-
tion. For each exact category A, composing with Γreg ·γ induces an equivalence

Γreg · γ · −:Ex((Creg)EX,A) -Ex(Creg,A) -Lco(C,A)

between the category of exact functors from (Creg)EX to A and the category
of left covering functors from C to A.

Now, to obtain the exactness of Cex and the universal property of Γex: C -Cex
as a corollary of the previous theorem, it suffices to show that Cex is equivalent
to (Creg)EX. For this, let us come back to the very beginning of the proof
of theorem 1.5.2. Observe that, given a left covering functor F : C -A, the
existence of an extension F̂ : Cex -A of F along Γex: C -Cex does not
depend on the exactness of Cex but only on the exactness of A. It is to this
extension that we refer in the following lemma.
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Lemma 4.7.7 With the previous notations:

1) if F is full and faithful and, for each object X of C, F (X) is regular
projective, then F̂ is full and faithful

2) if, moreover, for each object A in A there exist an object X in C and a
regular epimorphism F (X) -A, then F̂ is an equivalence

Proof: it suffices to observe that in the proof of theorem 1.6.1 we do not use
the exactness of Cex.

It remains only to prove that the functor

Γreg · γ: C -Creg - (Creg)EX

satisfies the hypothesis of the previous lemma. Clearly, it is full and faithful
because both Γreg and γ are full and faithful. Moreover, each object of Creg can
be covered by an object of C (proposition 3.2.6) and each object of (Creg)EX
can be covered by an object of Creg. Since γ preserves regular epimorphisms,
this implies that each object of (Creg)EX can be covered by an object of C.
It remains to prove that each object of C is regular projective in (Creg)EX.
We know, by proposition 3.2.5, that each object of C is regular projective in
Creg, so that it suffices to show that γ preserves regular projective objects. This
follows as a particular case from the following lemma.

Lemma 4.7.8 Let G: B -A be a left exact functor;

1) if G is full and faithful, then it reflects regular epimorphism

2) if, moreover, A is regular and, for each object A in A, there exist an object
B in B and a regular epimorphism G(B) -A, then G preserves regular
projective objects.

Proof: 1): obviously a full and faithful functor reflects epimorphisms. Now
consider an arrow f :X -Y in B such that G(f):G(X) -G(Y ) is a reg-
ular epimorphism. We can prove that f is the coequalizer of its kernel pair
f1, f2:N(f) ⇒ X. In fact, if g:X -Z is such that f1 · g = f2 · g, then
Gf1 ·Gg = Gf2 ·Gg. But, by left exactness of G, the pair Gf1,Gf2 is the kernel
pair of Gf , so that Gf is the coequalizer of Gf1 and Gf2. This implies that
there exists a unique factorization of Gg along Gf and then, by fullness and
faithfulness of G, a unique factorization of g along f .

2): suppose that P is regular projective in B and consider a regular epi-
morphism p:A -G(P ) in A. We can cover A with an object B of B and
a regular epimorphism q:G(B) -A. Now we have a regular epimorphism
q ·p:G(B) -G(P ) so that there exists an arrow f :B -P such that G(f) =
q · p. By the first part of the lemma, f is a regular epimorphism, so that there
exists g:P -B such that g · f = 1P . This implies that G(g) · q is a section of
p. Since A is regular, this proves that G(P ) is regular projective.
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Let us conclude this section observing that, as far as an explicit description
of the exact extension F̂ : Cex -A of a left covering functor F : C -A is con-
cerned, it is easier to use the argument concerning uniqueness at the beginning
of the proof of 1.5.2 than going through the two steps of Creg and (Creg)EX. 2

4.8 To be continued . . .

I would like to leave the reader with three open problems which, in my
opinion, can be of some interest.

Malcev condition:
The exact completion runs very well with respect to the additivity, as at-

tested by the following proposition (cf. also [20] and [21]).

Proposition 4.8.1 Let C be a weakly lex category; Cex is preadditive (that is
abelian) if and only if C is preadditive.

Proof: The (only if) is obvious because C is (equivalent to) a full subcategory
of Cex; for the converse, one has only to verify that the preadditive structure
in Cex given by [f ] + [g] = [f + g] is well defined.

Unfortunately, the same problem is not so easy when we consider the not
commutative analogous of abelian categories: here, a Malcev category is a
weakly lex category in which every pseudo reflective-relation is also a pseudo
equivalence-relation.

Proposition 4.8.2 Let C be a weakly lex category; if Cex is Malcev, then C
is Malcev.

Proof: Let A be an exact category and P a projective cover of A. Suppose
r0, r1:R -

-
X is a reflective pair in P, so it is a reflective pair in A and then,

by assumption, it is a pseudo equivalence-relation in A. Clearly, this implies
that it is symmetric in P only because P is full in A.

As far as transitivity is concerned, we know that there exists an arrow t:R ∗
R -R such that t · r0 = l0 · r0 and t · r1 = l1 · r1, where

R ∗R -l0
R

l1

? ?

r1

R -
r0 X

is the pullback in A.
Now if p:P -R ∗R is a P-cover of R ∗R, then

2This section has been written with the collaboration of M. Mosca. Further developements
will be contained in [35].
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P -p · l0
R

p · l1

? ?

r1

R -
r0 X

is a weak pullback in P, so that p·t:P -R gives the transitivity of r0, r1:R -
-
X

in P.

The open problem is clearly to find conditions on C such that Cex is a
Malcev category.

A possible motivation to study Malcev condition in this context lies in the
suggestion, due to M. Barr, that the right framework to study topology is given
by exact categories with enough injectives in which unions are effective (cf. [4]).
Both examples given by Barr in [4] (elementary topo and Grothendieck abelian
categories) are categories such that the dual category is exact. In other words,
they are exact categories such that the dual is a free exact and Malcev category
(recall that a regular category is Malcev if and only if it is exact and the dual
of the effective unions condition holds).

The homotopy category:
Let us recall the definition of the homotopy category H0Top:

objects: topological spaces
arrows: equivalence classes of continuous maps; two continuous maps f, g :
X -

-
Y are said to be equivalent if

• there exists a continuous map H: I ×X -Y such that i0 ·H = f and
i1 ·H = g

X -
-

f

g
Y

i0

??

i1

�
�

�
���

H

I ×X

where I = [0, 1] euclideian and

i0(x) = (0, x) , i1(x) = (1, x) ∀ x ∈ X

or, equivalently, if

• there exists a continuous map K:X -Y I such that K · ev0 = f and
K · ev1 = g
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Y I

�
�

�
���

K ev0

??

ev1

X -
-

f

g
Y

where ev0(α) = α(0) and ev1(α) = α(1) ∀ α ∈ Y I .

Proposition 4.8.3 H0Top is weakly lex.

Proof: It is straightforward to prove that products in Top are also (strong)
products in H0Top.

As far as equalizers are concerned, consider two parallel arrows in Top
f, g:X -

-
Y and the evaluations ev0, ev1:Y I -

-
Y ; now take the pullbacks

F -f ′
Y I G -g′

Y I

f0

? ?

ev0 g1

? ?

ev1

X -
f

Y X -
g Y

and then take the limit F πf� L
πg-G on the diagram

F G

f0

?

@
@

@
@@R

f ′ �
�

�
��	

g1

?

g′

X Y I

A weak equalizer in H0Top is given by

L
πf · f0-X

f
-
-

g
Y.

In fact, πf ·f ′ ·ev0 = πg ·f0 ·f and πf ·f ′ ·ev1 = πg ·g′ ·ev1 = πg ·g1 ·g = πf ·f0 ·g
so that πf · f0 · f is equivalent to πf · f0 · g. Now suppose that h:Z -X
is an arrow in Top such that h · f is equivalent to h · g, that is there exists
H:Z -Y I such that H · ev0 = h · f and H · ev1 = h · g. From the first
equation, we have ϕ:Z -F such that ϕ · f0 = h and ϕ · f ′ = H. From the
second equation, we have ψ:Z -G such that ψ · g1 = h and ψ · g′ = H. But
this implies the existence of l:Z -L such that l · πf = ϕ and l · πg = ψ.
Finally l · πf · f0 = ϕ · f0 = h.
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If one computes explicitly L, one finds L = {(x, α) ∈ X × Y I | α(0) =
f(x) and α(1) = g(x)}. This is what is called homotopy-equalizer in [11]. In
fact one can prove that the homotopy type of L depends only on the homotopy
type of f and g. In the same way, if one builds up weak pullbacks in H0Top
using products in Top and weak equalizers as in the previous proposition, one
obtains homotopy-pullbacks.

Two questions arise in a natural way from the previous proposition.
The first one, for the sake of unification, is

• what about weak limits in the homotopy category built up from a Quillen-
model category (cf. [37]) or from a Baues-fibred category (cf. [5])?

• what about weak limits in categories of fractions? (cf. [5] and [23])

The second question, may be more interesting in view of further develop-
ment, is

• what is the exact completion of H0Top?

Exact embedding
As a last remark, let us point out a quite surprising property of categories

which have a projective cover.

Lemma 4.8.4 Let f :X -Y be a regular epi in a weakly lex category and
f0, f1:N(f) -

-
X a weak kernel pair of f ;

N(f)
f0
-
-

f1
X

f-Y

is a coequalizer.

Proof: Work as in the “strong” case.

Proposition 4.8.5 Let A be a small weakly lex category and P a projective
cover of A; the “Yoneda embedding”

Y : A -SET Pop

is full, faithful, left covering and preserves regular epis.

Proof: The fact that Y is left covering is obvious. For example, if T is a weak
terminal object in A, consider the unique natural transformation A(−, T ) ⇒ 1,
where 1 is the terminal presheaf. For each object X (in A), A(X,T ) is not
empty, so that the component at X A(X,T ) ⇒ 1(X) = {∗} is surjective.

Now consider a regular epi p:A -B in A and the induced natural trans-
formation

− · p: A(−, A) ⇒ A(−, B): Pop -SET
Given an object P in P and an arrow f :A -B, the fact that P is projective
and p is a regular epi means exactly that there exists g:P -A such that
g · p = f . This means exactly that the component at P of − · p is surjective.
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Also the faithfulness of Y is easy: consider two parallel arrows a, b : A -
-
B

in A and the natural transformations − · a,− · b: A(−, A) ⇒ A(−, B). Consider
now a P-cover p:P -A of A: if − · a = − · b in particular p · a = p · b, but p
is a regular epi, so that a = b.

It remains to prove that

Y : A -SET Pop

is full. For this consider two objects A and B in A and a natural transformation
τ : A(−, A) ⇒ A(−, B). The naturality of τ means that, for each f :P -Q in
P, the following is a commutative diagram in SET

A(P,A)�f · − A(Q,A)

τP

? ?

τQ

A(P,B)�
f · − A(Q,B)

that is, for each x:Q -A in A, the following is a commutative diagram in A

P -τP (f · x)
B

@
@

@
@@R

f

�
�

�
���

τQ(x)

Q

Now let us consider a P-cover a:A -A ofA, a weak kernel pair a0, a1:N(a) -
-
A

of a and again a P-cover q:Q -N(a). Consider again τA(a):A -B; we
have that q · a0 · τA(a) = τQ(q · a0 · a) = τQ(q · a1 · a) = q · a1 · τA(a) and
then a0 · τA(a) = a1 · τA(a) because q is a regular epi. By the previous lemma,
we have t:A -B such that a · t = τA(a). Now we can prove that the two
natural transformations τ and − · t are equal: consider y:P -A with P in
P; since P is projective and a a regular epi, there exists y:P -A such that
y · a = y. Finally we have y · t = y · a · t = y · τA(a) = τP (y · a) = τP (y) that is
τP (y) = Y (t)P (y).
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P

�
�

�
��	

y

?

y

Q -q
N(a) -

-a0

a1
A -a

A

@
@

@
@@R

τA(a)
?

t

B

The previous proposition gives us, as a particular case, the following corol-
lary:

Corollary 4.8.6 Let A be a small regular category and P a projective cover of
A; the Yoneda embedding

Y : A -SET Pop

is a full, faithful and exact functor.

This means that the celebrated Barr theorem (which states that, given a
small regular category A, there exists a full and exact embedding of A in a
topos of presheaves, cf. [2]) becomes obvious if we make the extra-assumption
that A has enough projectives.

Keeping in mind the proof of Barr theorem given in [7], the question natu-
rally arising is:

• can a regular category A be decomposed in a family of regular categories
with enough projectives, so as to obtain Barr theorem by a suitable “glue-
ing” of the easy case?

Enjoy yourself!
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