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Nowadays marine models routinely produce 
large amounts of results. Making sense of all 
these real numbers is not a trivial task. This 
is why specific interpretation methods are 
needed. Estimating timescales is one of 
them. In this respect, a comprehensive 
theory (CART) is developed that allows for 
the estimation of timescales such as the age 
and the residence time from the solution of 
partial differential problems. 
 At any time and position, the age — a 
measure of the elapsed time — of every 
constituent, or group of constituents, of 
seawater can be estimated in such a way that 

advection, diffusion and reactions are properly taken into account. For every constituent, the core variable is 
the age distribution function, ci (t,x,τ ) , where the subscript i identifies the constituent under consideration, 
whilst t and x denote the time and the position vector, respectively. For a seawater sample of volume δV → 0  
taken at time t and location x, the mass of the i-th constituent whose age lies in the interval [τ ,τ +δτ ]  tends to 

 ρici (t, x,τ )δτ δV  in the limit δτ → 0 , where  ρi  is the (constant) reference density of seawater (Boussinesq 
approximation). The age distribution function may be 
viewed as the histogram of the ages of the particles of the 
i-th constituent in the aforementioned seawater sample. 
 Classical mass budget considerations lead to the 
equation governing the evolution of ci (t,x,τ ) , which is 
closely related to Green's function when the concentration 
of the constituent under study obeys a linear equation. 
Then, the concentration (defined as a mass fraction) and 
age concentration, Ci (t,x)  and α i (t,x) , are the zeroth 
and first-order moments of the age distribution, 
respectively (see equations opposite). The mean age, 
ai (t,x) , is obtained in accordance with the age-averaging 
hypothesis (Deleersnijder et al. 2001): the mean age is to 
be evaluated as the mass-weighted mean of the ages of 
the particles under consideration. 
 The form of (resolved and unresolved) transport terms 
is identical in the equation governing the concentration 
and in that for the age concentration. Therefore, the mean 
age,  ai (t,x) , provides diagnoses fully consistent with the 
model whose results are to be interpreted. Another advantage of the present Eulerian approach is that 
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theoretical results are easier to obtain than 
in the Lagrangian formalism. For 
instance, the biases of the age derived 
from radioactive tracers (see figure 
opposite) or from the time lag method 
have been uncovered and investigated in 
depth. The age also turned out to be of use 
to diagnose reaction rates in ecosystem 
models, i.e. in models in which the 
reaction terms are non-linear. On the 
other hand, the age of tracers released by 

a point source in a number of shallow water domains has been simulated numerically and investigated in a 
theoretical manner, leading to the discovery of an intriguing symmetry property (Beckers et al. 2001). 
    The residence time is defined as the time needed for a particle to hit for the first time an open boundary of 
the domain. To account for the fact that particles may re-enter the domain of interest after leaving it, the 
concept of exposure time was introduced. The propensity of particles to re-enter the domain may be evaluated 
by means of the return coefficient. The residence time and the exposure time, η(t,x) , are the solution of an 
adjoint equation (Delhez et al. 2004), which is to be integrated backward in time, 

 

∂η
∂t

= −ω − ∇ i (ηv +K i∇η) , ω (x) =
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 In the framework of idealised flow studies, it was seen that the residence/exposure time of sinking particles 
(e.g. diatoms) in the upper mixed layer is an increasing function of the eddy diffusivity. A generalisation of this 
approach allowed for the evaluation of the amount of light such particles are exposed to. Relevant inequalities 
and seemingly counterintuitive results were established and discussed. 
 The abovementioned time-scales 
proved to be particularly useful for 
investigating the water renewal of 
semi-enclosed domains. A general 
method was developed, which 
suggests that the age of the renewing 
water be estimated as well as the 
residence/exposure time of the water 
originally present in the domain of 
interest (de Brye et al 2012). Several 
estuaries share the same property 
(see figure opposite): the variability 
of the residence and exposure time is 
much more pronounced at the period 
of the dominant tidal component 
than at the timescale of the spring-
neap cycle though these diagnostic 
timescales are usually significantly longer than the duration of a spring-neap cycle. 
 The concept of age is being generalised, leading to the notion of partial age (Mouchet et al. 2016). The 
domain of interest is split into several subdomains and every constituent particle is henceforth “equipped” with 
several clocks (rather than only one), allowing for the time spent in each subdomain to be evaluated. This way, 
information about pathways is obtained without having recourse to Lagrangian calculations. 
  

 

 
 
 
 

10-4 10-3 10-2 10-1

γ (yr-1)

0

200

400

600
M

ea
n 

ag
e 

(y
r)

14C

39Ar

3H    Passive tracer

   Radio-age

   Radioactive tracer

ages in the 
World Ocean 

 
Scheldt Estuary water renewal timescales 

 
 
 
 

14 Benjamin de Brye et al.

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80
0

20

40

60

80

T
id
al
ly
-a
ve
ra
ge
d
C

s
[
]

T
id
al
ly
-a
ve
ra
ge
d
a
s
[d
ay

]

Distance from mouth [km]

↕ Vlissingen ↕ Terneuzen ↕ Hansweert ↕ Bath ↕ Doel ↕ Antwerp

(a)

(b)

Fig. 5 (a) sectionally and tidally averaged concentration of spillway waters for the averaged
discharge scenario (Q). (b) sectionally and tidally averaged age of the canal waters for the
averaged discharge scenario (Q).
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Fig. 6 (a) tidally-averaged residence time. (b) tidally-averaged exposure time. (c) M2 ampli-
tude of the residence time. (d) M2 amplitude of the exposure time. The unit is day and forcings
corresponds to the averaged discharge scenario (Q). Latitude and longitude are in degrees.
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