SLIM: a numerical model for the land-sea continuum and beyond1

The hydrosphere is made up of a number of media, such as groundwater, oceans, shelf seas, estuaries, rivers, sea ice. The processes taking place in these domains are vastly different in nature and are characterised by a wide range of space- and time-scales. The components of the hydrosphere interact with each other. For instance, the shallow marine and estuarine regions, though accounting for less than 1\% of the volume of the oceans, have a biomass far from negligible as compared to that of the oceans, suggesting that they play a significant role in global biogeochemical cycles. This is one of the reasons why models are now needed that deal with most, if not all, of the components of the hydrospheric system.

Numerical models of each of the components of the hydrosphere already exist. However, an integrated model of the whole hydrosphere has yet to be developed. Building such a model is a daunting task, requiring the development of multi-scale/physics simulation tools.

Numerical methods for dealing with multi-scale problems are developing rapidly. Unstructured meshes (see figure opposite2) offer an almost infinite geometrical flexibility, allowing the space resolution to be increased when and where necessary. In addition, time stagings for dealing with a wide spectrum of timescales while retaining a high order of accuracy have been developed over recent years (e.g. multi-rate schemes).

Taking advantage of the abovementioned progress in numerical methods, various teams over the world have started developing models for simulating in an integrated manner a significant number of components of the hydrosphere. One of these groups is building the Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM, www.climate.be.slim), the main focus of which has been thus far the land-sea continuum. SLIM solves the equations governing geophysical, environmental and groundwater phenomena by means of the (discontinuous Galerkin) finite element method on 1D, 2D or 3D unstructured meshes. To take advantage of state-of-the-art developments, SLIM is also

1 This flyer may be found on the web at the following address: www.climate.be/slim_flyer
2 This is Figure 4b of Pham Van C., B. de Brye, E. Deleersnijder, A.J.F. Hoitink, M. Sassi, B. Spinewine, H. Hidayat and S. Soares-Frazao, 2016, Simulations of the flow in the Mahakam rive-lake-delta system, Indonesia, Environmental Fluid Mechanics, 16, 603-633
being interfaced with existing tools (often based on radically different numerical methods), such as the well-known and widely used General Ocean Turbulence Model (GOTM, www.gotm.net). The post-processing of the results is achieved with the help of usual statistical and computer graphics methods. Other techniques are also resorted to, such as tracer and timescale methods derived from CART (Constituent-oriented Age and Residence time Theory, www.climate.be/cart_flyer) or network science tools (sites.uclouvain.be/networks). The hydrodynamics simulated by the aforementioned finite element model can be introduced into a number of SLIM-based environmental modules, which are capable of representing sediment transport, as well as the fate of some classes of contaminants, namely microbiological pollutants, endocrine disrupting compounds, heavy metals or radionuclides. A simple ecological model is being developed, whose aim is to simulate the evolution of various species of phyto- and zoo-plankton. SLIM results are also employed in theoretical investigations of the design of marine protected areas.

SLIM has been applied successfully to a wide variety of standard, idealised test cases for geophysical an environmental fluid flows — including atmospheric ones. It was seen that space-time mesh adaptivity pays off. Realistic problems were or are also dealt with, in particular the application of SLIM to the Great Barrier Reef, Australia, and the land-sea continua of several rivers, namely the Scheldt (France, Belgium, The Netherlands), the Mahakam (Indonesia) and the Congo (Democratic Republic of the Congo). Finally, seas or lakes on some of the Jupiter and Saturn icy moons are being modelled. See figure above.

Nowadays, most efforts are focusing on the three-dimensional, baroclinic version of SLIM and the accompanying sediment and contaminant modules. The figure opposite, which is taken from Delandmeter et al. (2015), displays snapshots of sea surface sediment concentration and salinity as simulated in the region of freshwater influence of the Burdekin River, Great Barrier Reef, Australia.

SLIM’s sea-ice module is being re-examined and, hopefully, a full-fledged solid and liquid water simulation tool will be available in the near future, which will be based on up-to-date sea-ice's thermodynamics and rheology.

The development and use of SLIM has been or is being performed by many researchers, including Paul-Emile Bernard, Sébastien Blaise, Sylvain Bouillon, Kay Critchell, Hans Burchard, Richard Comblen, Anouk de Brauwere, Benjamin de Brye, Thomas De Maet, Véronique Dehant, Philippe Delandmeter, Eric Deleersnijder (coordinator), Eric Delhez, Marc Elskens, Thierry Fichefet, Fabrio Fiengo Perez, Olivier Gourgue, Emmanuel Hanert, Hidayat Hidayat, Anh Hoang Le, Ton Hoitink, Ozgur Karatekin, Tuomas Kärnä, Jonathan Lambrechts, Yoann Le Bars, Vincent Legat (founding father), Sébastien Legrand, Olivier Lietaer, Samuel Mechiior, Jaya Naithani, Alice Pestiaux, Chien Pham Van, Fernando Pinheiro Andutta, Jean-François Remacle, Maximiliano Sassi, Bruno Seny, Sandra Soares Frazao, Benoît Spinewine, Christopher Thomas, Martin Vancoppenolle, Valentin Vallaeyts, David Vincent, Laurent White, Eric Wolanski.

Contact person: Dr Jonathan Lambrechts (jonathan.lambrechts@uclouvain.be)

1 Delandmeter P., S.E. Lewis, J. Lambrechts, E. Deleersnijder, V. Legat and E. Wolanski, 2015, The transport of riverine fine sediment exported to a semi-open system, Estuarine, Coastal and Shelf Science, 167, 336-346
Publications related to the development and application of the Second-generation Louvain-la-Neuve Ice-Ocean Model (SLIM)

1. LEGRAND S., V. LEGAT and E. DELEERSNIJDER, 2000, Delaunay mesh generation for an unstructured-grid ocean general circulation model, *Ocean Modelling*, 2, 17-28
<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.</td>
<td>LEGRAND S., E. DELEERSNIJDER, E.J.M. DELHEZ and V. LEGAT</td>
<td>Unstructured, anisotropic mesh generation for the Northwestern European continental shelf, the continental slope and the neighbouring ocean</td>
<td>Continental Shelf Research</td>
<td>27</td>
<td>1344-1356</td>
</tr>
<tr>
<td>20.</td>
<td>SPIVAKOVSKAYA D., A.W. HEEMINK and E. DELEERSNIJDER</td>
<td>Lagrangian modelling of multi-dimensional advection-diffusion with space-varying diffusivities: theory and idealized test cases</td>
<td>Ocean Dynamics</td>
<td>57</td>
<td>189-203</td>
</tr>
<tr>
<td>21.</td>
<td>GOURGUE O., E. DELEERSNIJDER and L. WHITE</td>
<td>Toward a generic method for studying water renewal, with application to the epilimnion of Lake Tanganyika</td>
<td>Estuarine, Coastal and Shelf Science</td>
<td>74</td>
<td>628-640</td>
</tr>
<tr>
<td>22.</td>
<td>WHITE L. and E. DELEERSNIJDER</td>
<td>Diagnoses of vertical transport in a three-dimensional finite-element model of the tidal circulation around an island</td>
<td>Estuarine, Coastal and Shelf Science</td>
<td>74</td>
<td>655-669</td>
</tr>
<tr>
<td>23.</td>
<td>BLAISE S., E. DELEERSNIJDER, L. WHITE and J.-F. REMACLE</td>
<td>Influence of the turbulence closure scheme on the finite-element simulation of the upwelling in the wake of a shallow-water island</td>
<td>Continental Shelf Research</td>
<td>27</td>
<td>2329-2345</td>
</tr>
<tr>
<td>26.</td>
<td>WHITE L. and E. WOLANSKI</td>
<td>Flow separation and vertical motions in a tidal flow interacting with a shallow-water island</td>
<td>Estuarine, Coastal and Shelf Science</td>
<td>77</td>
<td>457-466</td>
</tr>
<tr>
<td>27.</td>
<td>WHITE L., E. DELEERSNIJDER and V. LEGAT</td>
<td>A three-dimensional unstructured mesh finite element shallow-water model, with application to the flows around an island and in a wind-driven, elongated basin</td>
<td>Ocean Modelling</td>
<td>22</td>
<td>26-47</td>
</tr>
<tr>
<td>29.</td>
<td>LIETAER O., T. FICHEFET and V. LEGAT</td>
<td>The effects of resolving the Canadian Arctic Archipelago in a finite element sea ice model</td>
<td>Ocean Modelling</td>
<td>24</td>
<td>140-152</td>
</tr>
<tr>
<td>30.</td>
<td>BLAISE S. and E. DELEERSNIJDER</td>
<td>Improving the parameterisation of horizontal density gradient in one-dimensional water column models for estuarine circulation</td>
<td>Ocean Science</td>
<td>4</td>
<td>239-246</td>
</tr>
<tr>
<td>31.</td>
<td>DELEERSNIJDER E. and P.F.J. LERMUSIAUX (Editors)</td>
<td>Multi-Scale Modeling: Nested-Gri and Unstructured-Mesh Approaches</td>
<td>Ocean Dynamics (special issue)</td>
<td>58</td>
<td>335-498</td>
</tr>
<tr>
<td>32.</td>
<td>LAMBRCHTS J., R. COMBLEN, V. LEGAT, C. GEUZAIN and J.-F. REMACLE</td>
<td>Multiscale mesh generation on the sphere</td>
<td>Ocean Dynamics</td>
<td>58</td>
<td>461-473</td>
</tr>
<tr>
<td>34.</td>
<td>VANCOPPENOLLE M., T. FICHEFET and H. GOOSSE</td>
<td>Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 2. Importance of sea ice salinity variations</td>
<td>Ocean Modelling</td>
<td>27</td>
<td>54-69</td>
</tr>
<tr>
<td>35.</td>
<td>BOUILLON S., M.A. MORALES MAQUEDA, V. LEGAT and T. FICHEFET</td>
<td>An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids</td>
<td>Ocean Modelling</td>
<td>27</td>
<td>174-184</td>
</tr>
</tbody>
</table>

61. SASSI M.G., A.J.F. HOITINK, B. DE BRYE and E. DELEERSNIJDER, 2011, Towards an extension of the hydraulic geometry concept to include tidally influenced delta channel networks, *River, Coastal and Estuarine Morphodynamics* (RCEMS2011, Beijing, China, 6-8 September 2011), Tsinghua University Press, pp. 483-492

68. ANDUTTA F.P., M.J. KINGSFORD and E. WOLANSKI, 2012, ‘Sticky water’ enables the retention of larvae in a reef mosaic, Estuarine, Coastal and Shelf Science, 101, 54-63
69. KARNA T., V. LEGAT and E. DELEERSNIJDER, 2013, A baroclinic discontinuous Galerkin finite element model for coastal flows, Ocean Modelling, 61, 1-20
73. WOLANSKI E., J. LAMBRECHTS, C. THOMAS and E. DELEERSNIJDER, 2013, The net water circulation through Torres strait, Continental Shelf Research, 64, 66-74
86. THOMAS C.J., T.C.L. BRIDGE, J. FIGUEIREDO, E. DELEERSNIJDER and E. HANERT, 2015, Connectivity between submerged and near-sea-surface coral reefs: can submerged reef populations act as refuges? Diversity and Distributions, 21, 1254-1266
87. DELANDMETER P., S.E. LEWIS, J. LAMBRECHTS, E. DELEERSNIJDER, V. LEGAT and E. WOLANSKI, 2015, The transport and fate of riverine sediment exported to a semi-open system, Estuarine, Coastal and Shelf Science, 167, 336-346
89. CRITCHELL K. and J. LAMBRECHTS, 2016, Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes?, Estuarine, Coastal and Shelf Science, 171, 111-122
96. GRECH A., J. WOLTER, R. COLES, L. McKENZIE, M. RASHEED, C. THOMAS, M. WAYCOTT and E. HANERT, 2016, Spatial patterns of seagrass dispersal and settlement, Diversity and Distributions, 22, 1150-1162
99. LI Y., F. MARTIN and E. WOLANSKI, Sensitivity analysis of the physical dynamics of the Fly River plume in Torres Strait, *Estuarine, Coastal and Shelf Science*, 194, 84-91

