FSAC 1430 Physique T4 : électricité et magnétisme
Semaine 5 : Magnétostatique (première partie)
APE (apprentissage par exercices)
Chaque étudiant doit préparer, en groupe ou seul, une solution pour les exercices 2, 3, 5 et 8 de la liste ci-dessous. Lors de la séance de tutorat du vendredi, chacun doit pouvoir présenter cette solution et pouvoir répondre aux questions posées par le tuteur en utilisant uniquement cette solution et son document de synthèse personnel (10 pages maximum à ce stade).
1. Young & Freedman, ed. 10, p. 894, ex. 28-8 (or ed. 11, p. 1055, ex. 27.10)
The magnetic flux through one face of a cube is +0.120 Wb.
|
Figure S05-60 |
2. Young & Freedman, ed. 10, p. 895, ex. 28-11 (or ed. 11, p. 1055, ex. 27.13)
A physic student claims that she has arranged magnets so that the magnetic field within the shaded volume in the figure S05-61 is B = (b - gy2 ) j , where b = 0.300 T and g = 2.00 T/m2 .
|
Figure S05-61 |
3. Young & Freedman, ed. 10, p. 897, ex. 28-37 (or ed. 11, p. 1058, ex. 27.51) +...
The figure S05-62 shows a portion of a silver ribbon with z1 = 11.8 mm and y1 = 0.23 mm, carrying a current of 120 A in the +x-direction. The ribbon lies in a uniform magnetic field, in the y-direction, with magnitude 0.95 T. Apply the simplified model of the Hall effect presented in Section 28-10 (ed. 10) or in Section 17.9 (ed.11). If there are 5.85 x 1028 free electrons per cubic meter, find
|
Figure S05-62 |
4. Young & Freedman, ed. 10, p. 897, ex. 28-41 (or ed. 11, p. 1056, ex. 27.30)
A particle with initial velocity vo = (5.85 x 103 m/s) j enters a region of uniform electric and magnetic fields. The magnetic field in the region is B = - (1.35 T) k . Calculate the magnitude and direction of the electric field in the region if the particle is to pass through undeflected, for a particle of charge
You can ignore the weight of the particle.
5. Young & Freedman, ed. 10, p. 897, ex. 28-43 (or ed. 11, p. 1059, ex. 27.57)
The magnetic poles of a small cyclotron produce a magnetic field with magnitude 0.85 T. The poles have a radius of 0.40 m, which is the maximum radius of the orbits of the accelerated particles.
6. Young & Freedman, ed. 10, p. 898, ex. 28-52 (or ed. 11, p. 1059, ex. 27.66)
A conducting bar with mass m and length L slides over horizontal rails that are connected to a voltage source. The voltage source maintains a constant current I in the rails and bar, and a constant, uniform, vertical magnetic field B fills the region between the rails (see Fig. S05-63).
|
Figure S05-63 |
7. Young & Freedman, ed. 10, p. 900, ex. 28-63 (or ed. 11, p. 1061, ex. 27.81)
It was shown in Section 28-8 (ed. 10) or in Section 27.7 (ed. 11) that the net force on a current loop in a uniform magnetic field is zero. But what if B is not uniform? Figure S05-64 shows a square loop of wire that lies in the xy-plane. The loop has corners at (0, 0), (0, L), (L, 0), (L, L) and carries a constant current I in the clockwise direction. The magnetic field has no x-component but has both y- and z-components; B = (Bo z/L) j + (Bo y/L) k, where Bo is a positive constant.
|
Figure S05-64 |
8. Une bobine carrée de 5 cm de côté, comportant 15 spires, est
disposée verticalement. Elle est parcourue par un courant de 2.7 A . Cette bobine
se trouve dans une région où règne un champ magnétique
horizontal de 0.56 T .
Retour au menu de la semaine 5
Dernière mise à jour le 14-10-2004