
Improving weight clipping in Wasserstein GANs
Estelle Massart

ICTEAM, Université catholique de Louvain,
Avenue Georges Lemaitre, 4/L4.05.01

1348 Louvain-la-Neuve, Belgium
Email: estelle.massart@uclouvain.be

Abstract—Weight clipping is a well-known strategy to keep
the Lipschitz constant of the critic under control, in Wasserstein
GAN training. After each training iteration, all parameters of the
critic are clipped to a given box, impacting the progress made
by the optimizer. In this work, we propose a new strategy for
weight clipping in Wasserstein GANs. Instead of directly clipping
the parameters, we first obtain an equivalent model that is closer
to the clipping box, and only then clip the parameters. Our
motivation is to decrease the impact of the clipping strategy
on the objective, at each iteration. This equivalent model is
obtained by following invariant curves in the critic loss landscape,
whose existence is a consequence of the positive homogeneity of
common activations: rescaling the input and output signals to
each activation by inverse factors preserves the loss. We provide
preliminary experiments showing that the proposed strategy
speeds up training on Wasserstein GANs with simple feed-
forward architectures.

I. INTRODUCTION

Generative adversarial networks (GANs) have achieved im-
pressive performance in a wide range of applications includ-
ing realistic image generation [1], video [2], music [3] and
text generation [4]. These models, initially proposed in [5],
aim to generate points distributed according to an unknown
target data distribution Pr supported on some unknown low-
dimensional data manifold in RN , which makes alternative
approaches such as variational sampling out of reach. GANs
rely on a game between two players, the discriminator and
the generator, that compete for conflicting objectives. The
generator aims to mimic Pr by producing realistic samples,
while the discriminator learns to distinguish the synthetic
points returned by the generator from true data points sampled
from Pr, thereby enforcing the generator to better imitate the
target data distribution.

In practice, the generator is often chosen as a neural network
G : Rn → RN that takes as input some low-dimensional noise
vector with distribution Pz (e.g., Pz is a uniform or standard
Gaussian distribution in Rn, with n ≪ N) and outputs points
in RN that should be approximately distributed along the target
data distribution Pr. The discriminator is a neural network
D : RN → [0, 1] that takes as input some x and outputs a
scalar specifying whether x is likely to be produced by the
generator (D(x) should be zero), or a real data point (D(x)
should be one). Mathematically, training a GAN amounts to
solving the following minimax problem:

min
G

max
D

Ex∼Pr
[log(D(x))]+Ez∼Pz

[log(1−D(G(z)))]. (1)

When the discriminator is trained to optimality previous to
each update of the generator parameters, Goodfellow et al
showed that solving (1) minimizes the Jensen-Shannon diver-
gence between Pr and Pg , where Pg is the distribution of G(z)
with z ∼ Pz [5]. They suggest to use alternating stochastic
gradient descent/ascent to train both models simultaneously,
updating alternately the discriminator and the generator. This
training strategy is subject to instabilities and convergence
issues, such as vanishing gradients and mode collapse, an
undesirable phenomenon in which the generator distribution
Pg collapses to a few modes of the target distribution Pr.

In breakthrough papers, Arjovsky et al provide theoretical
explanations of convergence issues affecting GAN training
algorithms, and propose a variant thereof, Wasserstein GANs
(WGANs) [6], [7]. The training objective is modified to
cope with discontinuities of the Jensen-Shannon divergence
of classical GANs with respect to the parameters of the
generator; the Jensen-Shannon divergence is replaced by the
1-Wasserstein distance, that is continuous everywhere and
differentiable almost everywhere under weak assumptions on
the generator and noise distribution. Since the resulting ob-
jective is untractable in its original form, Arjovsky et al rely
on Kantorovich-Rubinstein duality to rewrite it in a simpler
way, at the cost of imposing a Lipschitz constraint on the
discriminator. To emphasize the fact that the discriminator’s
output does not necessarily lie in the interval [0, 1], unlike in
the classical GAN framework, the discriminator is referred to
as a critic. Training WGANs amounts to compute an optimal
critic f : RN → R and generator G : Rn → RN for the
problem

min
G

max
L(f)=1

Ex∼Pr
[f(x)]− Ez∼Pz

[f(G(z))], (2)

where L(f) is the Lipschitz constant of f . Arjovsky et al show
empirically that WGANs are more robust to mode collapse and
less subject to training instabilities than classical GANs [7].

In practice, the critic and generator are again neural net-
works. The natural question is then: “How can we ensure
that the function represented by a neural network has a given
Lipschitz constant?” Several possibilities have been proposed
in the literature. In [7], Arjovsky et al clip the weights of
the model to a compact set (typically, some interval [−l, l],
with l > 0 sufficiently small). Other works have considered
spectral norm regularization [8] and orthogonality of the model
parameters [9] to keep the Lipschitz constant of the network

under control. Guljarani et al rely on optimal transport theory
results characterizing the norm of the gradient of the optimal
critic ∇f∗(x), minimizing (2) for a fixed generator G and
latent space distribution Pz; their proposed algorithm adds a
regularizer to (2) that promotes the norm of ∇f∗(x) to be
close to one [10]. Although their approach achieves impressive
empirical results, it lacks theoretical support as it does not fully
comply with optimal transport theory [11], [12]. Furthermore,
Muller et al show experimentally that this strategy might be
less robust to mode collapse, the undesirable situation in which
some modes of the target distribution are over-represented by
the generative model [9] . Let us finally mention the work of
Mallasto et al, that proposes to bypass Lipschitz constraints
by resorting to c-transformations; their numerical results do
not show any improvement compared to existing approaches
[13].

Beyond generative models, training a deep network under
Lipschitz constraints is common in adversarial learning, as
models with a small Lipschitz constant are more robust to
adversarial attacks [14]. In that setting, Bungert et al propose
using a regularizer that estimates the Lipschitz constant at
each iteration [15]; this is strongly related to the one-sided
regularizer considered in the appendix of the above-mentioned
work of Guljarani et al [10]. Beyond not fully ensuring the
Lipschitz property (replacing constraints by a regularizer),
estimating the Lipschitz constant comes with additional costs.

Understanding WGANs, and developing efficient WGAN
training algorithms, is now a very active area of research
[16], [17]. In this work, we focus on the original WGAN
approach, where the Lipschitz constraint is ensured through
weight clipping. We propose a new clipping strategy that relies
on the existence of invariances in the critic loss landscape.

Invariant curves resulting from positive homogeneity of acti-
vations have already been exploited in the framework of DNN
training [18]–[21] and DNN quantization [22]. Neyshabur et al
proposed Path-SGD, a training algorithm leading to a rescaling
invariant optimization, coming with additional computational
costs that are substantial in the small-batch (or no batch)
setting [18]. Almost simultaneously, Badrinarayanan et al
recasted training in parameter spaces with symmetries into
optimization problems on Riemannian manifolds [19]. More
recently, Meng et al improved on Path-SGD by proposing an
alternative training method: they represent the set of paths in
the network as a low-dimensional linear subspace (subspace
generated by linear combination of a set of basis paths), and
train the model directly in the subspace [20]. Finally, we
mention the work [21], which also contains a training strategy
rescaling the input/output weight vectors of neurons, though
aiming to balance activations instead of individual weights in
our case. To our knowledge, our approach is the first that
addresses generative models and constrained training.

Finally, let us mention that the development of new GAN
variants is a very timely research topic; we refer the reader
to [23] and references therein for an overview of recent GAN
architectures.

Contributions: We propose a new clipping strategy that

relies on the existence of invariant curves in the critic loss
landscape, a consequence of the positive homogeneity of
common activations, including ReLU and variants thereof [24].
We then provide experiments on the MNIST dataset, indicating
that the proposed strategy leads to a faster training of WGANs
with feed-forward architectures.

II. AN IMPROVED WEIGHT CLIPPING ALGORITHM FOR
WASSERSTEIN GANS

Let us consider a two-layer1 critic f : RN → R:

f(x;W1,W2) = σ(W2ϕ(W1x)), (3)

with weight matrices W1 ∈ Rd×N , W2 ∈ R1×d, d the number
of hidden units, ϕ : R → R and σ : R → R nonlinearities2. For
simplicity, we write W := (W1,W2) ∈ E := Rd×N × R1×d,
and fW (x) := f(x;W1,W2). We assume that the nonlinearity
ϕ satisfies the following assumption (satisfied by, e.g., ReLU-
type activations [24]).

Assumption II.1. The activation function ϕ has the positive
homogeneity property, namely, for all v ∈ R and for all α ≥ 0,
there holds ϕ(αv) = αϕ(v).

Given real data {xi}mi=1, xi ∈ RN , latent variable samples
{zi}mi=1, with zi ∈ Rn, and a generator G : Rn → RN ,
Arjovsky et al [7] updates the critic parameter W according
to the constrained minimization problem

min
W∈B

L(W), (P)

with loss L(W) := 1
m

∑m
i=1 (fW (G(zi))− fW (xi)) and

domain

B = {W = (W1,W2) : ∥W1∥∞ ≤ l, ∥W2∥∞ ≤ l}, (4)

for some l > 0, with matrix norm

∥A∥∞ := max
i=1,...,d1
j=1,...,d2

|A(i, j)|, ∀A ∈ Rd1×d2 .

Problem (P) is typically addressed using projected stochastic
gradient descent (P-SGD): iteration k, for k = 1, 2, . . . , is
made of the two following steps:{

W k+1
unc = W k − αk∇Lk(W k),

W k+1 = πB(W
k+1
unc),

(P-SGD)

where Lk is the mini-batch approximation of the loss at
iteration k, and where πB(W) is the Euclidean projection of
W on B. Recalling that W = (W1,W2), we consider the
norm:

∥W∥ =

√∑
i,j

W1(i, j)2 +
∑
i,j

W2(i, j)2.

The Euclidean projector πB(W) is given by

πB(W) = ([W1]
l
−l, [W2]

l
−l), (5)

1We first focus on a 2-layer critic for the clarity of the presentation, see
Section III for a generalization to L layers.

2As usual, we write with a slight abuse of notation, for a vector v =
(v1, . . . , vd) ∈ Rd, ϕ(v) = (ϕ(v1), . . . , ϕ(vd)) ∈ Rd.

where [A]l−l is obtained from the matrix A by truncating its
entries to the interval [−l, l].

When the critic or generator is non-smooth, P-SGD is
replaced by its subgradient counterpart. Projection-based ex-
tensions of SGD variants, such as RMSProp and Adam, are
also often used in practice.

Let D+ ⊂ Rd×d be the set of diagonal matrices with strictly
positive diagonal elements. For any D ∈ D+, we define the
mapping:

γD : E → E : (W1,W2) 7→ (D−1W1,W2D). (6)

Note that, by Assumption II.1, for all W = (W1,W2) ∈
E and for all D ∈ D+, fγD(W)(x) = fW (x) so that
L(γD(W)) = L(W). We exploit these invariant curves to
speed up and stabilize training. Instead of projecting, at each
iteration, the unfeasible iterate onto B, we project on B the
closest equivalent model, according to the invariance described
above. At iteration k, our proposed algorithm computes{

W k+1
unc = W k − αk∇Lk(W k),

W k+1 = πB(γD∗(W k+1
unc)),

(IP-SGD)

where D∗ is the optimal scaling matrix, minimizing the
distance to the box B:

D∗ = argminD∈D+
∥γD(W k+1

unc)− πB(γD(W k+1
unc))∥, (7)

where ∥ · ∥ is the above-defined norm. An iteration of our
proposed algorithm is illustrated on Figure 1 for the case N =
1 and d = 1, in which case W1,W2 ∈ R and D+ is the set of
strictly positive real numbers.

Remark II.2. In the example illustrated on Figure 1, the
set of equivalent models {γD(W k+1

unc) : D ∈ D+} (i.e.,
the grey curve containing W k+1

unc) has a non-empty intersec-
tion with the feasible domain B, so that ∥γD∗(W k+1

unc) −
πB(γD∗(W k+1

unc))∥ = 0. This means that the projection of
the equivalent model γD∗(W k+1

unc) on the domain B does
not modify the objective: in this specific case, constraints
can be imposed “for free” (at least, for this iteration). In
general, one cannot expect this to be the case, and pro-
jecting on B the point γD∗(W k+1

unc) instead of W k+1
unc may

even worsen the objective. Indeed, while our choice of the
representative γD∗(W k+1

unc) ensures proximity to B, proximity
of L(γD∗(W k+1

unc)) to L(πB(γD∗(W k+1
unc))) depends on the

local variation of the objective. Our proposed methodology is
motivated by the geometry of the invariances with respect to
the feasible domain B. As illustrated on Figure 1, (at least) in
the 2-dimensional case, the loss has slower variations close
to the corners of the box B, i.e., in the part of the domain
where we expect most of our iterates γD∗(W k

unc) to lie and
our projections to happen.

Remark II.3. While D∗ defined in (7) is always unique (by
convexity of B), there may exist, depending on the value
of W , an infinite number of matrices D ∈ D+ such that
πB(γD(W)) = πB(γD∗(W)); see Figure 2. As any point on
the blue curve yields the same projection on B, hence the same

−4 −2 0 2 4
w1

−4

−2

0

2

4

w
2 •

B

W k+1
unc

•πB(W
k+1
unc)

•πB(γD∗(W k+1
unc)

Fig. 1: Illustration of our proposed clipping technique, for d =
1 and N = 1. Grey curves are equivalent models (i.e., curves
of constant loss). Instead of projecting the iterate W k+1

unc on B
directly, we first move along the invariant curve to get closer
to B, by computing an optimal rescaling matrix D∗, and then
project this new model on B. (In this specific example, the
projection is the identity map.)

next iterate, we do not necessarily need to solve (7) to a very
high accuracy.

W1

W
2

•
P •

W

B
Fig. 2: Existence of an infinite number of matrices D ∈ D+

such that πB(γD(W)) = P , in the case d = 1 and N = 1.
The range of values of D associated to the blue curve lead to
the same point after projection on the feasible set B.

A. Solving the projection problem

Let us now discuss the computation of the optimal rescaling
matrix D∗ defined in (7). Combining (5) and (6), the optimiza-

tion problem (7) may be written as follows:

min
D∈D+

∑
i,j

[D−1(i, i)|W1(i, j)|−l]2++
∑
i,j

[|W2(i, j)|D(j, j)−l]2+.

(8)
We estimate D∗ iteratively, as described in Algorithm 1. The

diagonal elements of the rescaling matrix D are progressively
increased/decreased to balance the norms of the constraints
associated with each row of W1 and column of W2.

Algorithm 1 Estimation of the rescaling matrix D∗

1: Let α > 1 some initial rescaling factor, D = αId, and
kmax > 0.

2: % Define initial rescaling factor for each unit, based on con-
straints violation of weights entering/leaving the unit.

3: for i = 1, . . . , d do
4: Compute nin(i) :=

∑
j [|W1(i, j)| − l]2+

5: Compute nout(i) :=
∑

j [|W2(j, i)| − l]2+
6: if nin(i) < nout(i) then
7: % we should increase the weights entering the ith unit;

by default we will decrease them by a factor D(i, i).
8: D(i, i) := 1/D(i, i)
9: end if

10: end for
11: % Rescale the weights entering/leaving each unit, until con-

straints violations becomes comparable.
12: for i = 1, . . . , d do
13: Let k = 0
14: while k ≤ kmax do
15: Compute nnew

in (i) :=
∑

j [D
−1(i, i)|W1(i, j)|−l]2+

16: Compute nnew
out (i) :=

∑
j [D(i, i)|W2(j, i)| − l]2+

17: if nin(i) > nout(i) and nnew
in (i) > nnew

out (i) then
18: D(i, i) = αD(i, i)
19: else if nout(i) > nin(i) and nnew

out (i) > nnew
in (i)

then
20: D(i, i) = D(i, i)/α
21: else
22: k = kmax

23: end if
24: k := k + 1
25: end while
26: end for

The whole training procedure is described in Algorithm 2;
note that, for generality, we have replaced the SGD step
in (IP-SGD) by an iteration of an arbitrary unconstrained
optimization solver; typically, SGD, Adam or RMSProp.

III. GENERALIZATION TO L LAYERS AND DCGANS

For critic networks made of more than two layers, Line 5
of Algorithm 2 is repeated to compute an optimal rescaling
matrix D for each layer. Similarly, our algorithm can be ex-
tended to linear layers with biases; simply apply the rescaling
operation to the biases entering and leaving each hidden unit.

We can also generalize our proposed algorithm to ar-
chitectures involving convolutional layers. Let us consider
two successive convolutional layers in the network archi-
tecture, with filters Win ∈ RC2×C1×kin×kin and Wout ∈

Algorithm 2 Improved weight clipping for WGANs

1: Let {αk} be a sequence of stepsizes. Set k = 0, and
initialize W 0 ∈ E .

2: while not converged do
3: % In the next line, we compute a (not necessarily feasible)

iterate, using any optimization algorithm (e.g., SGD, Adam,
RMSProp)

4: Let W k+1
unc := optim(W k;αk)

5: Compute D̂, an estimator of D∗ defined in (7), ac-
cording to Algorithm 1.

6: Let W k+1 = πB(γD̂(W k+1
unc))

7: k := k + 1
8: end while

RC3×C2×kout×kout , where C2 and C3 are the number of output
channels of Win and Wout, respectively, C1 and C2 their
numbers of input channels, and kin and kout their spatial
filter dimension. We assume that the two convolutional layers
are separated by a nonlinearity satisfying Assumption II.1,
but no batch normalization. Let us write Win[i, :, :, :] ∈
R1×C1×kin×kin the slice of the tensor Win corresponding to
the filters entering the ith hidden unit, and Wout[:, i, :, :] ∈
RC3×1×kout×kout the slice of Wout containing filters leaving
the ith hidden unit. Similarly as for feed-forward neural
networks, positive homogeneity of the activation ensures that
we can multiply Win[i, :, :, :] and divide Wout[:, i, :, :] by the
same factor without changing the model. We can thus naturally
apply Algorithm 1 and Algorithm 2 to convolutional layers,
by simply rescaling slices of convolutional tensors instead of
rows/columns of weight matrices.

IV. NUMERICAL RESULTS

We illustrate our algorithms on image generation trained
over the MNIST dataset [25]. We consider two types of
WGANs architectures a simple MLP-WGAN and a DCGAN
(with no batch normalization in the critic).

a) Experiment with MLP architectures: In this first ex-
periment, the critic and generator are both feed-forward neural
networks, with architecture given in Table I. The biases are
fixed to zero. The latent variables follow a 100-dimensional
standard Gaussian distribution, while the image space is
32×32 (we used 2-pixel padding). Note that the usual heuristic
that selects the same clipping value for each parameter [6] may
harm signal propagation through the layers; the same issue
has been noted for model initialization, where distributions
scaling with the number of input activations to a layer are
often preferred, as in the He initialization [26]. To ensure
signal propagation while keeping the Lipschitz constant under
control, we therefore choose different clipping values for each
weight matrix of the critic. Let us write dl the dimension of
the lth hidden unit (with d0 = N = 32× 32 and dL = 1 the
input and output dimensions of the network). By analogy with
the He initialization, the clipping value for Wl ∈ Rdl+1×dl

was selected around 1/
√
dl; we used for the critic architecture

described in Table I the clipping values 0.035, 0.045, 0.0625

for the weight matrices W1 ∈ R512×1024, W2 ∈ R256×512

and W3 ∈ R1×256. As suggested in the literature, we let the
optimizer update more regularly the critic than the generator,
to improve the correspondance between the generator loss
and the Wasserstein distance between the real and generated
distributions. During the 100 first epochs, the generator was
updated once per 100 critic updates. For the rest of the epochs,
it was updated once every 5 critic updates.

We trained the WGAN model, either using traditional
weight clipping for the critic, or using Algorithm 2, in both
cases using the RMSProp optimization algorithm with learning
rate 2 · 10−4, all other parameters being chosen as default. In
Algorithm 1, we use α = 1.1 and kmax = 5. We run the
experiment with a batch-size of 128 on a workstation con-
figured with Intel(R) Xeon(R) Silver 4108 CPU and GeForce
RTX 2080 Ti graphical card, for 2000 epochs, and recorded
both the generator loss, the generated pictures, and the running
time at each epoch.

TABLE I: Architectures for the critic and generator.

Critic Generator

Linear(32× 32, 512) Linear (latent dim., 128)
Leaky ReLU (param. 0.2) ReLU
Linear(512, 256) Linear (128, 256)
Leaky ReLU (param. 0.2) Batchnorm (param. 0.8)
Linear(256, 1) ReLU

Linear (256, 512)
Batchnorm (param. 0.8)
ReLU
Linear (512, 1024)
Batchnorm (param. 0.8)
ReLU
Linear (1024, 28× 28)
Tanh

Figure 3 illustrates the images generated by the model at
comparable training times, for Algorithm 2 (top image) and
for projected RMSProp (bottom image), where the invariances
of the model are not used. When using our algorithm, the
model is already providing recognizable digits, while the digits
generated by the standard approach are still way too blurry to
be recognized. As the cost per iteration of Algorithm 2 is
slightly higher than the baseline approach, we compare the
pictures at different epochs corresponding to similar training
times on our workstation (respectively, 4550 sec. for our
proposed method and 4603 sec for the baseline).

b) Experiment using a DCGAN architecture: We apply
here our proposed algorithm to WGAN training using convo-
lutional neural networks as critic and generator. We rely on
a DCGAN architecture [27], discarding batch normalization
layers in the critic. The architecture is given in Table II.
Similarly as in our previous experiment, the entries of a
convolutional filter tensor W ∈ RCout×Cin×k×k follow a
uniform distribution supported on an interval [−l, l], with l
proportional to 1/

√
Cin × k2 (similar to the He initializa-

tion [26]). We select the following values for l, in each
layer: l = 0.05, 0.008, 0.006, 0.004. Accordingly, the clip-
ping values of the convolutional weight filters were set to

Fig. 3: Comparison of images generated by the model (for
feed-forward architectures) when learned using Algorithm 2
(top) compared to default training, in which the iterates of
RMSProp are projected on B without any use of model invari-
ances (bottom); epochs number 210 (top) and 230 (bottom),
corresponding to similar training time on our workstation:
4550 sec. (top) vs 4603 sec. (bottom)

l = 0.05, 0.008, 0.006, 0.004. The latent variables follow a
100-dimensional standard Gaussian distribution. The critic
and generator are trained using RMSProp with learning rate
2·10−4, and all other parameters set as default. In Algorithm 1,
we use α = 1.1 and kmax = 5. Similarly as for our MLP
experiment, we update the critic more often that the generator:
for the 100 first epochs we update the critic 100 times per
generator update, starting from epoch 101 the critic is updated
5 times per generator update.

TABLE II: Architecture of our DCGAN.

Critic Generator

Conv2d(1, 64, 4, 2, 1) ConvTranspose2d(100, 512, 4, 1, 0)
Leaky ReLU (param. 0.2) BatchNorm2d(512)
Conv2d(64, 128, 4, 2, 1) ReLU
Leaky ReLU (param. 0.2) ConvTranspose2d(512, 256, 4, 2, 1)
Conv2d(128, 256, 4, 2, 1) BatchNorm2d(256)
Leaky ReLU (param. 0.2) ReLU
Conv2d(256, 1, 4, 1, 0) ConvTranspose2d(256, 128, 4, 2, 1)

BatchNorm2d(128)
ReLU
ConvTranspose2d(128, 64, 4, 2, 1)
Tanh

We illustrate in Figure 4 the images generated by the
discriminator at the same epoch, when the critic is trained
using Algorithm 2, or using the standard approach, projecting
iterates on B at each iteration without using invariances of
the loss. Though, per epoch, our proposed algorithm yields
more accurate results than the baseline, this comes with higher
training costs. We argue that our proposed methodology is
also promising for GANs with convolutional layers (faster
training per epoch), but is balanced by a larger training
time. To alleviate the training cost, one may, for example,
explore intermediate approaches projecting the iterates (either
using Algorithm 2 or standard orthogonal projection) every k
iterations (with k > 1), allowing for unfeasible iterates in-
between.

V. CONCLUSIONS

We have proposed a new weight clipping strategy that
exploits invariant curves in the critic loss landscape, whose
existence is a consequence of the positive homogeneity of
common activations. In the case of a feed-forward critic and
generator, we have illustrated numerically that our proposed
method outperforms the standard approach (where the iterate
is simply projected on the feasible domain at each iteration):
for a similar training time, images generated by the model
trained with our proposed clipping strategy are substantially
more accurate that those generated by the baseline. Finally, we
have also extended our proposed framework to convolutional
layer architectures. Future research will address extensions of
our proposed clipping strategy to batch normalization layers.

ACKNOWLEDGMENT

Most of this work was done when the author was with the
University of Oxford and the National Physical Laboratory
(Teddington, UK); the author was then funded by the National
Physical Laboratory. The author is now funded by the FNRS,
Belgium.

REFERENCES

[1] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks.” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019.

Fig. 4: Comparison of images generated using a DCGAN-
type architecture (no batch normalization in the critic) when
learned using Algorithm 2 (top) compared to default training,
in which the iterates of RMSProp are projected on B without
any use of model invariances (bottom); epoch number 102,
training times: 4876 sec. (top) vs 4272 sec. (bottom)

[2] D. Acharya, Z. Huang, D. Paudel, and L. V. Gool, “Towards high reso-
lution video generation with progressive growing of sliced Wasserstein
GANs,” Master Thesis, ETH Zürich, available at: arXiv.1810.02419,
2018.

[3] O. Mogren, “C-RNN-GAN: Continuous recurrent neural networks with
adversarial training,” in Constructive Machine Learning Workshop,
30th Conference on Neural Information Processing Systems (NeurIPS),
Barcelona, Spain, 2016.

[4] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence generative
adversarial nets with policy gradient,” in 31st AAAI Conference on
Artificial Intelligence, San Francisco, CA, USA, 2017.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in

28th Conference on Neural Information Processing Systems (NeurIPS),
Montréal, Canada, 2014.

[6] M. Arjovsky and L. Bottou, “Towards principled methods for training
generative adversarial networks,” in 5th International Conference on
Learning Representations (ICLR), Toulon, France, 2017.

[7] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in 34th International Conference on Machine Learning
(ICML), Sidney, Australia, 2017.

[8] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normal-
ization for generative adversarial networks,” in 6th International Con-
ference on Learning Representations (ICLR), Vancouver, BC, Canada,
2018.

[9] J. Müller, R. Klein, and M. Weinmann, “Orthogonal Wasserstein GANs,”
arxiv: 1911.13060, 2019.

[10] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of Wasserstein GANs,” in 31st Conference on Neural
Information Processing Systems (Neurips), Long Beach, CA, USA,
2017.

[11] M. Gemici, Z. Akata, and M. Welling, “Primal-Dual Wasserstein GAN,”
arxiv preprint: 1805.09575, 2018.

[12] H. Petzka, A. Fischer, and D. Lukovnikov, “On the regularization
of Wasserstein GANs,” in 6th International Conference on Learning
Representations (ICLR), Vancouver, BC, Canada, 2018.

[13] A. Mallasto, G. Montúfar, and A. Gerolin, “How well do WGANs
estimate the Wasserstein metric?” arxiv preprint: 1910.03875, 2019.

[14] Y. Tsuzuku, I. Sato, and M. Sugiyama, “Lipschitz-margin training: Scal-
able certification of perturbation invariance for deep neural network,” in
32nd Conference on Neural Information Processing Systems (NeurIPS),
Montréal, Canada, 2018.

[15] L. Bungert, R. Raab, T. Roith, L. Schwinn, and D. Tenbrinck, “CLIP:
Cheap lipschitz training of neural networks,” in Lecture Notes in Com-
puter Science, ser. Scale Space and Variational Methods in Computer
Vision (SSVM). Springer International Publishing, 2021, pp. 307–319.

[16] G. Biau, M. Sangnier, and U. Tanielian, “Some Theoretical Insights into
Wasserstein GANs,” Journal of Machine Learning Research, vol. 22, pp.
1–45, 2021.

[17] J. Stanczuk, C. Etmann, L. M. Kreusser, and C.-B. Schonlieb, “Wasser-
stein GANs Work Because They Fail (to Approximate the Wasserstein
Distance),” arxiv preprint: 2103.01678, 2021.

[18] B. Neyshabur, R. R. Salakhutdinov, and N. Srebro, “Path-SGD: Path-
Normalized Optimization in Deep Neural Networks,” in 29th Confer-
ence on Neural Information Processing Systems (NeurIPS), Montréal,
Canada, 2015.

[19] V. Badrinarayanan, B. Mishra, and R. Cipolla, “Symmetry-invariant
optimization in deep networks,” arxiv preprint: 1511.01754, 2015.

[20] Q. Meng, S. Zheng, H. Zhang, W. Chen, Q. Ye, Z.-M. Ma, N. Yu, and
T.-Y. Liu, “G-SGD: optimizing ReLU neural networks in its positive
scale-invariant space,” in 7th International Conference on Learning
Representations (ICLR), New Orleans, LA, USA, 2019.

[21] Q. Yuan and N. Xiao, “Scaling-based weight normalization for deep
neural networks,” IEEE Access, vol. 7, pp. 7286–7295, 2019.

[22] M. Nagel, M. van Baalen, T. Blankevoort, and M. Welling, “Data-
free quantization through weight equalization and bias correction,” in
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul,
Korea, 2019.

[23] H. D. Meulemeester, J. Schreurs, M. Fanuel, B. D. Moor, and J. A. K.
Suykens, “The Bures metric for generative adversarial networks,” in
Machine Learning and Knowledge Discovery in Databases. Research
Track. Springer International Publishing, 2021, pp. 52–66.

[24] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in 27th International Conference on Machine
Learning (ICML), Haifa, Israël, 2010.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, vol. 86,
no. 11, 1998, pp. 2278–2324.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
IEEE International Conference on Computer Vision (ICCV), Santiago,
Chile, 2015.

[27] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
4th International Conference on Learning Representations (ICLR), San
Juan, Puerto Rico, 2016.

