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Abstract—Orthogonal regularizers typically promote column
orthonormality of some matrix W ∈ Rn×p, by measuring
the discrepancy between W⊤W and the identity according to
some matrix norm. This paper explores the behavior of these
regularizers when W is horizontal (n < p), so that column
orthonormality cannot be achieved. Our motivation comes from
orthogonal regularization of feed-forward neural networks: it is
there desired to regularize all (vertical and horizontal) weight
matrices of the model.

One possible solution to address this issue is to transpose hori-
zontal matrices before regularization. We prove that transposition
is useless for the Frobenius norm (squared), as the corresponding
regularizer promotes simultaneously orthonormality of the rows
and of the columns of W. On the other hand, we highlight impor-
tant qualitative differences with newer regularizers, including the
MC and SRIP orthogonal regularizers. We conclude the paper
with some numerical results supporting our theoretical findings.

I. INTRODUCTION

Recent years have seen several works integrating orthogonal
regularizers/constraints in deep neural networks. For example,
orthogonal regularization of weight matrices or convolutional
filters has been proposed to reduce correlation between neu-
rons of the same layer in deep neural network training, thereby
diminishing model overfitting [1]. Orthogonality was also
shown to improve signal propagation in deep neural networks
(DNNs): the authors of [2] show that initializing the weight
matrices at random following a uniform distribution on the
orthogonal group (apart from a common factor scaling the
norm of all columns of the matrix) leads for some activation
functions to dynamical isometry, a regime where the spectrum
of the input-output Jacobian of the network at initialization
concentrates around the unity. This type of weight initialization
was further proven in [3] to result in a faster training for
deep linear neural networks, compared to standard Gaussian
initialization. Regarding model generalization, the authors of
[4] derived a bound on the generalization error, using the
machinery of algorithmic robustness for feed-forward ReLU
neural networks, and showed that their bound is minimized
if the weight matrices are orthogonal. Finally, let us mention
that orthogonality constraints have also been used in recurrent
neural network training [5], Wasserstein generative adversarial
network training [6], unsupervised extraction of disantangled
features [7], and interpretable learning [8].

These applications motivated the development of efficient
algorithms to train deep learning models under orthogonality
constraints, see, e.g., [9] and references therein. This paper
addresses the alternative question of orthogonal regularization.
Indeed, in some cases, imposing orthogonality constraints
is thought to reduce model expressivity and harm model
accuracy, so that orthogonal regularization is preferred [4].

A. Mathematical formulation

Let us consider a feed-forward neural network f : Rd0 →
RdL , defined as

f(x) = ϕ(WLσ(WL−1 . . . σ(W1x+b1) · · ·+bL−1)+bL),
(1)

where W1, . . . ,WL are weight matrices, with Wl ∈
Rdl×dl−1 , b1, . . . ,bL, with bl ∈ Rdl , bias vectors, and σ and
ϕ are nonlinear functions (e.g., ReLU and softmax, respec-
tively). Given a set of training data T = {(xi,yi)}i=1,...,N ,
the parameters of the model are typically learned by solving
the regularized optimization problem

min
Wl,bl,
l=1,...,L

N∑
i=1

L(yi, f(xi)) + λ

L∑
j=1

Rj(Wj),

where L : RdL × RdL → R≥0 is a loss function, Rj :
Rdj×dj−1 → R≥0 a regularizer, and λ > 0 a weight balancing
the loss and the regularizer in the final objective. For example,
one may choose Rj(Wj) = ∥W⊤

j Wj − Idj−1
∥F for all j,

where Id is the d× d identity matrix. Often, when we are not
considering one layer in particular, we drop the layer indices
and simply write R(W) for the regularizer applied to some
matrix W, with W ∈ Rn×p (so n and p are standard variables
referring to the number of rows and columns of the matrix,
respectively). In this work, matrices are displayed in capital
bold letters and vectors in lowercase bold letters.

B. Orthogonal regularizers proposed in the literature

Table I presents the most common orthogonal regularizers
used in the literature (note that we added a factor 1/2 in the
definition of the DSO regularizer for comparison purposes).
These regularizers typically impose the product W⊤W to be
close to the identity, and differ in the norm chosen. We use
the following notation: for A ∈ Rp×p, ∥A∥2 is the spectral
norm, ∥A∥1 =

∑
i,j |aij | the (entrywise) l1 norm, ∥A∥F =



(∑
i,j a

2
ij

)1/2

the Frobenius norm and ∥A∥∞ := maxi,j |aij |
the entrywise ∞-norm (we stress that it differs in general from
both the induced and Schatten ∞-norms).

As indicated in Table I, most orthogonal regularizers pro-
mote column orthogonality, by measuring some norm of the
matrix W⊤W− Ip. If the neural network contains horizontal
weight matrices (n < p), column orthogonality cannot be
achieved. Alternatives have been proposed: promoting orthog-
onality of the rows instead of the columns (see, for example,
the DSO regularizer in Table I), or splitting the set of columns
into smaller subsets, and promoting orthogonality of each
subset of columns separately [10].

TABLE I: Main orthogonal regularizers proposed so far, for
W ∈ Rn×p.

NAME DESCRIPTION

Orthl1 [8] ROrth
l1
(W) = ∥W⊤W − Ip∥21

SO [11] RSO(W) = ∥W⊤W − Ip∥2F
DSO [11] RDSO(W) = 1

2
(∥W⊤W − Ip∥2F + ∥WW⊤ −

In∥2F)
MC [11] RMC(W) = ∥W⊤W − Ip∥∞
SRIP [11] RSRIP(W) = ∥W⊤W − Ip∥2

The Orthl1 and SO (Soft Orthogonality) regularizers are
simply obtained by using the entrywise l1 and l2 norms to
measure column non-orthonormality. The DSO (Double Soft
Orthogonality) was proposed to account for the case of hori-
zontal matrices: it penalizes explicitly both non-orthonormality
of the rows and columns of the matrix. The MC regularizer
was originally motivated by the notion of mutual coherence
of W ∈ Rn×p, defined as

µW = max
i̸=j

|w⊤
i wj |

∥wi∥ · ∥wj∥
,

where wi ∈ Rn is the ith column of W and ∥ · ∥ is the
l2 norm. The SRIP (Spectral Restricted Isometry Property)
regularizer was also proposed in [11], building on the well-
known restricted isometry property widely used in compressed
sensing; it is there also suggested to approximate the spectral
norm with a few iterations of the power method. The authors
of [11] highlight that the DSO, MC and SRIP regularizers
are well-defined both in the case n ≤ p and n > p.

This paper mostly addresses orthogonal regularizers for
feed-forward neural networks, though our findings apply
equally to convolutional neural networks where orthogonal
regularizers are applied to matrix-reshaped versions of the
convolutional filters, as suggested in [11]. Note that there exist
other ways to promote orthogonality of convolutional filter
tensors, that we do not consider in this work, see, e.g., [12],
[13] and references therein.

C. Contributions

We compare mathematically the different orthogonal regu-
larizers in Table I, by characterizing their optimal solutions.
Obviously, the Orthl1 , SO, MC and SRIP regularizers are

optimal if and only if W⊤W = Ip, so that the columns of
W are orthonormal. In the case n < p, it is not possible to
impose orthonormality of the columns of W, and we show
that in this case the regularizers in Table I exhibit substantial
differences. More precisely, we prove that:

• The SO and DSO regularizers are mathematically equiv-
alent: when using the Frobenius norm (squared), penal-
izing non-orthonormality of the rows or of the columns
yields the same gradient flow. The SO regularizer can
thus be used both for n ≥ p and n < p, without having
to transpose the matrix in the last case.

• In the case n = p − 1, the Orthl1 regularizer is
minimized if and only if W has orthogonal rows and
one column equal to zero; the set of minimizers of the
Orthl1 regularizer is therefore a proper subset of the set
of minimizers of the SO regularizer.

• In the case n < p, the SRIP regularizer is minimized if
and only if all the singular values of the matrix W lie
in the interval [0,

√
2]: the set of minimizers of the SO

regularizer is thus a proper subset of the set of minimizers
of the SRIP regularizer.

• In the case n = p− 1, the MC regularizer is minimized
if and only if W = QM, where Q is any n × n
orthogonal matrix and M is a matrix whose columns have
identical norms and are separated by identical angles.
Graphically, the columns of M are the n + 1 vertices
of an n-dimensional regular simplex (generalization of
the equilateral triangle, or regular tetrahedron, to n di-
mensions). The set of minimizers of the MC regularizer
is thus in general disjoint from the set of minimizers of
the SO regularizer.

Our findings indicate that, analogously to LASSO regres-
sion, resorting to the Orthl1 regularizer for promoting row
orthogonality of the weight matrices tends to sparsify the
model when the layer size is increasing. Let us assume
that dl = dl−1 + 1 for some layer l. Row orthogonality
of Wl ∈ Rdl×dl−1 is not achievable and, as an immediate
corollary of the discussion above, one row of the optimal
Wl for the Orthl1 regularizer is zero. There follows that, at
optimality of the Orthl1 regularizer, one activation of layer
l is zero. We also illustrate this sparsification induced by
the Orthl1 regularizer in the last section of the paper for
various architectures with increasing layer dimension (beyond
dl = dl−1+1), for feed-forward, but also convolutional neural
networks.

II. COMPARISON OF ORTHOGONAL REGULARIZERS

This section aims to characterize the optimal solutions to
the regularizers presented in Table I, in the case n < p.

A. Regularizers based on the Frobenius norm

We first prove the following result, that relates the SO and
DSO regularizers.

Proposition II.1. Let W ∈ Rn×p. Then,

∥W⊤W − Ip∥2F = ∥WW⊤ − In∥2F + p− n.



Proof. There holds

∥W⊤W−Ip∥2F = Tr
((

W⊤W − Ip
)⊤ (

W⊤W − Ip
))

= Tr
(
W⊤WW⊤W

)
− 2Tr

(
W⊤W

)
+Tr(Ip)

= Tr
(
WW⊤WW⊤)− 2Tr

(
WW⊤)+Tr(Ip)

= ∥WW⊤ − In∥2F − Tr(In) + Tr(Ip).

Proposition II.1 indicates that the SO and DSO regularizers
are equivalent: using either of them provides the same objec-
tive up to a constant, hence the same gradient flow. It follows
that, when using the SO regularizer, transposing the matrix
when it is horizontal leads to exactly the same gradient flow
than without transposition, this step is thus not needed.

Let us now consider a weight matrix W ∈ Rn×p, and
assume that n < p. An immediate consequence of Proposi-
tion II.1 is that the SO (and DSO) optimizer is minimized if
and only if WW⊤ = In, i.e., the rows of the weight matrix
are orthonormal. In terms of singular value decomposition, the
set of minimizers of the SO and DSO regularizers, in the case
n < p, is given by the following result.

Corollary II.2. Let W ∈ Rn×p, with n < p. Then, the SO
(and DSO) regularizers are minimized if and only if

W = U
(
In 0p−n

)
V⊤, (2)

where U ∈ Rn×n and V ∈ Rp×p are orthogonal, i.e., all the
singular values of W are equal to one.

B. Regularizer based on the entrywise l1 norm
We restrict here our analysis to the case n = p−1, for which

we characterize the set of global minimizers as a proper subset
of the set of minimizers of the SO and DSO regularizers:
additionally to having orthonormal rows, minimizers of the
Orthl1 regularizer have one zero column.

Proposition II.3. Let W ∈ Rn×p, with n = p− 1. Then, the
Orthl1 regularizer is minimized if and only if

W = U
(
In 01

)
V⊤, (3)

where V ∈ Rp×p is orthogonal and such that V = [Ṽ ek]
with ek the kth canonical vector for some k ∈ {1, . . . , p}.
This implies that the kth row of Ṽ (hence the kth column of
W) is zero.

Proof. Let us first assume that W is a minimizer of the SO
regularizer, so that W = U

(
Ip−1 01

)
V⊤ = UṼ⊤, where

Ṽ ∈ Rp×p−1 is the submatrix containing the p − 1 first
columns of V. Then,

∥W⊤W − Ip∥1 = ∥ṼṼ⊤ − Ip∥1
≥ ∥diag(ṼṼ⊤ − Ip)∥1
=

∑
i

|1− (ṼṼ⊤)i,i|

=
∑
i

(1− (ṼṼ⊤)i,i)

= p− tr(ṼṼ⊤),

where diag(A) is the diagonal part of A, and where the third
equality results from the fact that the rows of Ṽ have norm
upper bounded by one as Ṽ is a submatrix of the orthogonal
matrix V. Note also that tr(ṼṼ⊤) = tr(Ṽ⊤Ṽ) = p − 1 by
construction of Ṽ, so that ∥W⊤W − Ip∥1 ≥ 1 for all W of
the form (2). There holds ∥W⊤W − Ip∥1 = 1 if and only if
ṼṼ⊤ is diagonal, or equivalently, W is of the form (3).

Note finally that, for all W, there holds ∥W⊤W− Ip∥1 ≥
∥W⊤W − Ip∥F ≥ 1, where the first inequality is a well-
known property of the entrywise l1 and l2 norms, and the
second is a consequence of the Eckart-Young theorem for the
Frobenius norm (since W⊤W has rank at most p− 1). There
follows that, for any W that is not of the form (2), i.e., not a
minimizer of the SO regularizer, ∥W⊤W − Ip∥1 > 1.

As a consequence, in the case n = p − 1, the Orthl1
regularizer promotes one hidden unit of the previous layer to
be simply forgotten in the next layer. Note that any matrix of
the form (3) satisfies WW⊤ = In, i.e., similarly as for the
SO regularizer, the Orthl1 regularizer promotes orthogonality
of the rows of the weight matrix. Note finally that relaxing the
assumption n = p − 1 makes the analysis substantially more
complex; we leave this question for further research.

C. Regularizer based on the spectral norm

We now show that, unlike the regularizers considered so far,
the SRIP regularizer does not promote row orthogonality if
n < p.

Proposition II.4. Let W ∈ Rn×p, with n < p. Then, the SRIP
regularizer is minimized if and only if

W = UDV⊤, (4)

with U ∈ Rn×n and V ∈ Rp×p orthogonal, and where D ∈
Rn×p is a diagonal matrix whose diagonal elements are in
the interval [0,

√
2].

Proof. By unitarily invariance of the spectral norm, there holds
σ(W⊤W − Ip) = σ(VD⊤DV⊤ − Ip) = σ(D⊤D − Ip) =
maxi |D2

ii − 1|. Note that, since W⊤W has rank at most
n < p, D has at least p− n diagonal elements equal to zero,
so that σ(D⊤D−Ip) ≥ 1. Note finally that σ(D⊤D−Ip) = 1
for all D with diagonal elements in the interval [0,

√
2], which

concludes the proof.

This result indicates that, in the case n < p, the SRIP
regularizer simply promotes the spectrum of the weight matrix
to be in some “reasonably small” interval. We have thus proven
that using this regularizer on horizontal matrices does not
promote neither orthonormality of the rows nor of the columns.

D. Regularizer based on the entrywise l∞ norm

Again, instead of providing a full characterization of the
minimizers, we restrict our analysis to the case n = p− 1 to
ease the analysis. Our main conclusion is that the MC regu-
larizer acts very differently than the regularizers considered so
far; in the case n = p − 1 it is minimized when all columns



of W have the same length and are pairwise separated by the
same angle.

Let us start by exhibiting an optimal solution for the case
n = 2, p = 3. A minimizer of the MC regularizer is given by:

W∗ =

√
2

3

(
1 −1/2 −1/2

0
√
3/2 −

√
3/2

)
,

i.e., the columns of W are three equal-norm vectors separated
by angles of 2π/3. Indeed, note that

W∗⊤W∗ − I3 =

−1/3 −1/3 −1/3
−1/3 −1/3 −1/3
−1/3 −1/3 −1/3

 ,

so that ∥W∗⊤W − I3∥∞ = 1/3. This is tight since

∥W∗⊤W − I3∥2∞ ≥ ∥W∗⊤W − I3∥2F/32 ≥ 1/9,

where the lower bound on the Frobenius norm is a conse-
quence of the Eckart-Young theorem [14], using the fact that
W∗⊤W∗ has rank at most n = 2. For any p and n = p− 1,
we get the following result.

Proposition II.5. Let W ∈ Rn×p, with n = p − 1. The MC
regularizer is minimized at:

W∗ =

√
n

p
M,

where M ∈ Rn×p is constructed as follows.

M11 = 1
Mij = −Mii/(p− i) ∀j > i

Mii =
√
1−

∑
k<i M

2
ki

Mij = 0 ∀j < i.

(5)

Proof. Note that, by construction, (W∗⊤W∗−Ip)i,j = −1/p
for all i, j ∈ {1, . . . , p}. This is optimal since

∥W∗⊤W∗ − Ip∥2∞ = 1/p2,

which needs to be larger than or equal to

∥W∗⊤W∗ − Ip∥2F/p2 ≥ (p− n)/p2 = 1/p2,

where the last inequality results from the Eckart-Young theo-
rem [14].

Note further that all minimizers of the MC regularizer can
be obtained as a simple rotation of the solution given in
Proposition II.5. Indeed, we show the following result.

Proposition II.6. Let W ∈ Rn×p, with n = p − 1. The MC
regularizer is minimized at W if and only if

W =

√
n

p
QM,

where Q ∈ Rn×n is orthogonal and M is defined in (5).

Proof. It is readily checked that W is optimal if and only
if W⊤W − Ip = −1/pJp, where Jp is the p × p matrix
whose entries are equal to one, so that W⊤W = −1/pJp +
Ip. The conclusion simply follows from results characterizing

all possible solutions to the low-rank factorization problem
W⊤W = A, for some A ∈ Rp×p of rank n, see, e.g., [15,
Prop. 2.1].

Geometric intuition: Note that the optimal solution of the
MC regularizer, described in Proposition II.5 has a geometrical
interpretation. In the case n = 2, p = 3, the columns of
the matrix M defined in (5) are three vectors in R2 whose
extremities define an equilaterial triangle centered at the origin.
Similarly, for n = 3, p = 4, the columns of M form a regular
tetrahedron with barycenter at the origin. In higher dimensions,
the columns of M define a n-dimensional regular simplex.

III. INTERPRETATION ON THE Orthl1 REGULARIZER

Consider the feed-forward neural network f described in
(1), and assume that there exists a layer l such that dl = dl−1−
1 (layer of decreasing dimension). We showed in Section II-B
that the Orthl1 regularizer is optimal at W∗

l ∈ Rdl×dl−1 if
and only if W∗

l has orthonormal rows and one column equal
to zero. Up to column permutation, W∗

l can thus be written
as:

W∗
l =

(
Qdl

01

)
,

where Qdl
is a dl × dl orthogonal matrix. This implies that

the activations at layer l are linear combinations of the dl
first activations of layer l− 1, the last activation being simply
dropped by the model.

Note that conversely, if we consider the case dl = dl−1 +
1 and use the entrywise l1 norm to promote orthonormality
of the rows instead of the columns, i.e., if we consider the
regularizer

R̃Orthl1
(W) = ∥WW⊤ − Idl

∥21 (6)

with W ∈ Rdl×dl−1 , optimal solutions are of the form (up to
a permutation of the rows of W∗

l ):

W∗
l =

(
Qdl−1

01

)
,

so that the last activation of layer l is set to zero. Thus,
regularizer (6) induces a sparsification of the model. The next
section illustrates numerically a similar sparsification of the
model for layers of expanding dimension (i.e., dl > dl−1, but
not necessarily assuming dl = dl−1 + 1).

IV. NUMERICAL EXPERIMENTS

In this section, we validate numerically our claim regarding
the sparsification induced by the Orthl1 regularizer. We first
consider the MNIST classification problem. As the focus is
on regularizer comparison instead of classification perfor-
mance, we use simple 3-hidden-layers feed-forward neural
networks. We consider two different architectures, differing
in the number of hidden units per layer: 1000, 1200, and 100
for the first model, and 750, 750, and 100 for the second.
Since MNIST pictures are 28 × 28, the input dimension is
282 = 784, so the first model corresponds to an architecture
with two expanding layers (in which we hope to see the
sparsification behaviour described above), while the second



has a monotonically decreasing layer dimension. Layers of
both models are endowed with a sigmoid nonlinearity, while
the last hidden layer is sent to a softmax with 10 output
units. A similar architecture has been used in [16] to illustrate
the difference in the distribution of the hidden units with or
without batch normalization. In our case, we use this problem
setting and architecture to illustrate the impact on training of
regularizer (6) compared to the row-orthogonality counterpart
of the SO regularizer:

R̃SO(W) = ∥WW⊤ − I∥2F. (7)

We trained each architecture with the cross-entropy loss,
regularized with either (6) or (7), using stochastic gradient
descent with learning rate 0.1, momentum 0.9, batchsize 60,
and default initialization for all variables. We did not use any
other form or regularization (no weight decay nor dropout).
The regularizer weight in (1) was set to λ = 10−6.
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Fig. 1: Histogram of the magnitude of the activations (first
and second hidden layers) for the 1000-1200-100 feed-forward
neural network trained on MNIST classification. As expected,
for the regularizer defined in (6), a substantial amount of
activations are very close to zero.

We plot in Figure 1 and Figure 2 histograms representing
the distribution of the activations of the two first hidden
layers over an arbitrarily selected mini-batch, respectively for
the architectures 1000-1200-100 and 750-750-100, after 20
training epochs. As a reference, we also display the histogram

of the activations at initialization. Note that a substantial
number of activations are very close to zero for the architecture
1000-1200-100, which is not the case for the architecture 750-
750-100, consistently with the discussion in Section III.
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Fig. 2: Histogram of the magnitude of the activations (first
and second hidden layers) for the 750-750-100 feed-forward
neural network trained on MNIST classification. There is no
peak around zero in this case.

A. Experiments on CIFAR10 using a WideResNet

As a second experiment, we considered CIFAR-10 clas-
sification using a residual neural network (ResNet), namely,
a convolutional neural network endowed with skip connec-
tions, allowing to train very deep architectures. We use a
Wide ResNet 28-10 architecture, which has 28 layers whose
dimensions are progressively increased by a widening factor
10. Due to their layers of increasing dimension, Wide ResNets
are particularly suitable to illustrate our claims.

We follow the approach used in [11] to regularize convolu-
tional filters: each convolutional filter W ∈ RCout×Cin×k×k,
with Cout and Cin output/input channels, and k, the filter
spatial dimension, is reshaped into a matrix with Cout rows
and Cink

2 columns, to which the regularizer is applied.
We rely on the model architecture implementation of [11].

The model is trained for the cross-entropy loss regularized
with either (6) or (7), using SGD with learning rate 0.1,
no momentum, batchsize 128, λ = 10−6, and dropout with



dropping probability 0.3. We did not use any other form of
regularization (no weight decay).

According to Section III, we expect, in the case Cout ≥
Cink

2, some rows of the matrix W ∈ RCout×Cink
2

repre-
senting the convolutional filters to be close to zero. For the
sake of comparison, we select two convolutional layers in
our model, represented by matrices WA ∈ R160×1440, and
WB ∈ R160×16. As the second has more rows than columns,
we expect some of its rows to have a small norm due to the
impact of the regularizer (6).

Figure 3 illustrates the distribution of the norms of the rows
of WA and WB at initialization and after 20 epochs using
regularizers (6) and (7). As expected, the norm of several rows
of the matrix WB has substantially decreased over the 20 first
epochs.
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Fig. 3: Histogram of the norm of the rows of the matrices
WA ∈ R160×1440 and WB ∈ R160×16, namely, reshaped
convolutional filters of a Wide ResNet 28-10 trained on
CIFAR-10 classification for 20 epochs. The regularizer (6)
leads to many rows decreasing to zero, unlike regularizer (7).

V. CONCLUSION

We characterize the set of optimal solutions of several
orthogonal regularizers for horizontal weight matrices, ex-
hibiting important differences between existing regularizers.
We hope that this work will pave the way towards a better
understanding of the impact of orthogonal regularization in
deep learning, regarding model training, generalization, and

interactions with other explicit/implicit regularization mecha-
nisms.
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