Averaging positive definite matrices

E. Massart, J. Hendrickx, P.-A. Absil

ICTEAM, UCL, Belgium

March 2016
The set of Positive Definite (PD) matrices

\[P_n = \{ A \in \mathbb{R}^{n \times n} \mid A = A^T \text{ and } \lambda_i > 0 \ \forall i = 1, \ldots, n \} \]
The set of Positive Definite (PD) matrices

\[\mathbb{P}_n = \{ A \in \mathbb{R}^{n\times n} \mid A = A^T \text{ and } \lambda_i > 0 \ \forall i = 1, \ldots, n \} \]

For \(n = 2 \):

\[A = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in \mathbb{P}_2 \]

\[\begin{cases} \tau(A) = a + c > 0 \\ \det(A) = ac - b^2 > 0 \end{cases} \]
The set of Positive Definite (PD) matrices

\[\mathbb{P}_n = \{ A \in \mathbb{R}^{n \times n} \mid A = A^T \text{ and } \lambda_i > 0 \ \forall i = 1, \ldots, n \} \]

For \(n = 2 \):

\[\delta(A, B) = \| A - B \|_F \]

\[\downarrow \]

\[\delta(A, B) = \| \log(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}) \|_F \]
Properties expected from a mean on \mathbb{P}_n

ALM list (10 criteria):

- Joint homogeneity: $M(\alpha A_1, A_2) = \sqrt{\alpha} M(A_1, A_2)$
- Invariance under permutation: $M(A_1, A_2) = M(A_2, A_1)$
- Invariance under inversion: $M(A_1^{-1}, A_2^{-1}) = M(A_1, A_2)^{-1}$
- ...

\Rightarrow Unique 2-variable ALM-compliant mean
2-variable ALM-compliant mean

\[M(A, B) = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} BA^{-\frac{1}{2}} \right)^{\frac{1}{2}} A^{\frac{1}{2}} \]

⇒ Unique 2-variable ALM-compliant mean
Multivariate ALM-compliant mean

Several possibilities, the most widespread = Karcher mean:

\[K(A_1, \ldots, A_N) = \arg\min_{X \in \mathbb{P}_n} \sum_{i=1}^{N} \delta^2(X, A_i) \]

where

\[\delta(A, B) = ||\log(A^{-\frac{1}{2}} BA^{-\frac{1}{2}})||_F \]
Several possibilities, the most widespread = Karcher mean:

\[K(A_1,\ldots,A_N) = \arg\min_{X \in \mathbb{P}_n} \sum_{i=1}^{N} \delta^2(X, A_i) \]

Optimization problem on manifold

⇒ solved using iterative algorithm, e.g., Steepest Descent (SD)
⇒ expensive to compute

⇒ Approximate it instead!
Our goal

Produce a multivariate PD mean, which should be:

1. cheap
2. as close to the Karcher mean as possible
3. as ALM-compliant as possible

⇒ Tradeoff between (1) and \((2), (3)\)

Tool : start from the 2-variable ALM-compliant PD mean, for which there exists a closed-form expression...
Progressive merging approach

Progressive merging approach combined with shuffling

Performances
Progressive merging approach

Progressive merging approach combined with shuffling

Performances
Progressive Merging algorithm

Idea: make successively one step towards each input matrix. Example for $N = 5$:
Trick to compute the multivariate arithmetic mean in \mathbb{R}^2
Trick to compute the multivariate arithmetic mean in \mathbb{R}^2
Trick to compute the multivariate arithmetic mean in \mathbb{R}^2
Trick to compute the multivariate arithmetic mean in \mathbb{R}^2
Trick to compute the multivariate arithmetic mean in \mathbb{R}^2
Trick to compute the multivariate arithmetic mean in \mathbb{R}^2
Application of this trick on the sphere

⇒ doesn’t work anymore

⇒ last points under-emphasized
Application of this trick on \mathbb{P}_2

\Rightarrow doesn’t work anymore

\Rightarrow last points over-emphasized
The result depends on the order of the inputs

\[\delta_{rel}(i) = \frac{\delta(M, A_i)}{\delta(K, A_i)} \] with \[\delta(A, B) = \| \log(A^{-\frac{1}{2}} BA^{-\frac{1}{2}}) \|_F \]
Progressive merging approach

Progressive merging approach combined with shuffling

Performances
Progressive Merging algorithm

Idea: make successively one step towards each input matrix.

Example for $N = 5$:

Key observation: result X_{N-1} depends on the initial order of the matrices.
Progressive Merging algorithm with shuffling

- Choose a set of \(k \) permutations
- Run the PM algorithm with each permutation
 \(\Rightarrow \) estimates \(X_{N-1,1}, \ldots, X_{N-1,k} \)
- Average estimates \(X_{N-1,1}, \ldots, X_{N-1,k} \).

Example: \(N = 5 \)

\[
\begin{align*}
A_1 & \quad X_{4,1} \\
A_2 & \quad X_{4,2} \\
A_3 & \quad X_{4,3} \\
A_4 & \\
A_5 &
\end{align*}
\]
Choice of the permutations: in-shuffling
Choice of the permutations: in-shuffling

![Diagram of card arrangement](image)
Choice of the permutations: in-shuffling
Choice of the permutations: in-shuffling
Choice of the mean for the last averaging step

- Arithmetic mean
- PM algorithm
- Crude mean

\[M_{Cr}(A_1, \ldots, A_N) = M(M_A(A_1, \ldots, A_N), M_H(A_1, \ldots, A_N)) \]

with

\[M_A(A_1, \ldots, A_N) = \frac{1}{N} \sum_{i=1}^{N} A_i \quad \text{and} \quad M_H(A_1, \ldots, A_N) = \left(\frac{1}{N} \sum_{i=1}^{N} A_i^{-1} \right)^{-1} \]
Progressive merging approach

Progressive merging approach combined with shuffling

Performances
Performances: ALM-compliant means?

7-9 of the 10 ALM properties fulfilled, depending on the variant

Lost properties:

- invariance under permutation:
 \[M(A_1, \ldots, A_N) = M(A_{p(1)}, \ldots, A_{p(N)}) \]

- invariance under inversion:
 \[M(A_1^{-1}, \ldots, A_N^{-1}) = M(A_1, \ldots, A_N)^{-1} \]

- determinant equality:
 \[\det(M(A_1, \ldots, A_N)) = (\det A_1 \cdot \ldots \cdot \det A_N)^{1/N} \]
Performances: estimate of K?

Remember:

$$K(A_1, \ldots, A_N) = \arg\min_{X \in \mathcal{P}_n} \sum_{i=1}^{N} \delta^2(X, A_i)$$

Proximity of M to K:

$$E_{rel} = \frac{\delta(M, K)}{\frac{1}{N} \sum_{i=1}^{N} \delta(A_i, K)}$$
Performances: estimate of K?

$$E_{rel} = \frac{\delta(M, K)}{\sum_{i=1}^{N} \delta(A_i, K)}$$

$N = 25, n = 20$

- IS−PM−Ar
- IS−PM−Cr
- IS−PM−PM
- Cheap
- SD−Auto−10
- SD−Auto−15
Performances: estimate of K?

\[E_{rel} = \frac{\delta(M, K)}{N} \sum_{i=1}^{N} \delta(A_i, K) \]

\[N = 10, n = 50 \]

![Graph showing error E_{rel} vs. CPU time for different algorithms.](image)
Performances: estimate of K?

$$E_{rel} = \frac{1}{N} \sum_{i=1}^{N} \delta(A_i, K)$$

$N = 10, n = 20, c = 10^4$
Conclusion

PD matrices

Averaging algorithm
Performances:

- 7-9 ALM criteria satisfied
- Non-dominated by state-of-the-art
- Advantage \(\uparrow \) for big / ill-conditioned matrices