Impact of the material distribution formalism
on the efficiency of evolutionary methods for
topology optimization

Denies J.!, Dehez B.!, Glineur F.? and Ben Ahmed H.?

! CEREM - Université catholique de Louvain, Place du Levant, 3,
Louvain-la-Neuve, 1348, Belgium, {jonathan.denies,
bruno.dehez}@uclouvain.be

2 ICTEAM & IMMAQ/CORE - Université catholique de Louvain, Voie du Roman

Pays, 34, Louvain-la-Neuve, 1348, Belgium, francois.glineur@uclouvain.be

SATIE laboratory - Ecole Normale Supérieure de Cachan antenne de Bretagne,

Campus de Ker Lann, 35170, Bruz, France, benahmed@bretaxgne.ens’.-cachan.frJr

Summary. We consider an evolutionary method applied to a topology optimiza-
tion problem. We compare two material distribution formalisms (static vs. Voronoi-
based dynamic), and two sets of reproduction mechanisms (standard vs. topology-
adapted). We test those four variants on both theoretical and practical test cases, to
show that the Voronoi-based formalism combined with adapted reproduction mech-
anisms performs better and is less sensitive to its parameters.

1 Introduction

Optimization methods are used more and more frequently at increasingly early
stages in the design process, with the goal of improving performance with re-
spect to cost, weight or other criteria. One can distinguish three paradigms
according to the type of design variable used: parametric, geometric and topol-
ogy optimization.

Parametric optimization deals with a fixed geometry, chosen by the de-
signer, and tries to find optimal choices of geometric parameters such as
lengths, widths, etc. Geometric optimization considers instead design param-
eters which define various shapes in the object under study, using for example
spline functions. The designer remains responsible for selecting the initial ge-
ometry and choosing which shapes (typically interfaces between materials)
are optimized, and how they are parameterized.

In this work, we focus on topology optimization, where design parameters
describe the distribution of some materials in a design space. This paradigm
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offers two significant advantages over the other two. First, it can be started
from an empty design space, hence the designer does not have to provide
a priori solutions or initial geometries. Second, potential solutions are not
restricted in any way, and methods can find designs with a completely arbi-
trary topology. Topology optimization tools are generally composed of three
functional blocks:

1. A material distribution formalism that converts a list of design parameters
into a solution (i.e. a design);

2. An evaluation tool that computes the objective function(s) of solutions
produced by the material distribution formalism;

3. An optimization algorithm that modifies the solution through its design
parameters in order to improve the objective function(s).

These blocks are obviously not completely independent. The choice of one
may influence more or less significantly the choice of others and how they are
implemented [1, 2, 3, 4]. In this article, we focus on the following two aspects:
what is the impact of the material distribution formalism on the performance
of the optimization tool, and can the optimization algorithm be adapted to
the specific problem of topology optimization.

The material distribution formalisms we consider are based on a subdivi-
sion of the design space into cells, each cell being filled homogeneously with a
given material. The optimization algorithm used is NSGA-II [5], a genetic al-
gorithm. The choice of an evolutionary meta-heuristic algorithm is motivated
by our will to develop a generic optimization tool, completely independent of
a particular physics or evaluation tool, that does not require the availability
of derivative information and is able to handle discrete parameters (to decide
the type of material in each cell) ; other non-evolutionary derivative-free al-
gorithms [6], such as direct search methods, could also be appropriate but fall
outside the scope of this work.

This article is structured as follows. Section 2 presents the two different
material distribution formalisms we consider, one based on a static division of
the design space and the other allowing dynamic divisions using the notion of
Voronoi cells. Section 3 proposes one way to adapt, through its reproduction
mechanisms, the genetic algorithm to the specific case of topology optimiza-
tion. Section 4 describes the study cases used in Section 5 to assess the impact
of the choice of a material distribution formalism and the adaptation of the
optimization algorithm on the quality of the solution found. The results reveal
notably that, for a given number of evaluations, a dynamic material distribu-
tion formalism leads to solutions with a better objective function, and that
the proposed adaptation of the genetic algorithm improves robustness of the
results with respect to variations in the number of design parameters used.

2 Material distribution formalisms

Material distribution formalisms can be either static or dynamic. In the first
case, subdivision of the design space into cells is decided once and for all before
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the optimization. Design parameters are then limited to materials constituting
each cell, and their total number remains constant. In the second case, the
subdivision may evolve during optimization through the number of cells, their
shapes and their positions. Design parameters must therefore also include a
geometric description of each cell, and their number can vary.

2.1 Static formalism

The static formalism we consider is based on a subdivision of the design space
into a regular fixed rectangular grid with m rows and n columns (Fig. 1, left),
which is the most frequently used configuration in the literature, see e.g. [8].

My Design space Design space
My_F [IMaterial A = [0] [ Material A = [0]
MS:' [IMaterial B = [1] [ Material B = [1]
Vi L-Pq
M Pi=lxqiyq) Mg
— Mmxn
My, Mg, ..., Myl = [0, 1, ..., 0] M1, M2, .., Mql =11, 1, ..., 0]

[Py, Py, ..., Pql = [{0.2:0.9},{0.7:0.8}, ..., 10.9;0.1}]

Fig. 1. Illustration of the static (left) and dynamic Voronoi (right) formalism.

Genetic algorithms manipulate the design parameters via a problem-
dependent data structures called chromosomes. In this case, they are arrays
where each element, called gene, is a discrete variable indicating the material
of the cell. In this work, we only consider two materials, i.e. work with binary
variables.

2.2 Dynamic formalism

The dynamic formalism we consider is based on the notion of Voronoi cells [9],
whose use in the context of topology optimization was pioneered by Schoe-
nauer (see e.g. [10, 7]). Each of the g cells is defined by its center, and includes
all points of the design space that are nearest to this center (Fig. 1, right). In
addition to the binary material chromosome of the static case, design param-
eters include the positions of each cell center, listed in a separate array of real
x- and y-coordinates (i.e. 3¢ parameters in total).

3 Reproduction mechanisms

One of the main characteristics of meta-heuristic optimization algorithms is
that they can be applied to various problems without requiring special adap-
tations. Indeed, genetic algorithms can be run as soon as the encoding of the
design parameters characterizing a solution (called an individual) into one or
more chromosomes is defined. These algorithms evolve a population of indi-
viduals by appropriate selection and reproduction mechanisms, with the aim
of converging to an optimal solution (or to a set of non-dominated solutions
if several objective functions are considered).
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3.1 Standard mechanisms

The reproduction mechanisms involved in genetic algorithms are crossover
and mutation. Crossover consists in exchanging some of the genes of two
individuals, called parents, to produce two new individuals, called children. In
its standard version, a pivot is randomly positioned inside the chromosome to
determine the genes undergoing the exchange (Fig. 2, left). Mutation consists
in modifying the (binary or real) value of a randomly chosen gene (Fig. 2,
right).

[1,0,0,1,0,1,01 [1,0,0,0,0,0,1]
: 5 :

: : [1,0,0,1;0, 1,0l —[1, 0, 0,:0,:0, 1, 0]
[0,1,0,0,0,0,1 [0,1,0,:1,0,1,0]

Fig. 2. Standard crossover (left) and mutation (right) reproduction mechanisms

These standard reproduction mechanisms may be applied to both static
and dynamic material distribution formalisms (we must nevertheless ensure
in the case of the dynamic formalism that crossovers are applied to the same
parts of material and position chromosomes). Examples of these standard
mechanisms are illustrated on Fig. 3.

A TA

Fig. 3. Examples of standard reproduction mechanisms: crossover with static for-
malism (left) ; mutation with dynamic formalism (right)

R

3.2 Adapted mechanisms

The previous selection and reproduction mechanisms are completely generic
and independent of the addressed problem. We now propose to use additional
mechanisms better suited to the case of topology optimization and its geo-
metric nature. More specifically, we suggest to apply the reproduction mech-
anisms graphically instead of working directly on chromosomes: a geometric
region in the design space will be selected randomly and will then undergo a
crossover or a mutation, after which the results will be translated back into
the chromosome encoding.

In practice, the adapted crossovers we introduce in the static and dynamic
cases are based on a random circle whose center and radius are randomly
chosen to fit within the design space. In the static cases, material genes within
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the circle are exchanged between the parents, while in the dynamic cases both
position and material genes are exchanged (see an example on Fig. 4 left).
We also propose to introduce adapted mutations. In the static case, we
set a whole randomly selected rectangle (instead of a single gene) to a single
type of material (see Fig. 4 right). In the dynamic case, since standard muta-
tions are already effective, we introduce a different type of adapted mutation
that consists in randomly adding or deleting a Voronoi cell (note that the
adapted crossover mechanism, in contrast with the standard mechanisms, al-
ready allows variations in the number of Voronoi cells, see again Fig. 4 left)*.

Fig. 4. Adapted mechanisms: dynamic crossover (left) static mutation (right)

4 Study cases

The dominating cost in a typical application of a genetic algorithm to an
engineering design problem is the evaluation of the objective function, since
computations required for population evolution are typically much cheaper.
Therefore, in order to ensure a fair comparison between variants, we run each
algorithm for a fixed number of generations, specifically 200 for the experi-
ments reported in Section 5. We also use 1% mutation rates and 80% crossover
rates, which have been empirically observed to give good results.

However, like others [10], we first consider a more theoretical test case
where the objective function can be evaluated very cheaply. This allows us
to run extensive experiments involving all proposed algorithm variants, and
derive general observations about them. These conclusions are then validated
on an actual engineering problem involving real physics but requiring much
higher evaluation times.

4.1 Theoretical case

Our theoretical case study consists in searching for a hidden reference shape
(Fig. 5, left). The corresponding objective function to minimize is given by the
difference of concordance between the reference shape and that described using
the material distribution formalisms. It is evaluated by projecting these two
shapes onto a fine and identical M x N mesh (with M > m and N > n). The

4 This however implies that standard crossovers are then no longer possible, because
chromosomes can now have different lengths.
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Fig. 5. Diagrams for theoretical (left, reference) and the practical (right) cases.

N N  Bis
objective function is therefore given by Lz ZI(/'[:;J(\I;”@(I J), where @ denotes

the exclusive or operation and p;; and g¢;; represent components on the fine
mesh of the reference solution and of the solution to assess.

4.2 Practical case

Our practical study case concerns the design of a variable reluctance linear
actuator (Fig. 5, right). The objective is to maximize the restoring force de-
veloped by the actuator between conjunction and opposition positions.

Given this objective and the symmetrical structure imposed on the actu-
ator, the design space can be reduced to a small area (Fig. 5, right). This
design space is partitioned into two subspaces, the first related to the mobile
part and the other to the fixed part of the actuator.

The objective function to minimize is given by function f = ¥opp — VPecon;
[11], where tcon; and vp, are the magnetic flux intercepted by the coils
formed by the copper in the conjunction and opposition positions respectively.
Evaluation of this function requires the use of a FEM software for calculating
magnetic field distribution ; we used version 3.5 of COMSOL [12] (evaluation
of a solution takes approximately 2 seconds on a 3 GHz computer).

5 Results and discussion

Whatever the formalism, one can expect that the (initial) number of cells
significantly influences the behavior of the topology optimization tool. This
is confirmed by results reported on Figs. 5 and 7 for all four combinations
(static/dynamic and without/with adaptation). Note first that, in each sit-
uation, the smaller the number (initial) cells, the faster the convergence to
a solution (a stable solution is even reached before the end of the 200 gen-
erations in the two smallest static cases 5 x 5 and 10 x 10). This is to be
expected since a large number of cells, corresponding to a large number of
design parameters, is naturally harder to optimize.

The effect of the proposed adaptation can be observed by comparing the
left and right sides of Figs. 5 and 7. On the one hand, for the dynamic for-
malism, the adaptations are always beneficial, i.e. the final solution is always
better. On the other hand, in the static case, results depend on the number
of cells. For small grids, using the standard reproduction mechanisms leads
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Fig. 6. Convergence of the objective function (theoretical case) for the classical
formalism without (left) and with (right) adaptation for different grid sizes.
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Fig. 7. Convergence of the objective function (theor. case) for the Voronoi formalism
without (left) and with (right) adaptation for different initial numbers of cells.

to faster convergence, while the adapted mechanisms perform better for large
grids. We explain this by noting that the adapted mutation mechanism, which
works with groups of cells, can only speed up convergence when the number
of cells is high, allowing more significant changes in the solution at each iter-
ation. For lower number of cells, working with groups of cells has no effect or
is even detrimental for the convergence

Quality of the final solution obtained could be expected to increase when
the number of cell increases, because this allows for more precise solutions.
This is only partially confirmed by our results: while the static 10 x 10 result
is better than its 5 x 5 counterpart, this trend does not continue with larger
numbers of cells, nor with the dynamic formalism. The reason is that, when the
number of cells is large, the 200-generation limit prevents the algorithm from
reaching a stable solution. Running with an unlimited number of generations
would show that larger numbers of cells lead to better final solutions, but this
is of course unrealistic in practice.

Therefore, the initial number of cells becomes a key parameter in a topol-
ogy optimization process. Too high, the slower convergence rate penalizes the
results because the solution does not have time to converge. Too low, the



8 Denies J., Dehez B., Glineur F. and Ben Ahmed H.

solution converges too quickly to a stable solution with lower quality and gen-
erations are wasted. Finding the optimum initial number of cells, one which
ensures that the topological optimization tool converges to an optimal so-
lution around the end of the fixed number of generations, is a crucial but
difficult challenge, moreover likely to be heavily problem-dependent. 8 and 9
illustrate this tradeoff for our theoretical case study (each box plot stands for
5 experiments).
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Fig. 8. Result (theoretical case) of the classical formalism without (left) and with
(right) adaptation when the number of cells varies
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Fig. 9. Result (theoretical case) of the Voronoi formalism without (left) and with
(right) adaptation when the number of cells varies

It appears that, when a static formalism is used, or when a dynamic for-
malism is used without adaptation, quality of the final solution returned by
the genetic algorithm is very sensitive to the initial number of cells, the sweet
spot for this particular problem being around a 14 x 14 grid or 25-35 Voronoi
cells. However, the fourth combination, using a dynamic formalism with adap-
tations, is clearly much less sensitive to the initial conditions. Recall that this
is the only variant where the number of cells can vary from individual to in-
dividual. We ascribe its better behaviour to this feature. Indeed, checking the
number of cells present in the final solution confirms that this number natu-
rally increases (resp. decreases) when it initially is too low (resp. too high).
It is also worth noting that the absolute best objective function among all
experiments (around 1.5%) is obtained by this fourth variant.



Impact of distribution formalisms in evolutionary topology optimization 9

To conclude this section, we validate these observations on the practical
case described at the end of the previous section, with a single run of each of
the four versions of the optimization tool, again using a limit of 200 genera-
tions. We allocate roughly 200 parameters for both formalisms (a 2 x 10 x 10
grid in the static case, and 67 initial cells in the dynamic case, which corre-
sponds to 3 x 67 = 201 design parameters).

Results for the objective function reported in Table 1 are consistent with
observations made on the theoretical case (objective values are normalized
with respect to the baseline static case without adaptation). The advantage
of the dynamic formalism over its static counterpart even seems to be larger
than for the theoretical case, with solutions whose objective function is nearly
an order of magnitude better than those obtained with the static formalism.
Usefulness of the algorithm adaptation is also confirmed, at least in the case
of the dynamic formalism.

Distribution formalism Static ~ Static Dynamic Dynamic
Reproduction mechanisms |Standard Adapted Standard Adapted
Objective function (normalized)| 1.00 0.90 6.62 7.20

Table 1. Objective functions obtained after 200 generations in the practical case.

Finally, Fig. 10 displays solutions obtained in the two extreme cases: static
formalism with standard reproduction mechanisms (left) and dynamic formal-
ism coupled with adapted mechanisms (right). They suggest that the initial
number of cells was too high in the static case, preventing the tool to converge
over the course of the 200 generations (observe e.g. the mixture of materials
in the lower part of the solution). The solution produced in the second case
seems much closer to a stable design. However, the initial number of Voronoi
cells was apparently not enough since it rose from 67 to 78 during the opti-
mization. This confirms the observation that the optimization tool based on a
combination of a dynamic formalism and an adapted optimization algorithm
is much more robust with respect to variations in the initial number of cells.
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Fig. 10. Actuator design for the practical case obtained with a non-adapted static
formalism (left) and adapted dynamic formalism (right).
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To conclude, we relate our work with that of Schoenauer et al. (see e.g.
[10, 7]), which demonstrates the potential of evolutionary algorithms when
applied to the topology optimization of mechanical structures. We confirm
their observation that the use of a dynamic formalism with adapted algorithms
is beneficial for topology optimization, both on a theoretical case and on a
practical application in electromagnetic design.

Our works differs however in several aspects: instead of waiting for con-
vergence of the algorithm, which is unrealistic in many practical situations,
we enforce a limit on the number of generations. We demonstrate that the
initial number of cells provided to the algorithm is a key parameter influ-
encing the quality of the final solution, but that it cannot be determined a
priori. Nevertheless, we show that the quality of the solutions returned by our
Voronoi-adapted variant is, through a regulation mechanism on the number of
cells, less dependent on the initial number of cells while it converges towards
better solutions.
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